Synthesis and Characterization of Cadmium Ion-Imprinted/Natural Sand Composite and Research on Its Adsorption Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Reagents
2.2. Experimental Instruments
2.3. Synthesis of Cd(II) Imprinted/Natural Sand Composite Material
2.3.1. Preparation of Cd(II)-AM Complex
2.3.2. Preparation of NS/Cd-IIP and NS/Cd-NIP
2.4. Adsorption Experiments
2.4.1. Static Adsorption Experiment
2.4.2. Dynamic Adsorption Experiment
2.4.3. Selectivity Adsorption
2.4.4. Regeneration of NS/Cd-IIP
2.4.5. Actual Water Sample Analysis
3. Result and Discussion
3.1. Characterization Studies
3.1.1. SEM and EDS Analysis
3.1.2. N2 Adsorption–Desorption Analysis
3.1.3. UV–Vis Analysis
3.1.4. FTIR Analysis
3.1.5. XPS Analysis
3.2. Static Adsorption Experiments
3.2.1. Effect of Different Factors on Adsorption
Effect of pH
Effect of Contact Time
Effect of Temperature
Effect of Initial Concentration
3.2.2. Adsorption Kinetic
3.2.3. Adsorption Isotherm
3.2.4. Adsorption Selectivity
3.3. Dynamic Adsorption Experiments
3.3.1. Breakthrough Curves under Different Conditions
Breakthrough Curves of NS/Cd-IIP and NS/Cd-NIP
Influence of Microcolumn Filling Height on the Breakthrough Curve
Influence of Initial Concentration on the Breakthrough Curve
Influence of Flow Rate on the Breakthrough Curve
3.3.2. Dynamic Adsorption Model
3.4. Optimization of Elution Parameters
3.4.1. Influence of Eluent Type and Concentration on Desorption
3.4.2. Effect of Eluent Flow Rate on Desorption
3.5. Adsorption Mechanism
3.6. Reusability of NS/Cd-IIP
3.7. Analysis of Actual Water Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jadoun, S.; Fuentes, J.P.; Urbano, B.F.; Yáñez, J. A review on adsorption of heavy metals from wastewater using conducting polymer-based materials. J. Environ. Chem. Eng. 2023, 11, 109226. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Rusin, M.; Domagalska, J.; Rogala, D.; Razzaghi, M.; Szymala, I. Concentration of cadmium and lead in vegetables and fruits. Sci. Rep. 2021, 11, 11913. [Google Scholar] [CrossRef]
- Kayranli, B. Cadmium removal mechanisms from aqueous solution by using recycled lignocelluloses. Alex. Eng. J. 2022, 61, 443–457. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Nishide, H.; Tsuchida, E. Selective adsorption of metal ions on poly (4-vinylpyridine) resins in which the ligand chain is immobilized by crosslinking. Die Makromol. Chem. Macromol. Chem. Phys. 1976, 177, 2295–2310. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, B.; Wang, R. Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep. Purif. Technol. 2022, 298, 121469. [Google Scholar] [CrossRef]
- Zhou, Z.; Kong, D.; Zhu, H.; Wang, N.; Wang, Z.; Wang, Q.; Liu, W.; Li, Q.; Zhang, W.; Ren, Z. Preparation and adsorption characteristics of an ion-imprinted polymer for fast removal of Ni(II) ions from aqueous solution. J. Hazard. Mater. 2018, 341, 355–364. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, R.; Yang, Y.; Huang, L.; Chen, N.; Xie, Q. Study of ion-imprinted adsorbent materials on diatom-based Cr(VI) Surfaces. Mater. Lett. 2022, 308, 131149. [Google Scholar] [CrossRef]
