Evaluation of Biocompatibility of 316 L Stainless Steels Coated with TiN, TiCN, and Ti-DLC Films
Abstract
:1. Introduction
2. Experimental
3. Results and Discussions
3.1. Surface Characteristics
3.2. Biocompatibility Assay
3.2.1. Cell Adhesion Morphology
3.2.2. CCK-8 Results
3.2.3. Flow Cytometry Results
4. Conclusions
- (1)
- TiN and TiCN had small water contact angles and exhibited significant hydrophilicity. However, Ti-DLC had a relatively large water contact angle and exhibited hydrophobic behavior. The hydrophobicity is mainly due to the large ratio of sp2 phases. The presence of jagged sp2 phases and TiC nanoclusters aggravated hydrophobicity.
- (2)
- TiN exhibited the highest cell value-added rate among the three film samples, followed by TiCN. Ti-DLC exhibited the lowest cell proliferation rate due to its high hydrophobicity and sharp sp2 phase shape.
- (3)
- TiN and TiCN films had lower apoptosis rates than SS because of their excellent corrosion resistance. However, the biocompatibility of Ti-DLC is slightly inferior to that of Ti, but significantly better than that of Cu, mainly because of the hydrophobic nature of Ti-DLC. However, Ti-DLC did not exhibit significant cytotoxicity.
- (4)
- The overall biocompatibility of Ti-DLC was slightly lower than that of the Ti control. Ti-DLC still has potential in the biomedical field, but its preparation must be improved to reduce the amounts of sp2-hybridized C and TiC nanoclusters and surface roughness.
- (5)
- The presence of TiC nanoclusters with irregular shapes increased the surface roughness of the film with TiC. Thus, a large water contact angle is obtained, which is detrimental to cell adhesion and reproduction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Littlewood, S.J.; Millett, D.T.; Doubleday, B.; Bearn, D.R.; Worthington, H.V. Retention procedures for stabilising tooth position after treatment with orthodontic braces. Cochrane Database Syst. Rev. 2016, 1, CD002283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divya, P.; Banswada, S.; Kukunuru, S.; Kavya, K.; Rathod, R.; Polavarapu, K. To compare the accuracy of 0.022 inch slot of stainless steel and ceramic orthodontic brackets marketed by different manufacturers. J. Pharm. Bioallied Sci. 2021, 13, 1037–1041. [Google Scholar]
- Yang, K.; Ren, Y.B. Nickel-free austenitic stainless steels for medical applications. Sci. Technol. Adv. Mater. 2010, 11, 014105. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, L.; Wang, G.; Jin, Y. The effect of REDV/TiO2 coating coronary stents on in-stent restenosis and re-endothelialization. Biomater. Appl. 2017, 31, 911–922. [Google Scholar] [CrossRef]
- Kapnisis, K.K.; Pitsillides, C.M.; Prokopi, M.S.; Lapathitis, G.; Karaiskos, C.; Eleftheriou, P.C.; Brott, B.C.; Anderson, P.G.; Lemons, J.E.; Anayiotos, A.S. In vivo monitoring of the inflammatory response in a stented mouse aorta model. Biomed. Mater. Res. Part A 2016, 104, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Kaliaraj, G.S.; Vishwakarma, V.; Kirubaharan, A.M.K. Biocompatible Zirconia-Coated 316 stainless steel with anticorrosive behavior for biomedical application. Ceram. Int. 2018, 44, 9780–9978. [Google Scholar] [CrossRef]
