Structure and Properties of Cermet Coatings Produced by Vacuum-Arc Evaporation of a High-Entropy Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Chen, T.; Shun, T.; Yeh, J.; Wong, M. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 2004, 188–189, 193–200. [Google Scholar] [CrossRef]
- Chen, T.-K.; Wong, M.-S.; Shun, T.-T.; Yeh, J.-W. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 2005, 200, 1361–1365. [Google Scholar] [CrossRef]
- Lai, C.-H.; Lin, S.-J.; Yeh, J.-W.; Chang, S.-Y. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf. Coat. Technol. 2006, 201, 3275–3280. [Google Scholar] [CrossRef]
- Lai, C.-H.; Tsai, M.-H.; Lin, S.-J.; Yeh, J.-W. Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings. Surf. Coat. Technol. 2007, 201, 6993–6998. [Google Scholar] [CrossRef]
- Huang, P.-K.; Yeh, J.-W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf. Coat. Technol. 2009, 203, 1891–1896. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Lai, C.-H.; Yeh, J.-W.; Gan, J.-Y. Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)Nxcoatings. J. Phys. D Appl. Phys. 2008, 41, 235402. [Google Scholar] [CrossRef]
- Beresnev, V.M.; Sobol’, O.V.; Litovchenko, S.V.; Pogrebnyak, A.D.; Srebnyuk, P.A.; Novikov, V.Y.; Kolesnikov, D.A.; Meilekhov, A.A.; Postel’nik, A.A.; Nemchenko, U.S. Effect of bias voltage and nitrogen pressure on the structure and properties of vacuum-arc (Mo + Ti6%Si)N coatings. Tech. Phys. 2017, 62, 795–798. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Rogachev, A.S. Structure, Stability, and Properties of High-Entropy Alloys. Phys. Met. Metallogr. 2020, 121, 733–764. [Google Scholar] [CrossRef]
- Kao, Y.-F.; Lee, T.-D.; Chen, S.-K.; Chang, Y.-S. Electrochemical passive properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corros. Sci. 2010, 52, 1026–1034. [Google Scholar] [CrossRef]
- Ye, Q.; Feng, K.; Li, Z.; Lu, F.; Li, R.; Huang, J.; Wu, Y. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl. Surf. Sci. 2017, 396, 1420–1426. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Qiao, J.W.; Ma, S.; Huang, E.; Chuang, C.; Liaw, P.; Zhang, Y. Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperatures. Mater. Sci. Forum 2011, 688, 419–425. [Google Scholar] [CrossRef]
- Laktionova, M.A.; Tabchnikova, E.D.; Tang, Z.; Liaw, P.K. Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2–300 K. Low Temp. Phys. 2013, 39, 630–632. [Google Scholar] [CrossRef]
- Wu, J.-M.; Lin, S.-J.; Yeh, J.-W.; Chen, S.-K.; Huang, Y.-S.; Chen, H.-C. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 2006, 261, 513–519. [Google Scholar] [CrossRef]
- Chuang, M.-H.; Tsai, M.-H.; Wang, W.-R.; Lin, S.-J.; Yeh, J.-W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 2007, 90, 181904. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Qiao, Y.; Chen, G. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 2007, 15, 357–362. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; A Bagdasaryan, A.; Yakushchenko, I.V.; Beresnev, V.M. The structure and properties of high-entropy alloys and nitride coatings based on them. Russ. Chem. Rev. 2014, 83, 1027–1061. [Google Scholar] [CrossRef]
- Praveen, S.; Kim, H.S. High-Entropy Alloys: Potential Candidates for High-Temperature Applications—An Overview. Adv. Eng. Mater. 2018, 20, 1700645. [Google Scholar] [CrossRef]
- Pickering, E.J.; Jones, N.G. High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 2016, 61, 183–202. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Grigoriev, S.N. Study of cracking mechanisms in multi-layered composite nano-structured coatings. Wear 2017, 378–379, 43–57. [Google Scholar] [CrossRef]