- Huang, R.; Shao, N.; Hou, L.; Zhu, X. Fabrication of an efficient surface ion-imprinted polymer based on sandwich-like graphene oxide composite materials for fast and selective removal of lead ions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 566, 218–228. [Google Scholar] [CrossRef]
- Yu, L.; Sun, L.; Zhang, Q.; Zhou, Y.; Zhang, J.; Yang, B.; Xu, B.; Xu, Q. Nanomaterials-Based Ion-Imprinted Electrochemical Sensors for Heavy Metal Ions Detection: A Review. Biosensors 2022, 12, 1096. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Huiyi, H.; Yao, L.; Deng, L.; Liu, X.; Yu, L.; He, H. Fabrication of surface ion imprinting rice husk-based polymer for selective detection and efficient adsorption of Cu2+ in lake water. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 298, 122723. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, M.; Liu, X.; Zhang, H.; Jiao, J.; Zhu, H.; Zhou, Z.; Ren, Z. Preparation of Surface Ion-Imprinted Materials Based on Modified Chitosan for Highly Selective Recognition and Adsorption of Nickel Ions in Aqueous Solutions. Ind. Eng. Chem. Res. 2020, 59, 6033–6042. [Google Scholar] [CrossRef]
- Lu, J.; Wu, Y.; Lin, X.; Gao, J.; Dong, H.; Chen, L.; Qin, Y.; Wang, L.; Yan, Y. Anti-fouling and thermosensitive ion-imprinted nanocomposite membranes based on grapheme oxide and silicon dioxide for selectively separating europium ions. J. Hazard. Mater. 2018, 353, 244–253. [Google Scholar] [CrossRef]
- Ma, R.; Yang, Y.; Zhang, X.; Fu, B.; Li, X.; Huang, L.; Chen, N.; Xie, Q. Preparation and optimization of diatom-based cadmium ion-imprinted materials. J. Mol. Struct. 2022, 1251, 132044. [Google Scholar] [CrossRef]
- Awan, M.A.; Qazi, I.A.; Khalid, I. Removal of heavy metals through adsorption using sand. J. Environ. Sci. 2003, 15, 413–416. [Google Scholar]
- Singh, N.B.; Nagpal, G.; Agrawal, S.; Rachna. Water purification by using Adsorbents: A Review. Environ. Technol. Innov. 2018, 11, 187–240. [Google Scholar] [CrossRef]
- Shen, T.-M.; Xu, H.; Miao, Y.; Ma, L.-L.; Chen, N.-C.; Xie, Q.-L. Study on the adsorption process of Cd(II) by Mn-diatomite modified adsorbent. Mater. Lett. 2021, 300, 130087. [Google Scholar] [CrossRef]
- Lo, S.-F.; Wang, S.-Y.; Tsai, M.-J.; Lin, L.-D. Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chem. Eng. Res. Des. 2012, 90, 1397–1406. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Y.; Zhu, Z.; Zhang, X.; Wang, D.; Xie, L. Fixed-Bed Column Adsorption of Arsenic(V) by Porous Composite of Magnetite/Hematite/Carbon with Eucalyptus Wood Microstructure. J. Environ. Eng. Landsc. Manag. 2018, 26, 38–56. [Google Scholar] [CrossRef] [Green Version]
- Meng, M.; Meng, X.; Liu, Y.; Liu, Z.; Han, J.; Wang, Y.; Luo, M.; Chen, R.; Ni, L.; Yan, Y. An ion-imprinted functionalized SBA-15 adsorbent synthesized by surface imprinting technique via reversible addition–fragmentation chain transfer polymerization for selective removal of Ce(III) from aqueous solution. J. Hazard. Mater. 2014, 278, 134–143. [Google Scholar] [CrossRef]
