Sputter-Deposited Cr–Ag Films for Environmental Antimicrobial Applications
Abstract
:1. Introduction
2. Experimental
2.1. Samples Preparation
2.2. Material Characterization and Tests
2.3. Antibacterial Test
3. Results and Discussion
3.1. Structural Analyses
3.2. Hardness and Wettability Tests
3.3. Antibacterial Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, T.; Sepati, M.; Herting, G.; Leygraf, C.; Rajarao, G.K.; Butina, K.; Richter-Dahlfors, A.; Blomberg, E.; Wallinder, I.O. A novel methodology to study antimicrobial properties of high-touch surfaces used for indoor hygiene applications-A study on Cu metal. PLoS ONE 2021, 16, e0247081. [Google Scholar] [CrossRef] [PubMed]
- Fontes, D.; Reyes, J.; Ahmed, K.; Kinzel, M. A study of fluid dynamics and human physiology factors driving droplet dispersion from a human sneeze. Phys. Fluids 2020, 32, 111904. [Google Scholar] [CrossRef] [PubMed]
- Redfern, J.; Tucker, J.; Simmons, L.M.; Askew, P.; Stephan, I.; Verran, J. Environmental and experimental factors affecting efficacy testing of nonporous plastic antimicrobial surfaces. Methods Protoc. 2018, 1, 36. [Google Scholar] [CrossRef] [Green Version]
- Connelly, M.C.; Reddy, G.S.; Nadagouda, M.N.; Sekhar, J.A. Antimicrobial and anticorrosive efficacy of inorganic nanoporous surfaces. Clean Technol. Environ. Policy 2017, 19, 845–857. [Google Scholar] [CrossRef]
- Kawakami, H.; Yoshida, K.; Nishida, Y.; Kikuchi, Y.; Sato, Y. Antibacterial properties of metallic elements for alloying evaluated with application of JIS Z 2801:2000. ISIJ Int. 2008, 48, 1299–1304. [Google Scholar] [CrossRef] [Green Version]
- Cazalini, E.M.; Miyakawa, W.; Teodoro, G.R.; Sobrinho, A.S.S.; Matieli, J.E.; Massi, M.; Koga-Ito, C.Y. Antimicrobial and anti-biofilm properties of polypropylene meshes coated with metal-containing DLC thin films. J. Mater. Sci. Mater. Med. 2017, 28, 97. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.Q.; Ishihara, M.; Kinoda, J.; Hattori, H.; Nakamura, S.; Ono, T.; Miyahira, Y.; Matsui, T. Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites. J. Nanobiotechnol. 2014, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Xu, J.; Li, Z.; Fu, T.; Jiang, S. In vitro antibacterial properties of MoO3/SiO2/Ag2O nanocomposite coating prepared by double cathode glow discharge technique. Surf. Coat. Technol. 2020, 397, 125992. [Google Scholar] [CrossRef]
- Dinca, P.; Butoi, B.; Lungu, M.; Porosnicu, C.; Jepu, I.; Staicu, C.; Lungu, C.P.; Niculescu, A.; Burducea, I.; Trusca, O.; et al. Antibacterial efficiency of stainless-steel grids coated with Cu-Ag by thermionic vacuum arc method. Coatings 2020, 10, 322. [Google Scholar] [CrossRef] [Green Version]
- Wojcieszak, D.; Mazur, M.; Kaczmarek, D.; Mazur, P.; Szponar, B.; Domaradzki, J.; Kepinski, L. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti-Ag and Nb-Ag thin films. Mater. Sci. Eng. C 2016, 62, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Alias, R.; Mahmoodian, R.; Genasan, K.; Vellasamy, K.M.; Abd Shukor, M.H.; Kamarul, T. Mechanical, antibacterial, and biocompatibility mechanism of PVD grown silver-tantalum-oxide-based nanostructured thin film on stainless steel 316L for surgical applications. Mater. Sci. Eng. C 2020, 107, 110304. [Google Scholar] [CrossRef] [PubMed]