- Grill, A. Diamond-like carbon coatings as biocompatible materials—an overview. Diam. Relat. Mater. 2003, 12, 166–170. [Google Scholar] [CrossRef]
- Jun, Z.; Xie, Y.; Zhang, J.; Wei, Q.; Zhou, B.; Luo, J. TiN coated stainless steel bracket: Tribological, corrosion resistance, biocompatibility and mechanical performance. Surf. Coat. Technol. 2015, 277, 227–233. [Google Scholar]
- Subramanian, B.; Ananthakumar, R.; Kobayashi, A.; Jayachandran, M. Surface modification of 316 L stainless steel with magnetron sputtered TiN/VN nanoscale multilayers for bio implant applications. Mater. Sci. Mater. Med. 2012, 23, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Braic, M.; Balaceanu, M.; Braic, V.; Vladescu, A.; Pavelescu, G.; Albulescu, M. Synthesis and characterization of TiN, TiAIN and TiN/TiAIN biocompatible coatings. Surf. Coat. Technol. 2005, 200, 1014–1017. [Google Scholar] [CrossRef]
- Lou, J.; Gao, Z.L.; Zhang, J.; He, H.; Wang, X.M. Comparative Investigation on Corrosion Resistance of Stainless Steels Coated with Titanium Nitride, Nitrogen Titanium Carbide and Titanium-Diamond-like Carbon Films. Coatings 2021, 11, 1543. [Google Scholar] [CrossRef]
- Ertuerk, E.; Knotek, O.; Burgmer, W.; Prengel, H.G.; Heuvel, H.J.; Dederichs, H.G.; Stossel, C. Ti(CN) coatings using the arc process. Surf. Coat. Technol. 1991, 46, 39. [Google Scholar] [CrossRef]
- Chen, R.; Tu, J.P.; Liu, D.G.; Mai, Y.J.; Gu, C.D. Microstructure, mechanical and tribological properties of TiCN nanocomposite films deposited by DC magnetron sputtering. Surf. Coat. Technol. 2011, 205, 5228. [Google Scholar] [CrossRef]
- Madaoui, N.; Saoula, N.; Zaid, B.; Saidi, D.; Ahmed, A.S. Structural, mechanical and electrochemical comparison of TiN and TiCN coatings on XC48 steel substrates in NaCl 3.5% water solution. Appl. Surf. Sci. 2014, 312, 134–138. [Google Scholar] [CrossRef]
- Antunes, R.A.; Rodas, A.C.D.; Lima, N.B.; Higa, O.Z.; Costa, I. Study of the corrosion resistance and in vitro biocompatibility of PVD TiCN-coated AISI 316 L austenitic stainless steel for orthopedic applications. Surf. Coat. Technol. 2010, 205, 2074–2081. [Google Scholar] [CrossRef]
- Jo, Y.J.; Zhang, T.F.; Son, M.J.; Kim, K.H. Synthesis and electrochemical properties of Ti-doped DLC films by a hybrid PVD/PECVD process. Appl. Surf. Sci. 2018, 433, 1184–1191. [Google Scholar] [CrossRef]
- Qiang, L.; Zhang, B.; Zhou, Y.; Zhang, J. Improving the internal stress and wear resistance of DLC film by low content Ti doping. Solid State Sci. 2013, 20, 17–22. [Google Scholar] [CrossRef]
- Li, W.S.; Zhao, Y.T.; He, D.Q.; Song, Q.; Sun, X.W.; Wang, S.C.; Zhai, H.M.; Zheng, W.W.; Robert, J.K. Optimizing mechanical and tribological properties of DLC/Cr3C2-NiCr duplex coating via tailoring interlayer thickness. Surf. Coat. Technol. 2022, 434, 128198. [Google Scholar] [CrossRef]
- Wang, D.Y.; Chang, Y.Y.; Chang, C.L. Deposition of diamond-like carbon films containing metal elements on biomedical Ti alloys. Surf. Coat. Technol. 2005, 200, 2175–2180. [Google Scholar] [CrossRef]
- Zhang, J.; Lou, J.; He, H.; Xie, Y. Comparative investigation on the tribological performances of TiN, TiCN, and Ti-DLC film-coated stainless steel. JOM 2019, 71, 4872–4879. [Google Scholar] [CrossRef]