- Fu, J.; Wang, X.; Li, J.; Ding, Y.; Chen, L. Synthesis of multi-ion imprinted polymers based on dithizone chelation for simultaneous removal of Hg2+, Cd2+, Ni2+ and Cu2+ from aqueous solutions. RSC Adv. 2016, 6, 44087–44095. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhou, C.; Wu, S.; Sun, C. Ion-Imprinted Polymer Modified with Carbon Quantum Dots as a Highly Sensitive Copper(II) Ion Probe. Polymers 2021, 13, 1376. [Google Scholar] [CrossRef]
- Liu, M.; Chen, C.; Wen, T.; Wang, X. Synthesis of magnetic ion-imprinted composites and selective separation and preconcentration of U(VI). Dalton Trans. 2014, 43, 7050–7056. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Fang, M.; Huang, A.; Han, S.; Jin, G.-P. Fabrication of a novel magnetic rubidium ion-imprinted polymer for selective separation. New J. Chem. 2022, 46, 6343–6352. [Google Scholar] [CrossRef]
- Huang, W.; Liu, Y.; Wang, N.; Song, G.; Yin, X.; Zhang, L.; Ni, X.; Xu, W. A Sensitive Electrochemical Sensor Based on Ion Imprinted Polymers with Gold Nanoparticles for High Selective Detecting Cd (II) Ions in Real Samples. J. Inorg. Organomet. Polym. Mater. 2021, 31, 2043–2053. [Google Scholar] [CrossRef]
- Pan, W.; Chen, L.; Wang, Y.; Yan, Y. Selective separation of low concentration rare earths via coordination-induced ion imprinted electrospun membranes. J. Membr. Sci. 2022, 658, 120759. [Google Scholar] [CrossRef]
- Shi, J.; Liu, W.; Yang, S.; Wu, Z.; Han, B.; Li, D.; Xu, X. Adsorption Thermodynamic and Kinetic Mechanism of Substrate-Induced Molecular Geometry Orientation. Langmuir 2022, 38, 495–503. [Google Scholar] [CrossRef]
- Liao, W.; Zhang, X.; Ke, S.; Shao, J.; Yang, H.; Zhang, S.; Chen, H. Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar. Ind. Crops Prod. 2022, 186, 115238. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, R.; Zhang, K.; Yan, J.; Ma, F.; Zhen, J.; Pan, J. Discontinuous cooperative imprinting idea based on MXene-nanocomposite membrane for high structurally stable recognition and separation of shikimic acid. Chem. Eng. J. 2023, 460, 141891. [Google Scholar] [CrossRef]
- Zhou, G.; Yu, P.; Shen, Y.; Wang, C.; Li, Y.; Yang, R.; Fu, X.; Chi, J.; Chen, X.; Feng, Y. Ion imprinted polymer layer modified magnetic nanocomposites for selective recycling of aqueous Ni(II). J. Clean. Prod. 2022, 373, 133748. [Google Scholar] [CrossRef]
- He, Y.; Wu, P.; Xiao, W.; Li, G.; Yi, J.; He, Y.; Chen, C.; Ding, P.; Duan, Y. Efficient removal of Pb(II) from aqueous solution by a novel ion imprinted magnetic biosorbent: Adsorption kinetics and mechanisms. PLoS ONE 2019, 14, e0213377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Liu, Y.; Xu, Y.; Ni, L.; Meng, X.; Hu, Z.; Zhong, G.; Meng, M.; Wang, Y.; Han, J. Efficient static and dynamic removal of Sr(II) from aqueous solution using chitosan ion-imprinted polymer functionalized with dithiocarbamate. J. Environ. Chem. Eng. 2015, 3, 1061–1071. [Google Scholar] [CrossRef]
