From Leather Wastes back to Leather Manufacturing: The Development of New Bio-Based Finishing Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Collagen
2.3. Film Formation
2.4. BOD and COD Analyses
2.5. Application of Finishing Formulations
2.6. Mechanical Tests
3. Results and Discussion
3.1. Film Formation
3.2. Biodegradability
3.3. Application of Collagen and Casein to Finishing Formulations
3.4. Optimization of Developed Finishing Formulation
3.5. Preliminary Cost Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, Y.; Hu, J.; Xin, Z. Facile Preparation of High Solid Content Waterborne Polyurethane and Its Application in Leather Surface Finishing. Prog. Org. Coatings 2019, 130, 8–16. [Google Scholar] [CrossRef]
- Thanikaivelan, P.; Rao, J.R.; Nair, B.U.; Ramasami, T. Recent Trends in Leather Making: Processes, Problems, and Pathways. Crit. Rev. Environ. Sci. Technol. 2005, 35, 37–79. [Google Scholar] [CrossRef]
- Tamilselvi, A.; Jayakumar, G.C.; Sri Charan, K.; Sahu, B.; Deepa, P.R.; Kanth, S.V.; Kanagaraj, J. Extraction of Cellulose from Renewable Resources and Its Application in Leather Finishing. J. Clean. Prod. 2019, 230, 694–699. [Google Scholar] [CrossRef]
- Dong, Q.; Hsieh, Y. Lo Acrylonitrile Graft Copolymerization of Casein Proteins for Enhanced Solubility and Thermal Properties. J. Appl. Polym. Sci. 2000, 77, 2543–2551. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Q.; Li, J.; Du, G.; Chen, J. Characterization of Gelatin and Casein Films Modified by Microbial Transglutaminase and the Application as Coating Agents in Leather Finishing. J. Am. Leather Chem. Assoc. 2012, 107, 13–20. [Google Scholar]
- Ollé, L.; Bacardit, A.; Borràs, M.D.; Morera, J.M.; Cobos, M.; Borràs, E. Binders Cross-Linked with Polyaziridine. Study of Cross-Linked Polymers for Aqueous Finishing. Part Iii: Influence of a Cationic Pre-Bottom. J. Soc. Leather Technol. Chem. 2009, 93, 91–96. [Google Scholar]
- Bacardit, A.; Ollé, L.; Borràs, M.D.; Cobos, M.; Jericó, A.; Solé, O. Aqueous Finishing with Polycarbodiimide Cross-Linked Binders. J. Soc. Leather Technol. Chem. 2010, 94, 117–123. [Google Scholar]
- Dixit, S.; Yadav, A.; Dwivedi, P.D.; Das, M. Toxic Hazards of Leather Industry and Technologies to Combat Threat: A Review. J. Clean. Prod. 2015, 87, 39–49. [Google Scholar] [CrossRef]
- Dettmer, A.; Schacker Dos Anjos, P.; Gutterres, M. Enzymes in Leather Industry. J. Am. Leather Chem. Assoc. 2013, 108, 146–158. [Google Scholar]
- Pahlawan, I.F.; Sutyasmi, S.; Griyanitasari, G. Hydrolysis of Leather Shavings Waste for Protein Binder. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Dalian, China, 28–29 September 2019; Volume 230. [Google Scholar]
- Haines, B.M.; Barlow, J.R. The Anatomy of Leather. J. Mater. Sci. 1975, 10, 525–538. [Google Scholar] [CrossRef]
- Popa, E.; Balau Mindru, I.; Pruneanu, M.; Balau Mindru, T. Potential Use of Collagen Hydrolysates from Chamois Leather Waste as Ingredient in Leather Finishing Formulations. Ann. Univ. Oradea Fascicle Text. Leatherwork 2018, 17, 203–209. [Google Scholar]
- Gargano, M.; Florio, C.; Amoresano, A.; Sannia, G.; Lettera, V. Leather Industry towards Circular Economy: Enzymatic Extraction of Potential High Added-Value Products from Tanned Wastes. J. Environ. Manage. 2023. [Google Scholar]
- International Organization for Standardization International Standard, ISO 6060:1989. Water Quality–Determination of the Chemical Oxygen Demand. 1989.
- International Organization for Standardization International Standard, ISO5815-1. Water Quality -Determination of Biochemical Oxygen Demand After n Days (BODn)−Part 1: Dilution and Seeding Method with Allylthiourea Addition 2019.
- IULTCS International Union of Leather Technologists and Chemists Societies International Standard, ISO 17235:2015 | IULTCS/IUP 36. Leather—Physical and Mechanical Tests—Determination of Softness 2015.
- IULTCS International Union of Leather Technologists and Chemists Societies International Standard, ISO 15700:1998 | IULTCS/IUF 420 Leather—Tests for Colour Fastness—Colour Fastness to Water Spotting 1998.
- International Standard, ISO 105-B02:2014 Textiles—Tests for Colour Fastness—Part B02: Colour Fastness to Artificial Light: Xenon Arc Fading Lamp Test 2014.