- Calzado-Martin, A.; Saldana, L.; Korhonen, H.; Soininen, A.; Kinnari, T.J.; Gomez-Barrena, E.; Tiainen, V.M.; Lappalainen, R.; Munuera, L.; Konttinen, Y.T. Interactions of human bone cells with diamond-like carbon polymer hybrid coatings. Acta Biomater. 2010, 6, 3325–3338. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Lin, Y.L.; Zhang, D.D.; Ruan, Q.D.; Tang, K.W.; Li, M.; Liu, X.Y.; Paul, K.C.; Zhang, Y. Corrosion Behavior and Biocompatibility of Diamond-like Carbon-Coated Zinc: An In Vitro Study. ACS Omega 2021, 6, 9843–9851. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Chen, S.N.; Ma, Y.C.; Haq, M.U.; Li, Y.D.; Nisar, M.; Khan, R.; Liu, Y.; Wang, J.X.; Han, G.R. Structural and hydrophilic properties of TiN films prepared by ultrasonic atomization assisted spray method under low temperature. Surf. Coat. Technol. 2020, 393, 12582. [Google Scholar] [CrossRef]
- Sunthornpan, N.; Watanabe, S.; Moolsradoo, N. Corrosion resistance and cytotoxicity studies of DLC, TiN and TiCN films coated on 316 L stainless steel. Siam Physics Congress. 2018, 1144, 012013 (SPC2018). [Google Scholar] [CrossRef] [Green Version]
- Adamson, A.W.; Gast, A.P. The Solid-Liquid Interface- Contact Angle: Experimental Methods and Measurements of Contact Angle; John Wiley & Sons, Inc.: New York, NY, USA, 1997; pp. 362–372. [Google Scholar]
- Raj, R.; Maroo, S.C.; Wang, E.N. Wettability of graphene. Nano Lett. 2013, 13, 1509–1515. [Google Scholar] [CrossRef]
- Kozbial, A.; Zhou, F.; Li, Z.T.; Liu, H.T.; Li, L. Are Graphitic Surfaces Hydrophobic? Acc. Chem. Res. 2016, 49, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Chanturia, V.A.; Dvoichenkova, G.P.; Koval’chuk, O.E.; Timofeev, A.S. Surface Composition and Role of Hydrophilic Diamonds in Foam Separation. J. Min. Sci. 2015, 51, 1235–1241. [Google Scholar] [CrossRef]
- Zhong, B.; Zhang, J.Z.; Wang, H.Q.; Xia, L.; Wang, C.Y.; Zhang, X.D.; Huang, X.X.; Wen, G.W. Fabrication of novel silicon carbide-based nanomaterials with unique hydrophobicity and microwave absorption property. Int. J. Appl. Ceram. Technol. 2020, 17, 2598–2611. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, J.; Long, H.Y. Tribological, anti-corrosive properties and biocompatibility of the micro and nano-crystalline diamond coated Ti-6Al-4V. Surf. Coat. Technol. 2014, 258, 1032–1038. [Google Scholar] [CrossRef]
- Feng, F.; Wu, Y.L.; Xin, H.T.; Chen, X.Q.; Guo, Y.Z.; Qin, D.Y.; An, B.L.; Diao, X.O.; Luo, H.W. Surface Characteristics and Biocompatibility of Ultrafine-Grain Ti after Sandblasting and Acid Etching for Dental Implants. ACS Biomater. Sci. Eng. 2019, 5, 5107–5115. [Google Scholar] [CrossRef] [PubMed]
- McGuff, H.S.; Heim-Hall, J.; Holsinger, F.C.; Jones, A.A.; O’Dell, D.S.; Hafemeister, A.C. Maxillary osteosarcoma associated with a dental implant: Report of a case and review of the literature regarding implant-related sarcomas. J. Am. Dent. Assoc. 2008, 139, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ren, L.; Zhang, Y.; Xue, N.; Yang, K.; Zhong, M. Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel. Colloids Surf. B Biointerfaces 2013, 105, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Nel, A.E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E.M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysico-chemical interactions at the nano–bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Monopoli, M.P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F.B.; Dawson, K.A. Physical–chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. Am. Chem. Soc. 2011, 133, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Thomson, L.A.; Law, F.C.; Rushton, N.; Franks, J. Biocompatibility of diamond-like carbon coating. Biomaterials 1991, 12, 37–40. [Google Scholar] [CrossRef]