- He, G.; Li, Z.; Liu, Y.; Liu, M.; Zhu, C.; Zhang, L.; Zhang, H. A novel lithium ion-imprinted membrane with robust adsorption capacity and anti-fouling property based on the uniform multilayered interlayer. Desalination 2022, 539, 115973. [Google Scholar] [CrossRef]
- Ali, I.M.; Zakaria, E.S.; Khalil, M.; El-Tantawy, A.; El-Saied, F.A. Synthesis of ion-imprinted polymers based on chitosan for high selectivity of La(III), Ce(III) and Sm(III) via solid phase extraction. J. Mol. Liq. 2022, 356, 119058. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, J.; Jiang, Y.; Liu, Z.; Meng, M.; Ni, L.; Qin, C.; Peng, J. Selective Ce(III) ion-imprinted polymer grafted on Fe3O4 nanoparticles supported by SBA-15 mesopores microreactor via surface-initiated RAFT polymerization. Microporous Mesoporous Mater. 2016, 234, 176–185. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Bian, L.-C.; Xia, J.-R.; Cao, Q.-E. A Novel Ion-imprinted Polymer Based on Multi-walled Carbon Nanotubes for Solid Phase Extraction of Pd(II). Chin. J. Anal. Chem. 2021, 49, e21170–e21178. [Google Scholar] [CrossRef]
- Fei, J.J.; Wu, X.H.; Sun, Y.L.; Zhao, L.Y.; Min, H.; Cui, X.B.; Chen, Y.J.; Liu, S.; Lian, H.Z.; Li, C. Preparation of a novel amino functionalized ion-imprinted hybrid monolithic column for the selective extraction of trace copper followed by ICP-MS detection. Anal. Chim. Acta 2021, 1162, 338477. [Google Scholar] [CrossRef]
- Xu, X.; Wang, M.; Wu, Q.; Xu, Z.; Tian, X. Synthesis and Application of Novel Magnetic Ion-Imprinted Polymers for Selective Solid Phase Extraction of Cadmium (II). Polymers 2017, 9, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Wang, X.; Hu, Y.; Chen, H.; Liu, X.; Dang, X. Adsorption mechanism study of multinuclear metal coordination cluster Zn5 for anionic dyes congo red and methyl orange: Experiment and molecular simulation. Appl. Surf. Sci. 2022, 586, 152745. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.; Ruan, D.; Xu, H.; Wang, F.; Lei, W.; Xia, M. Efficient removal of heavy metal ions by diethylenetriaminepenta (methylene phosphonic) acid-doped hydroxyapatite. Sci. Total Environ. 2022, 849, 157557. [Google Scholar] [CrossRef] [PubMed]
Sample | Specific Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Diameter (nm) |
---|---|---|---|
NS/Cd-IIP | 65.19 | 0.177 | 8.495 |
NS/Cd-NIP | 50.25 | 0.218 | 9.913 |
∆G0 (kJ·mol−1) | ∆S (J·mol−1·K−1) | ∆H0 (kJ·mol−1) | |||
---|---|---|---|---|---|
298 K | 303 K | 308 K | 313 K | ||
−5.417 | −5.431 | −5.445 | −5.459 | 2.801 | −4.583 |
T (K) | Quasi-First-Order | Quasi-Second-Order | ||||
---|---|---|---|---|---|---|
Qe,cal mg·g−1 | k1 min−1 | R2 | Qe,cal mg·g−1 | k2 min−1 | R2 | |
298 | 19.23 | 0.131 | 0.67 | 20.03 | 0.016 | 0.96 |
303 | 20.32 | 0.135 | 0.65 | 21.06 | 0.017 | 0.95 |
308 | 21.22 | 0.141 | 0.63 | 22.07 | 0.015 | 0.93 |
313 | 22.36 | 0.147 | 0.67 | 23.08 | 0.018 | 0.95 |
Adsorbent | Langmuir Isotherm | Freundlich Isotherm | |||||
---|---|---|---|---|---|---|---|
KL | Qm (mg·g−1) | R2 | RL | KF | 1/n | R2 | |
NS/Cd-IIP | 0.026 | 36.33 | 0.99 | 0.13 | 7.10 | 0.27 | 0.89 |
NS/Cd-NIP | 0.017 | 15.28 | 0.95 | 0.28 | 1.63 | 0.36 | 0.85 |