- IULTCS International Union of Leather Technologists and Chemists Societies International Standard, ISO 11640:2018 | IULTCS/IUF 450 Leather—Tests for Colour Fastness—Colour Fastness to Cycles of to-and-Fro Rubbing 2018.
- Skopinska-Wisniewska, J.; Tuszynska, M.; Olewnik-Kruszkowska, E. Comparative Study of Gelatin Hydrogels Modified by Various Cross-Linking Agents. Materials 2021, 14, 396. [Google Scholar] [CrossRef] [PubMed]
- Samudro, G.; Mangkoedihardjo, S. Review on Bod, Cod and Bod/Cod Ratio: A Triangle Zone for Toxic, Biodegradable and Stable Levels. Int. J. Acad. Res. 2010, 2, 235–239. [Google Scholar]
- Bader, A.C.; Hussein, H.J.; Jabar, M.T. BOD: COD Ratio as Indicator for Wastewater and Industrial Water Pollution. Int. J. Spec. Educ. 2022, 37, 2022. [Google Scholar]
- Zehra, B.; Rub Nawaz, H.; Solangi, B.A.; Nadeem, U.; Zeeshan, M. Preparation and Evaluation of Non-Toxic Top-Coatings for Leather to Minimize Pollutants in Leather Finishing Process. Int. J. Renew. Energy Eng. Res. 2020, 1, 11–15. [Google Scholar]
- UNI- Ente Nazionale Italiano di Unificazione International Standard, UNI 1086:2020 Leather — Characteristics and requirements of leather for leather goods and accessories, 2020.
- Tavoosi, Y.; Behin, J. Unhairing of Bovine Hide Using Wastewater from Merox Unit of Oil Refinery: Techno-Environmental Aspect. Environ. Sci. Pollut. Res. 2022, 29, 28180–28193. [Google Scholar] [CrossRef] [PubMed]
Base Coat | |||||||
---|---|---|---|---|---|---|---|
BC (Control) | BC1 | BC2 | BC3 | ||||
Component | % | Component | % | Component | % | Component | % |
Water | 28 | Water | 28 | Water | 28 | Water | 28 |
IPA | 2 | IPA | 2 | IPA | 2 | IPA | 2 |
Polyurethane 1 | 34 | Collagen/casein | 34 | Polyurethane 1 | 34 | Collagen/casein | 52 |
Acrylic resins | 18 | Acrylic resins | 18 | Collagen/casein | 18 | ||
Silicon | 2 | Silicon | 2 | Silicon | 2 | Silicon | 2 |
Pigment | 16 | Pigment | 16 | Pigment | 16 | Pigment | 16 |
Top Coat | |||||||
---|---|---|---|---|---|---|---|
TC (Control) | TC1 | TC2 | TC3 | ||||
Component | % | Component | % | Component | % | Component | % |
Water | 38 | Water | 38 | Water | 38 | Water | 38 |
Polyurethane 1 | 30 | Collagen/casein | 30 | Polyurethane 1 | 30 | Collagen/casein | 47 |
Polyurethane 2 | 17 | Polyurethane 2 | 17 | Collagen/casein | 17 | ||
Silicon | 15 | Silicon | 15 | Silicon | 15 | Silicon | 15 |
Film | Collagen:Casein | Shore A Scale | Properties | |
---|---|---|---|---|
1 | 0:1 | 85 | Hard | |
2 | 1:1 | 75 | Hard | |
3 | 2:1 | 65 | Medium-hard | |
4 | 5:1 | 85 | Hard | |
5 | 10:1 | >90 | Extra-hard | |
6 | 1:0 | >90 | Extra-hard |
Film | Composition | Hardness (Shore Scale) | Properties | |
---|---|---|---|---|
BC | Polyurethane 1—Acrylates | 50 | Non-transparent Matt Medium-soft | |
BC1 | Polyurethane 1—Collagen/casein | 55 | Transparent Glossy Medium-soft | |
BC2 | Collagen/casein—Acrylates | 60 | Non-transparent Matt Medium-hard | |
BC3 | Collagen/casein | 65 | Transparent Glossy Medium-hard | |
TC | Polyurethane 1—Polyurethane 2 | 60 | Non-transparent Glossy Medium-hard | |
TC1 | Collagen/casein—Polyurethane 2 | 70 | Transparent Glossy Medium-hard | |
TC2 | Polyurethane 1—Collagen/casein | 55 | Transparent Glossy Medium-soft | |
TC3 | Collagen/casein | 65 | Transparent Glossy Medium-hard |
Solutions | BOD/COD Ratio | Biodegradability Level * |
---|---|---|
Collagen/casein | 0.598 | Easily biodegradable zone |
