Design and Optimization of One-Dimensional TiO2/GO Photonic Crystal Structures for Enhanced Thermophotovoltaics
Abstract
:1. Introduction
2. Model and Theory
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coutts, T.J. An overview of thermophotovoltaic generation of electricity. Sol. Energy Mater. Sol. Cells 2001, 66, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Fraas, L.M.; Avery, J.E.; Huang, H.X.; Martinelli, R.U. Thermophotovoltaic system configurations and spectral control. Semicond. Sci. Technol. 2003, 18, S165–S173. [Google Scholar] [CrossRef]
- Burger, T.; Sempere, C.; Roy-Layinde, B.; Lenert, A. Present Efficiencies and Future Opportunities in Thermophotovoltaics. Joule 2020, 4, 1660–1680. [Google Scholar] [CrossRef]
- Rostami, M.; Pirvaram, A.; Talebzadeh, N.; O’Brien, P.G. Numerical evaluation of one-dimensional transparent photonic crystal heat mirror coatings for parabolic dish concentrator receivers. Renew. Energy 2021, 171, 1202–1212. [Google Scholar] [CrossRef]
- Kazim, A.H.; Salman, A.; Khan, A.B.; Shaukat, U.; Shabbir, A. Optimization of Thermophotovoltaic Power System with a Spectrally Controlled Multi-Concentric Emitter. J. Energy Resour. Technol. 2022, 144, 1–41. [Google Scholar] [CrossRef]
- Zenker, M.; Heinzel, A.; Stollwerck, G.; Ferber, J.; Luther, J. Efficiency and power density potential of combustion-driven ther-mophotovoltaic systems using GaSb photovoltaic cells. IEEE Trans. Electron. Devices 2001, 48, 367–376. [Google Scholar] [CrossRef]
- O’Sullivan, F.; Celanović, I.; Jovanović, N.; Kassakian, J.; Akiyama, S.; Wada, K. Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications. J. Appl. Phys. 2005, 97, 033529. [Google Scholar] [CrossRef]
- Ilyas, S.; Böcking, T.; Kilian, K.; Reece, P.J.; Gooding, J.; Gaus, K.; Gal, M. Porous silicon based narrow line-width rugate filters. Opt. Mater. 2007, 29, 619–622. [Google Scholar] [CrossRef]
- Ortabasi, U.; Bovard, B. Rugate technology for thermophotovoltaic applications: A new approach to near perfect filter performance. AIP Conf. Proc. 2003, 653, 249–258. [Google Scholar]
- Ehsani, H.; Bhat, I.; Borrego, J.; Gutmann, R.; Brown, E.; Dziendziel, R.; Freeman, M.; Choudhury, N. Optical properties of de-generately doped silicon films for applications in thermophotovoltaic systems. J. Appl. Phys. 1997, 81, 432–439. [Google Scholar] [CrossRef]
- Rahmlow, T.; Lazo-Wassem, J.; Gratrix, E.; Fourspring, P.; DePoy, D.; Azarkevich, J. Engineering Spectral Control Using Front Surface Filters for Maximum TPV Energy Conversion System Performance. In Proceedings of the 2nd International Energy Conversion Engineering Conference, American Institute of Aeronautics and Astronautics (AIAA), Providence, RI, USA, 16 August 2004; p. 5678. [Google Scholar]
- Isabella, O.; Dobrovolskiy, S.; Kroon, G.; Zeman, M. Design and application of dielectric distributed Bragg back reflector in thin-film silicon solar cells. J. Non-Cryst. Solids 2012, 358, 2295–2298. [Google Scholar] [CrossRef]
- Meade, R.D.V.E.; Johnson, S.G.; Winn, J.M. The Multilayer Film: A One-Dimensional Photonic Crystal. Gruyter 2008, 44–65. [Google Scholar]
- Rostami, M.; Talebzadeh, N.; O’Brien, P.G. Transparent photonic crystal heat mirrors for solar thermal applications. Energies 2020, 13, 1464. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.; Ye, H. New development of one-dimensional Si/SiO2 photonic crystals filter for thermophotovoltaic applications. Renew. Energy 2010, 35, 249–256. [Google Scholar] [CrossRef]
- Babiker, S.G.; Shuai, Y.; Sid-Ahmed, M.O.; Xie, M.; Sid-Ahmed, M.O. Design of a one Dimensional Si/SiO2 photonic crystals filter for thermophotovoltaic application. INMIC 2013, 177–181. [Google Scholar] [CrossRef]
- Mbakop, F.K.; Djongyang, N.; Raïdandi, D. One–dimensional TiO2/SiO2 photonic crystal filter for thermophotovoltaic applications. J. Eur. Opt. Soc. Rapid Publ. 2016, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Mbakop, F.K.; Djongyang, N.; Ejuh, G.W.; Raïdandi, D.; Woafo, P. Transmission of light through an optical filter of a one-dimensional photonic crystal: Application to the solar thermophotovoltaic system. Phys. B Condens. Matter 2017, 516, 92–99. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, L.; Liu, Y.; Liu, Z.; Liu, W.; Qiu, K. A novel thermophotovoltaic optical cavity for improved irradiance uniformity and system performance. Energy 2020, 195, 116962. [Google Scholar] [CrossRef]
- Mbakop, F.K.; Tom, A.; Dadj’e, A.; Vidal, A.K.; Djongyang, N. One-dimensional comparison of TiO2/SiO2 and Si/SiO2 photonic crystals filters for thermophotovoltaic applications in visible and infrared. Chin. J. Phys. 2020, 67, 124–134. [Google Scholar] [CrossRef]
- Gupta, M.V.N.S.; Ameen, E.; Unnikrishnakurup, S.; Balasubramaniam, K.; Veeraragavan, A.; Pesala, B. Spectral filtering of sub-bandgap radiation using all-dielectric gratings for thermophotovoltaic applications. J. Photon. Energy 2021, 11, 015501. [Google Scholar] [CrossRef]
- Pirvaram, A.; Talebzadeh, N.; Rostami, M.; Leung, S.N.; O’Brien, P.G. Evaluation of a ZrO2/ZrO2-aerogel one-dimensional photonic crystal as an optical filter for thermophotovoltaic applications. Therm. Sc. Eng. Prog. 2021, 25, 100968. [Google Scholar] [CrossRef]
- Serga, V.; Burve, R.; Krumina, A.; Romanova, M.; Kotomin, E.; Popov, A. Extraction–Pyrolytic Method for TiO2 Polymorphs Production. Crystals 2021, 11, 431. [Google Scholar] [CrossRef]
- Tsebriienko, T.; Popov, A.I. Effect of Poly(Titanium Oxide) on the Viscoelastic and Thermophysical Properties of Interpenetrating Polymer Networks. Crystals 2021, 11, 794. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Isakoviča, I.; Gopejenko, A.; Ivanova, A.; Začinskis, A.; Eglitis, R.I.; D’yachkov, P.N.; Piskunov, S. Time-Dependent Density Functional Theory Calculations of N- and S-Doped TiO2 Nanotube for Water-Splitting Applications. Nanomaterials 2021, 11, 2900. [Google Scholar] [CrossRef] [PubMed]
- Belhadj, W.; Timoumi, A.; Alamer, F.A.; Alsalmi, O.H.; Alamri, S.N. Experimental study and theoretical modeling of coat-ing-speed-dependent optical properties of TiO2-graphene-oxide thin films. Results Phys. 2021, 30, 104867. [Google Scholar] [CrossRef]
- Timoumi, A.; Albetran, H.M.; Alamri, H.R.; Alamri, S.N.; Low, I.M. Impact of annealing temperature on structural, morpho-logical and optical properties of GO-TiO2 thin films prepared by spin coating technique. Superlattices Microstruct. 2020, 139, 106423. [Google Scholar] [CrossRef]
- Guo, M.; Su, H.; Zhang, J.; Liu, L.; Fu, N.; Yong, Z.; Huang, H.; Xie, K. Broadband and omnidirectional light harvesting enhancement in photovoltaic devices with aperiodic TiO2 nanotube photonic crystal. J. Power Sources 2017, 345, 12–20. [Google Scholar] [CrossRef]
- Zheng, X.; Li, D.; Li, X.; Chen, J.; Cao, C.; Fang, J.; Wang, J.; He, Y.; Zheng, Y. Construction of ZnO/TiO2 photonic crystal heterostructures for enhanced photocatalytic properties. Appl. Catal. B Environ. 2015, 408–415. [Google Scholar] [CrossRef]
- González-García, L.; Colodrero, S.; Míguez, H.; González-Elipe, A.R. Single-step fabrication process of 1-D photonic crystals coupled to nanocolumnar TiO2 layers to improve DSC efficiency. Opt. Express 2015, 23, A1642–A1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Ma, Z.; Ren, F.; Wang, G. Improved photoelectric performance of DSSCs based on TiO2 nanorod array/Ni-doped TiO2 compact layer composites film. J. Solid State Electrochem. 2019, 23, 3031–3041. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; Lutkenhaus, J.L.; Chu, L.; Tang, B.; Lia, S.; Ma, W. All nanoparticle-based P(MMA–AA)/TiO2 one-dimensional photonic crystal films with tunable structural colors. J. Mater. Chem. C 2017, 5, 8266–8272. [Google Scholar] [CrossRef]
- Narayana, M.V.; Jammalamadaka, S.N. Tuning Optical Properties of Graphene Oxide under Compressive Strain Using Wet Ball Milling Method. Graphene 2016, 05, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Diamantopoulou, A.; Sakellis, E.; Gardelis, S.; Tsoutsou, D.; Glenis, S.; Boukos, N.; Dimoulas, A.; Likodimos, V. Advanced Photocatalysts Based on Reduced Nanographene Oxide-TiO2 Photonic Crystal Films. Materials 2019, 12, 2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celanović, I.; Ilak, M.; Kassakian, J.; Perreault, D.; O’Sullivan, F. Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications. Opt. Lett. 2004, 29, 863–865. [Google Scholar] [CrossRef]
- Baldasaro, P.F.; Raynolds, J.E.; Charache, G.W.; Depoy, D.M.; Ballinger, C.T.; Donovan, T.; Borrego, J.M. Thermodynamic analysis of thermophotovoltaic efficiency and power density tradeoffs. J. Appl. Phys. 2001, 89, 3319–3327. [Google Scholar] [CrossRef] [Green Version]
- Yeng, Y.X.; Chan, W.R.; Rinnerbauer, V.; Joannopoulos, J.D.; Soljačić, M.; Celanovic, I. Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems. Opt. Express 2013, 21, A1035–A1051. [Google Scholar] [CrossRef]
- Hoenders, B.J.; Bertolotti, M. Coherence theory of electromagnetic wave propagation through stratified N-layer media. J. Opt. Soc. Am. A 2005, 22, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Zaghdoudi, J.; Maaloul, N.; Kanzari, M. Studies of Optical Properties of Symmetrical Quasi-Periodic Photonic Crystals. Opt. Photon. J. 2012, 02, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Fink, Y.; Winn, J.N.; Fan, S.; Chen, C.; Michel, J.; Joannopoulos, J.D.; Thomas, E.L. A Dielectric Omnidirectional Reflector. Science 1998, 282, 1679–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Xuan, Y.; Han, Y.; Li, Q. Investigation of one-dimensional Si/SiO2 hotonic crystals for thermophotovoltaic filter. Sci. China Ser. E Technol. Sci. 2008, 51, 2031–2039. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, P.; Pal, K.; Kumar, N.; Thapa, K.B. Broadband reflector of 1D photonic crystal containing TiO2/SiO2 material at visible region. In Proceedings of the AIP Conference, 3rd International Conference on Condensed Matter and Applied Physics (ICC-2019), Bikaner, India, 14 October 2019; Volume 2220, p. 020068. [Google Scholar]
- Ren, J.; Xuan, H.; Liu, C.; Yao, C.; Zhu, Y.; Liu, X.; Ge, L. Graphene oxide hydrogel improved sensitivity in one-dimensional photonic crystals for detection of beta-glucan. RSC Adv. 2015, 5, 77211–77216. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belhadj, W.; Timoumi, A.; Dakhlaoui, H.; Alhashmi Alamer, F. Design and Optimization of One-Dimensional TiO2/GO Photonic Crystal Structures for Enhanced Thermophotovoltaics. Coatings 2022, 12, 129. https://doi.org/10.3390/coatings12020129
Belhadj W, Timoumi A, Dakhlaoui H, Alhashmi Alamer F. Design and Optimization of One-Dimensional TiO2/GO Photonic Crystal Structures for Enhanced Thermophotovoltaics. Coatings. 2022; 12(2):129. https://doi.org/10.3390/coatings12020129
Chicago/Turabian StyleBelhadj, Walid, Abdelmajid Timoumi, Hassen Dakhlaoui, and Fahad Alhashmi Alamer. 2022. "Design and Optimization of One-Dimensional TiO2/GO Photonic Crystal Structures for Enhanced Thermophotovoltaics" Coatings 12, no. 2: 129. https://doi.org/10.3390/coatings12020129
APA StyleBelhadj, W., Timoumi, A., Dakhlaoui, H., & Alhashmi Alamer, F. (2022). Design and Optimization of One-Dimensional TiO2/GO Photonic Crystal Structures for Enhanced Thermophotovoltaics. Coatings, 12(2), 129. https://doi.org/10.3390/coatings12020129