M(II) | D | α | k | ||
---|---|---|---|---|---|
IIP | NIP | IIP | NIP | ||
Cd(II) | 13.601 | 0.236 | - | - | - |
Cu(II) | 0.066 | 0.0521 | 207.0 | 4.53 | 45.70 |
Mn(II) | 0.077 | 0.0459 | 170.3 | 5.14 | 33.13 |
Ni(II) | 0.080 | 0.0481 | 170.4 | 4.91 | 34.70 |
Pb(II) | 0.098 | 0.0633 | 139.5 | 3.73 | 37.40 |
C0 mg·L−1 | Z cm | V mL·min−1 | tb min | te min | Ve L | qe mg·g−1 | qtotal mg |
---|---|---|---|---|---|---|---|
10 | 1.5 | 1 | 10 | 45 | 0.045 | 2.32 | 0.023 |
10 | 3 | 1 | 15 | 50 | 0.050 | 1.29 | 0.026 |
10 | 4.5 | 1 | 20 | 55 | 0.055 | 0.98 | 0.029 |
10 | 1.5 | 1 | 10 | 45 | 0.045 | 2.32 | 0.023 |
10 | 1.5 | 1.5 | 8 | 40 | 0.035 | 1.94 | 0.019 |
10 | 1.5 | 2 | 5 | 35 | 0.025 | 1.24 | 0.012 |
10 | 1.5 | 2.5 | 3 | 30 | 0.020 | 0.97 | 0.097 |
10 | 4.5 | 1 | 20 | 55 | 0.055 | 0.98 | 0.029 |
15 | 4.5 | 1 | 15 | 50 | 0.050 | 2.36 | 0.071 |
20 | 4.5 | 1 | 10 | 45 | 0.045 | 3.77 | 0.113 |
Parameters Varied | KAB (mL·min−1·mg−1) | N0 (mg·mL−1) | R2 |
---|---|---|---|
Column depth (cm) | |||
1.5 | 3.28 | 0.749 | 0.692 |
3 | 2.86 | 0.538 | 0.801 |
4.5 | 1.99 | 0.518 | 0.861 |
Initial concentration (mg·L−1) | |||
10 | 2.59 | 0.105 | 0.792 |
15 | 1.41 | 0.158 | 0.783 |
20 | 0.98 | 0.572 | 0.821 |
Flow rate (mL·min−1) | |||
1 | 3.12 | 0.545 | 0.856 |
1.5 | 3.24 | 0.506 | 0.824 |
2 | 3.28 | 0.487 | 0.803 |
2.5 | 3.51 | 0.462 | 0.686 |
Parameters Varied | KTh (mL·min−1·mg−1) | q (mg·g−1) | R2 |
---|---|---|---|
Column height (cm) | |||
1.5 | 17.05 | 1.90 | 0.971 |
3 | 14.90 | 1.32 | 0.987 |
4.5 | 13.72 | 0.99 | 0.992 |
Initial concentration (mg·L−1) | |||
10 | 14.23 | 1.33 | 0.979 |
15 | 7.84 | 2.39 | 0.983 |
20 | 4.89 | 3.81 | 0.991 |
Flow rate (mL·min−1) | |||
1 | 14.14 | 2.33 | 0.992 |
1.5 | 15.11 | 1.96 | 0.988 |
2 | 17.23 | 1.31 | 0.984 |
2.5 | 17.96 | 1.01 | 0.969 |
Sample | Added (μg·L−1) | Found (μg·L−1) | Recovery % |
---|---|---|---|
0 | 0.13 ± 0.02 | - | |
Tap water | 5.00 | 5.32 ± 0.16 | 103.8 ± 2.8 |
10.00 | 10.23 ± 0.18 | 101.1 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murat, A.; Gao, S.; Wang, L.; Chai, L.; Abliz, S.; Yimit, A. Synthesis and Characterization of Cadmium Ion-Imprinted/Natural Sand Composite and Research on Its Adsorption Properties. Coatings 2023, 13, 1288. https://doi.org/10.3390/coatings13071288
Murat A, Gao S, Wang L, Chai L, Abliz S, Yimit A. Synthesis and Characterization of Cadmium Ion-Imprinted/Natural Sand Composite and Research on Its Adsorption Properties. Coatings. 2023; 13(7):1288. https://doi.org/10.3390/coatings13071288
Chicago/Turabian StyleMurat, Aray, Shuaibing Gao, Lingling Wang, Linlin Chai, Shawket Abliz, and Abliz Yimit. 2023. "Synthesis and Characterization of Cadmium Ion-Imprinted/Natural Sand Composite and Research on Its Adsorption Properties" Coatings 13, no. 7: 1288. https://doi.org/10.3390/coatings13071288
APA StyleMurat, A., Gao, S., Wang, L., Chai, L., Abliz, S., & Yimit, A. (2023). Synthesis and Characterization of Cadmium Ion-Imprinted/Natural Sand Composite and Research on Its Adsorption Properties. Coatings, 13(7), 1288. https://doi.org/10.3390/coatings13071288