- Ferreri, I.; Calderon, S.V.; Escobar Galindo, R.; Palacio, C.; Henriques, M.; Piedade, A.P.; Carvalho, S. Silver activation on thin films of Ag-ZrCN coatings for antimicrobial activity. Mater. Sci. Eng. C 2015, 55, 547–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.J.; Zhang, F.; Fong, A.; Lai, K.M.; Shum, P.W.; Zhou, Z.F.; Gao, Z.F.; Fu, T. Effects of silver segregation on sputter deposited antibacterial silver-containing diamond-like carbon films. Thin Solid Film. 2018, 650, 58–64. [Google Scholar] [CrossRef]
- Cloutier, M.; Turgeon, S.; Busby, Y.; Tatoulian, M.; Pireaux, J.J.; Mantovani, D. Controlled distribution and clustering of silver in Ag-DLC nanocomposite coatings using a hybrid plasma approach. ACS Appl. Mater. Interfaces 2016, 8, 21020–21027. [Google Scholar] [CrossRef] [PubMed]
- Swiatek, L.; Olejnik, A.; Grabarczyk, J.; Jedrzejczak, A.; Sobczyk-Guzenda, A.; Kaminska, M.; Jakubowski, W.; Szymanski, W.; Bociaga, D. Multi-doped diamond like-carbon coatings (DLC-Si/Ag) for biomedical applications fabricated using the modified chemical vapour deposition method. Diam. Relat. Mater. 2016, 67, 54–62. [Google Scholar] [CrossRef]
- Rashid, S.; Sebastiani, M.; Mughal, M.Z.; Daniel, R.; Bemporad, E. Influence of the silver content on mechanical properties of Ti-Cu-Ag thin films. Nanomaterials 2021, 11, 435. [Google Scholar] [CrossRef]
- Bai, L.; Hang, R.; Gao, A.; Zhang, X.; Huang, X.; Wang, Y.; Tang, B.; Zhao, L.; Chu, P.K. Nanostructured titanium-silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering. Appl. Surf. Sci. 2015, 355, 32–44. [Google Scholar] [CrossRef]
- Wang, L.J.; Zhang, F.; Fong, A.; Lai, K.M.; Shum, P.W.; Zhou, Z.F.; Fu, T.; Ning, P.; Yang, S.Y. Tungsten film as a hard and compatible carrier for antibacterial agent of silver. J. Mater. Sci. 2018, 53, 10640–10652. [Google Scholar] [CrossRef]
- Karami, A.; Zhang, H.; Pederick, V.G.; McDevitt, C.A.; Kabir, M.S.; Xu, S.; Munroe, P.; Zhou, Z.; Xie, Z. Cr-Ag coatings: Synthesis, microstructure and antimicrobial properties. Surf. Eng. 2019, 35, 596–603. [Google Scholar] [CrossRef]
- Mendez-Albores, A.; Gonzalez-Arellano, S.G.; Reyes-Vidal, Y.; Torres, J.; Talu, S.; Cercado, B.; Trejo, G. Electrodeposited chrome/silver nanoparticle (Cr/AgNPs) composite coatings: Characterization and antibacterial activity. J. Alloys Compd. 2017, 710, 302–311. [Google Scholar] [CrossRef]
- Campos, M.D.; Zucchi, P.C.; Phung, A.; Leonard, S.N.; Hirsch, E.B. The activity of antimicrobial surfaces varies by testing protocol utilized. PLoS ONE 2016, 11, e0160728. [Google Scholar] [CrossRef]
- Ma, X.Y. Evaporating Process of Nanofluid Sessile Droplet and Deposition Patterns of Nanoparticles; Tianjin University of Commerce: Tianjin, China, 2016. (In Chinese) [Google Scholar]
- Hsu, C.H.; Huang, D.H.; Ho, W.Y.; Huang, L.T.; Chang, C.L. Characteristics and performance of Cr2O3/CrN double-layered coatings deposited by cathodic arc plasma deposition. Mater. Sci. Eng. A 2006, 429, 212–218. [Google Scholar] [CrossRef]
- Cheng, W.L.; Zhou, Z.F.; Shum, P.W.; Li, K.Y. Effect of Ni addition on the structure and properties of Cr-Ni-N coatings deposited by closed-field unbalanced magnetron sputtering ion plating. Surf. Coat. Technol. 2013, 229, 84–89. [Google Scholar] [CrossRef]
- Rebelo, R.; Calderon, S.V.; Fangueiro, R.; Henriques, M.; Carvalho, S. Influence of oxygen content on the antibacterial effect of Ag-O coatings deposited by magnetron sputtering. Surf. Coat. Technol. 2016, 305, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lan, W.-C.; Ou, S.-F.; Lin, M.-H.; Ou, K.-L.; Tsai, M.-Y. Development of silver-containing diamond-like carbon for biomedical applications. Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms. Ceram. Int. 2013, 39, 4099–4104. [Google Scholar] [CrossRef]
- Cunliffe, D.; Smart, C.A.; Alexander, C.; Vulfson, E.N. Bacterial adhesion at synthetic surfaces. Appl. Environ. Microbiol. 1999, 65, 4995–5002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echeverry-Rendon, M.; Galvis, O.; Aguirre, R.; Robledo, S.; Guillermo Castano, J.; Echeverria, F. Modification of titanium alloys surface properties by plasma electrolytic oxidation (PEO) and influence on biological response. J. Mater. Sci. Mater. Med. 2017, 28, 169. [Google Scholar] [CrossRef]
- Geng, J.T.; Li, X.Y.; Xing, G.L.; Sun, G.Q.; Yi, B.K. An experimental study on water surface evaporation rate. Chin. J. Power Sources 2010, 34, 470–472. (In Chinese) [Google Scholar]
- Jelinek, M.; Kocourek, T.; Zemek, J.; Miksovsky, J.; Kubinova, S.; Remsa, J.; Kopecek, J.; Jurek, K. Chromium-doped DLC for implants prepared by laser-magnetron deposition. Mater. Sci. Eng. C. 2015, 46, 381–386. [Google Scholar] [CrossRef]
- Aboubakr, H.A.; Sharafeldin, T.A.; Goyal, S.M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound. Emerg. Dis. 2021, 68, 296–312. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Liang, W.; Wang, X.; Mu, Y.; Wang, J.; Wu, D.; Zhao, X. Analysis of factors affecting virus survival on object surface and in air. Res. Environ. Sci. 2020, 33, 1589–1595. [Google Scholar]
- Fedorenko, A.; Grinberg, M.; Orevi, T.; Kashtan, N. Survival of the enveloped bacteriophage Phi6 (a surrogate for SARS-CoV-2) in evaporated saliva microdroplets deposited on glass surfaces. Sci. Rep. 2020, 10, 22419. [Google Scholar] [CrossRef] [PubMed]
Sample | IAg (A) | t (min) | R + (nm/min) | [Ag] + at.% | d * (nm) | CA (°) * | ||
---|---|---|---|---|---|---|---|---|
Water | Suspension | Glycol | ||||||
Glass | / | / | / | / | / | 49.1 ± 2.3 | 44.7 ± 1.5 | 44.5 ± 3.8 |
Steel | / | / | / | / | / | 91.1 ± 3.1 | 89.4 ± 2.8 | 72.7 ± 0.5 |
S0 | 0 | 30 | 21.7 | 0 | 27 | 107.2 ± 0.3 | 95.8 ± 1.2 | 81.7 ± 2.1 |
S1.8 | 0.4 | 30 | 26.3 | 1.8 | 18.9 | 117.9 ± 0.9 | 118.8 ± 2.3 | 97.3 ± 2.3 |
S5.8 | 0.6 | 30 | 27.3 | 5.8 | 18.7 | 120.1 ± 0.1 | 121.4 ± 0.2 | 89.9 ± 3.6 |
S15.0 | 1.0 | 25 | 32.0 | 15.0 | 12.7 | 113.8 ± 1.3 | 117.2 ± 1.4 | 94.6 ± 5.2 |
S27.7 | 1.5 | 20 | 37.0 | 27.7 | 9.5 | 100.5 ± 0.9 | 105.4 ± 0.4 | 76.3 ± 1.3 |
S39.20 | 2.0 | 15 | 60.7 | 39.2 | 9.2 | 102.9 ± 2.2 | 110.3 ± 1.6 | 81.5 ± 3.4 |
Silver | 2.0 | 30 | 25.0 | 100 | / | 91.6 ± 2.8 | 96.3 ± 2.2 | 67.3 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, Y.; Shum, P.; Hou, Y.; Fu, T. Sputter-Deposited Cr–Ag Films for Environmental Antimicrobial Applications. Coatings 2021, 11, 1153. https://doi.org/10.3390/coatings11101153
Wang L, Wang Y, Shum P, Hou Y, Fu T. Sputter-Deposited Cr–Ag Films for Environmental Antimicrobial Applications. Coatings. 2021; 11(10):1153. https://doi.org/10.3390/coatings11101153
Chicago/Turabian StyleWang, Lijun, Yingjie Wang, Powan Shum, Yuefeng Hou, and Tao Fu. 2021. "Sputter-Deposited Cr–Ag Films for Environmental Antimicrobial Applications" Coatings 11, no. 10: 1153. https://doi.org/10.3390/coatings11101153
APA StyleWang, L., Wang, Y., Shum, P., Hou, Y., & Fu, T. (2021). Sputter-Deposited Cr–Ag Films for Environmental Antimicrobial Applications. Coatings, 11(10), 1153. https://doi.org/10.3390/coatings11101153