Alloy | Main Alloying Elements (wt%) | ||||||
---|---|---|---|---|---|---|---|
- | Cr | Ni | Mo | N | C | Mn | Fe |
AISI 316 L | 16.30 | 14.20 | 1.3 | 0.06 | 0.05 | 2.03 | balance |
One-Way ANOVA | Mean Diff | Significant | ||||
---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | |
Blank vs. SS | −1.52333 | −1.79667 | −1.71000 | 0.156N | 0.106Y | 0.013Y |
Blank vs. Cu | −20.30333 | −20.80333 | −23.36333 | 0.000Y | 0.000Y | 0.000Y |
Blank vs. TiN | −1.17000 | −1.04333 | −1.45667 | 0.380N | 0.560Y | 0.014Y |
Blank vs. TiCN | −0.89 | −1.12 | −1.73667 | 0.666N | 0.484Y | 0.003Y |
Blank vs. Ti-DLC | −10.31 | −11.87 | −12.13 | 0.000Y | 0.000Y | 0.000Y |
Blank vs. Ti | −5.98 | −6.73333 | −7.02333 | 0.000Y | 0.000Y | 0.000Y |
SS vs. Cu | −18.78000 | −19.00667 | −21.65333 | 0.000Y | 0.000Y | 0.000Y |
SS vs. TiN | −0.35333 | 0.75333 | 0.25333 | 0.994N | 0.873N | 0.989Y |
SS vs. TiCN | −0.63333 | 0.67667 | −0.02667 | 0.897N | 0.892N | 1.000Y |
SS vs. Ti-DLC | −8.78667 | −10.07333 | −10.42000 | 0.000Y | 0.000Y | 0.000Y |
SS vs. Ti | −4.45667 | −4.93667 | −5.31333 | 0.000Y | 0.000Y | 0.000Y |
Cu vs. TiN | 19.13333 | 19.76000 | 21.90667 | 0.000Y | 0.000Y | 0.000Y |
Cu vs. TiCN | 19.41333 | 19.68333 | 21.62667 | 0.000Y | 0.000Y | 0.000Y |
Cu vs. Ti-DLC | 9.99333 | 8.93333 | 11.23333 | 0.000Y | 0.000Y | 0.000Y |
Cu vs. Ti | 14.32333 | 14.07000 | 16.34000 | 0.000Y | 0.000Y | 0.000Y |
TiN vs. TiCN | 0.28000 | −0.07667 | −0.28000 | 0.998N | 1.000N | 0.982N |
TiN vs. Ti-DLC | −9.14000 | −10.82667 | −10.67333 | 0.000Y | 0.000Y | 0.000Y |
TiN vs. Ti | −4.81000 | −5.69000 | −5.56667 | 0.000Y | 0.000Y | 0.000Y |
TiCN vs. Ti-DLC | −9.42000 | −10.75000 | −10.39333 | 0.000Y | 0.000Y | 0.000Y |
TiCN vs. Ti | −5.09000 | −5.61333 | −5.28667 | 0.000Y | 0.000Y | 0.000Y |
Ti-DLC vs. Ti | 4.33000 | 5.13667 | 5.10667 | 0.000Y | 0.000Y | 0.000Y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, J.; Ren, B.; Zhang, J.; He, H.; Gao, Z.; Xu, W. Evaluation of Biocompatibility of 316 L Stainless Steels Coated with TiN, TiCN, and Ti-DLC Films. Coatings 2022, 12, 1073. https://doi.org/10.3390/coatings12081073
Lou J, Ren B, Zhang J, He H, Gao Z, Xu W. Evaluation of Biocompatibility of 316 L Stainless Steels Coated with TiN, TiCN, and Ti-DLC Films. Coatings. 2022; 12(8):1073. https://doi.org/10.3390/coatings12081073
Chicago/Turabian StyleLou, Jia, Beibei Ren, Jie Zhang, Hao He, Zonglong Gao, and Wei Xu. 2022. "Evaluation of Biocompatibility of 316 L Stainless Steels Coated with TiN, TiCN, and Ti-DLC Films" Coatings 12, no. 8: 1073. https://doi.org/10.3390/coatings12081073
APA StyleLou, J., Ren, B., Zhang, J., He, H., Gao, Z., & Xu, W. (2022). Evaluation of Biocompatibility of 316 L Stainless Steels Coated with TiN, TiCN, and Ti-DLC Films. Coatings, 12(8), 1073. https://doi.org/10.3390/coatings12081073