- Horník, J.; Krum, S.; Tondl, D.; Puchnin, M.; Sachr, P.; Cvrček, L. Multilayer coatings Ti/Tin, Cr/Crn and W/Wn deposited by magnetron sputtering for improvement of adhesion to base materials. Acta Polytech. 2015, 55, 388–392. [Google Scholar] [CrossRef]
- Khadem, M.; Penkov, O.V.; Yang, H.-K.; Kim, D.-E. Tribology of multilayer coatings for wear reduction: A review. Friction 2017, 5, 248–262. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Shi, Q.; Ge, X.; Wang, W. Multilayer Coatings for Tribology: A Mini Review. Nanomaterials 2022, 12, 1388. [Google Scholar] [CrossRef]
- Park, J.; Cho, S.; Kwon, H. Aluminum-ceramic composites for thermal management in energy-conversion systems. Sci. Rep. 2018, 8, 17852. [Google Scholar] [CrossRef]
- Cao, X.Q.; Vassen, R.; Tietz, F.; Stoever, D. New double-ceramic-layer thermal barrier coatings based on zirconia–rare earth composite oxides. J. Eur. Ceram. Soc. 2006, 26, 247–251. [Google Scholar] [CrossRef]
- Xing, Y.; Baumann, S.; Uhlenbruck, S.; Rüttinger, M.; Venskutonis, A.; Meulenberg, W.; Stöver, D. Development of a metallic/ceramic composite for the deposition of thin-film oxygen transport membrane. J. Eur. Ceram. Soc. 2013, 33, 287–296. [Google Scholar] [CrossRef]
- Guo, S.-Q.; Kagawa, Y.; Nishimura, T.; Chung, D.; Yang, J.-M. Mechanical and physical behavior of spark plasma sintered ZrC–ZrB2–SiC composites. J. Eur. Ceram. Soc. 2008, 28, 1279–1285. [Google Scholar] [CrossRef]
- Opeka, M.M.; Talmy, I.G.; Zaykoski, J.A. Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 2004, 39, 5887–5904. [Google Scholar] [CrossRef]
- Konopka, K.; Maj, M.; Kurzydłowski, K.J. Studies of the effect of metal particles on the fracture toughness of ceramic matrix composites. Mater. Charact. 2003, 51, 335–340. [Google Scholar] [CrossRef]
- Piotrkiewicz, P.; Zygmuntowicz, J.; Wachowski, M.; Cymerman, K.; Kaszuwara, W.; Midor, A.W. Al2O3-Cu-Ni Composites Manufactured via Uniaxial Pressing: Microstructure, Magnetic, and Mechanical Properties. Materials 2022, 15, 1848. [Google Scholar] [CrossRef]
- Song, J.; Zhang, Y.; Fan, H.; Fang, Y.; Hu, L. Design of structure parameters and corrugated interfaces for optimal mechanical properties in alumina/graphite laminated nanocomposites. Mater. Des. (1980–2015) 2015, 65, 1205–1213. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Wang, H.; Shao, G.; Zhu, J.; Liu, W.; Wang, H.; Fan, B.; Xu, H.; Lu, H.; et al. The Fabrication and Mechanical Properties of Laminated ZrB2-Mo5SiB2 Ceramics with an Mo-Mo5SiB2 Interlayer. Metals 2021, 11, 2018. [Google Scholar] [CrossRef]
- Andreev, A.A.; Sablev, L.P.; Grigoriev, S.N. Vacuum-Arc Coat.; NSC KIPT Press: Kharkov, Ukraine, 2010. (In Russian) [Google Scholar]
- Shugurov, V.V.; Koval, N.N.; Krysina, O.V.; A Prokopenko, N. QUINTA equipment for ion-plasma modification of materials and products surface and vacuum arc plasma-assisted deposition of coatings. J. Phys. Conf. Ser. 2019, 1393, 012131. [Google Scholar] [CrossRef]
- Korsunsky, A.; McGurk, M.; Bull, S.; Page, T. On the hardness of coated systems. Surf. Coat. Technol. 1998, 99, 171–183. [Google Scholar] [CrossRef]
- Azarenkov, N.A.; Sobol’, O.V.; Beresnev, V.M.; Pogrebnyak, A.D.; Kolesnikov, D.A.; Turbin, P.V.; Toryanik, I.N. Vacuum-plasma coatings based on the multielement nitrides. Metallofiz. I Noveishie Tekhnologii 2013, 35, 1061–1084. Available online: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/104178/07-Azarenkov.pdf?sequence=1 (accessed on 6 August 2023).
- