Eroding the Surface of Rare Earth Microcrystals through Vanadate Ions for Considerable Improvement of Luminescence
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis
2.2. Characterization Techniques
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blasse, G.; Grabmaier, B.C. Luminescent Materials; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Gai, S.L.; Li, C.X.; Yang, P.P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343–2389. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Li, J.-G.; Ma, R.; Sasaki, T.; Yang, X.; Li, X.D.; Sun, X.D.; Sakka, Y. Well-defined crystallites autoclaved from the nitrate/NH4OH reaction system as the precursor for (Y,Eu)2O3 red phosphor: Crystallization mechanism, phase and morphology control, and luminescent property. J. Solid State Chem. 2012, 192, 229–237. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, D.Y. Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion-exchange from their hydroxide [M(OH)3] parents. ACS Nano 2009, 3, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.-H.; Wang, J.; Qiu, G.-H.; Li, X.-B.; Huang, W.-T.; Zhang, R.-R.; Lin, T.; Wang, L.-X.; Zhang, Q.-T. A strategy to achieve efficient green-emission dual-mode luminescence of Yb3+, Er3+ doped NaBiF4. Rare Met. 2021, 40, 2040–2048. [Google Scholar] [CrossRef]
- Fu, R.; Hu, Y.-Y.; Qiao, H.-N.; Yang, C.-L.; Yin, H.; Qu, M.-G. Luminescence property and magnetic resonance imaging of Gd2O3:Tb3+ nanocrystals doped with Zn2+, Li+. Rare Met. 2021, 40, 2049–2058. [Google Scholar] [CrossRef]
- Geng, F.X.; Ma, R.Z.; Sasaki, T. Anion-exchangeable layered materials based on rare-earth phosphors: Unique combination of rare-earth host and exchangeable anions. Acc. Chem. Res. 2010, 43, 1177–1185. [Google Scholar] [CrossRef]
- Xu, Z.H.; Kang, X.J.; Li, C.X.; Hou, Z.Y.; Zhang, C.M.; Yang, D.M.; Li, G.G.; Lin, J. Ln3+ (Ln=Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: Hydrothermal synthesis, growing mechanism, and luminescent properties. Inorg. Chem. 2010, 49, 6706–6715. [Google Scholar] [CrossRef]
- Li, G.C.; Chao, K.; Peng, H.R.; Chen, K.Z. Hydrothermal synthesis and characterization of YVO4 and YVO4:Eu3+ nanobelts and polyhedral micron crystals. J. Phys. Chem. C 2008, 112, 6228–6231. [Google Scholar] [CrossRef]
- Li, C.X.; Quan, Z.W.; Yang, J.; Yang, P.P.; Lin, J. Highly uniform and monodisperse β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesisand luminescent properties. Inorg. Chem. 2007, 46, 6329–6337. [Google Scholar] [CrossRef]
- Selvi, G.T.; Grace, A.N.; Jeong, S.K. Synthesis of rare earth hydroxycarbonate (LaOHCO3) nanocrystals with tuneable morphology and luminescence properties. Adv. Powder Technol. 2020, 31, 2366–2378. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Geng, D.; Kang, X.; Shang, M.; Li, X.; Lian, H.; Cheng, Z.; Lin, J. Full color emission in ZnGa2O4: Simultaneous control of the spherical morphology, luminescent, and electric properties via hydrothermal approach. Adv. Funct. Mater. 2014, 24, 6581–6593. [Google Scholar] [CrossRef]
- Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Li, S.Y.; Wang, Q.; Qi, Y.; Li, X.D.; Sun, X.D.; Li, J.-G. Grafting of terbium (III) complexes onto layered rare-earth hydroxide nanosheets to fabricate novel optical fiber temperature sensors. Nanoscale 2019, 11, 2795–2804. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Ding, S.N.; Xiahou, J.Q.; Li, S.Y.; Xu, X.D.; Li, J.-G. A groundbreaking strategy for fabricating YAG:Ce3+ transparent ceramic film via sintering of LRH nanosheets on sapphire. Chem. Commun. 2020, 56, 12761–12764. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, J.J.; Li, X.D.; Li, J.-G. Grafting organic antenna onto rare earth hydroxynitrate nanosheets for excitation-dependent and greatly enhanced photoluminescence by multi-modal energy transfer. Appl. Surf. Sci. 2019, 489, 142–148. [Google Scholar] [CrossRef]
- Zhu, Q.; Song, C.Y.; Tong, W.P.; Li, J.-G. Controllable phase/morphology tailoring of REF3 and NaREF4 (RE=La-Lu, Y), and insights into the up-conversion luminescence of GdF3:Yb3+/Tm3+ spheres. Adv. Powder Technol. 2020, 31, 2235–2243. [Google Scholar] [CrossRef]
- Fan, X.F.; Gu, L.Q.; Hu, Y.L.; Zhu, Q. Wearing an organic “coat” on nanocrystals of LaF3:Eu3+ to generate dynamic luminescence for optical anti-counterfeit. Adv. Powder Technol. 2021, 32, 2645–2653. [Google Scholar] [CrossRef]
- Okubo, K.; Shigeta, T. Absolute fluorescent quantum efficiency of NBS phosphor standard sample. J. Illum. Eng. Inst. Jpn. 1999, 83, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Jeong, H.; Lee, B.-I.; Byeon, S.-H. Antenna effect on the organic spacer-modified Eu-doped layered gadolinium hydroxide for the detection of vanadate ions over a wide pH range. ACS Appl. Mater. Interfaces 2016, 8, 10946–10953. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared Spectra of Inorganic and Coordination Compounds; John Wiley & Sons: New York, NY, USA, 1963. [Google Scholar]
- Gadsden, J.A. Infrared Spectra of Minerals and Related Inorganic Compounds; Butterworths: London, UK, 1975. [Google Scholar]
- Zhang, L.Z.; Wang, Z.H.; Huang, J.; Tang, F. Fabrication and photoluminescence properties of Eu3+ doped Y2O3 ceramic fiber with high aspect ratio. Chin. J. Lumin. 2021, 4, 1891–1899. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Z.H.; Zhu, Q.; Shi, X.F.; Wang, X.J.; Li, X.D.; Sun, X.D.; Li, J.-G. A new protocol for templated synthesis of YVO4: Ln luminescent crystallites (Ln=Eu, Dy, Sm). J. Alloys Compd. 2019, 776, 773–781. [Google Scholar] [CrossRef]
- Hsu, C.; Powell, R.C. Energy transfer in europium doped yttrium vanadate crystals. J. Lumin. 1975, 10, 273–293. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, J.; Liu, J.; Zhu, Q. Eroding the Surface of Rare Earth Microcrystals through Vanadate Ions for Considerable Improvement of Luminescence. Coatings 2022, 12, 230. https://doi.org/10.3390/coatings12020230
Qu J, Liu J, Zhu Q. Eroding the Surface of Rare Earth Microcrystals through Vanadate Ions for Considerable Improvement of Luminescence. Coatings. 2022; 12(2):230. https://doi.org/10.3390/coatings12020230
Chicago/Turabian StyleQu, Jiao, Juanjuan Liu, and Qi Zhu. 2022. "Eroding the Surface of Rare Earth Microcrystals through Vanadate Ions for Considerable Improvement of Luminescence" Coatings 12, no. 2: 230. https://doi.org/10.3390/coatings12020230
APA StyleQu, J., Liu, J., & Zhu, Q. (2022). Eroding the Surface of Rare Earth Microcrystals through Vanadate Ions for Considerable Improvement of Luminescence. Coatings, 12(2), 230. https://doi.org/10.3390/coatings12020230