Polyurethane 1 | 0.133 | Non-biodegradable zone |
Polyurethane 2 | 0.023 | Toxic zone |
Acrylic resins | 0.025 | Toxic zone |
Sample | Softness | Color Fastness to Rubbing (Dry) * | Color Fastness to Rubbing (Wet) * | Color Fastness to Artificial Light * | Color Fastness to Water Spotting * | |
---|---|---|---|---|---|---|
1 | BC + TC | 2.7 | 5 | 5 | >8 | 5 |
2 | BC + TC1 | 2.0 | 5 | 1 | >8 | 1 |
3 | BC + TC2 | 2.0 | 5 | 1 | <4 | 1 |
4 | BC1 + TC | 2.0 | 5 | 4–5 | >8 | 4 |
5 | BC1 + TC1 | 2.0 | 5 | 1–2 | >8 | 2 |
6 | BC1 + TC2 | 1.8 | 5 | 1 | <4 | 1 |
7 | BC2 + TC | 1.8 | 5 | 5 | >8 | 4 |
8 | BC2 + TC1 | 1.5 | 5 | 2 | >8 | 3 |
9 | BC2 + TC2 | 1.3 | 5 | 5 | <4 | 5 |
10 | BC3 + TC3 | 1.6 | 5 | 5 | >8 | 5 |
Sample | Softness | Color Fastness to Rubbing (Dry) * | Color Fastness to Rubbing (Wet) * | Color Fastness to Artificial Light * | Color Fastness to Water Spotting * |
---|---|---|---|---|---|
A | 2.7 | 5 | 5 | >8 | 5 |
B | 1.6 | 5 | 5 | >8 | 5 |
C | 1.7 | 5 | 5 | >8 | 5 |
D | 1.9 | 5 | 5 | >8 | 5 |
E | 1.8 | 5 | 3–4 | >8 | 3 |
F | 1.9 | 5 | 1–2 | >8 | 1 |
Sample | Softness | Color Fastness to Rubbing (Dry) * | Color Fastness to Rubbing (Wet) * | Color Fastness to Artificial Light * | Color Fastness to Water Spotting * |
---|---|---|---|---|---|
A | 2.7 | 5 | 5 | >8 | 5 |
B | 1.9 | 5 | 5 | >8 | 5 |
C | 2.3 | 5 | 5 | >8 | 5 |
D | 2.5 | 5 | 5 | >8 | 5 |
E | 2.5 | 5 | 4 | 6–8 | 3–4 |
F | 2.8 | 4–5 | 1–2 | 4–6 | 2–3 |
Costs Related to the Production of 1 kg of Finishing Formulation | ||||
---|---|---|---|---|
Standard Formulation | Collagen-Based Formulation | |||
Input | Input | |||
Amount (kg) | Cost (USD) | Amount (kg) | Cost (USD) | |
Process water a | 0.280 | 0.00027 | ||
Polyurethane 1 b | 0.340 | 1.90 | ||
Acrylates c | 0.180 | 0.62 | ||
Silicon d | 0.020 | 0.14 | ||
IPA e | 0.020 | 0.026 | ||
Pigment f | 0.160 | 0.52 | ||
Process water a | 0.706 | 0.00067 | ||
Collagen g | 0.042 | 3.62 | ||
Enzyme h | 0.031 | 3.38 | ||
Casein i | 0.021 | 2.75 | ||
Silicon d | 0.020 | 0.14 | ||
IPA e | 0.020 | 0.026 | ||
Pigment f | 0.160 | 0.52 | ||
Process water a | 0.380 | 0.00036 | ||
Polyurethane 1 b | 0.300 | 1.68 | ||
Polyurethane 2 j | 0.170 | 0.88 | ||
Silicon d | 0.150 | 1.06 | ||
Process water a | 0.801 | 0.00077 | ||
Collagen g | 0.022 | 1.89 | ||
Enzyme h | 0.016 | 1.75 | ||
Casein i | 0.011 | 1.44 | ||
Silicon d | 0.150 | 1.06 | ||
Total costs | USD 6.83 | USD 16.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargano, M.; Bacardit, A.; Sannia, G.; Lettera, V. From Leather Wastes back to Leather Manufacturing: The Development of New Bio-Based Finishing Systems. Coatings 2023, 13, 775. https://doi.org/10.3390/coatings13040775
Gargano M, Bacardit A, Sannia G, Lettera V. From Leather Wastes back to Leather Manufacturing: The Development of New Bio-Based Finishing Systems. Coatings. 2023; 13(4):775. https://doi.org/10.3390/coatings13040775
Chicago/Turabian StyleGargano, Marika, Anna Bacardit, Giovanni Sannia, and Vincenzo Lettera. 2023. "From Leather Wastes back to Leather Manufacturing: The Development of New Bio-Based Finishing Systems" Coatings 13, no. 4: 775. https://doi.org/10.3390/coatings13040775
APA StyleGargano, M., Bacardit, A., Sannia, G., & Lettera, V. (2023). From Leather Wastes back to Leather Manufacturing: The Development of New Bio-Based Finishing Systems. Coatings, 13(4), 775. https://doi.org/10.3390/coatings13040775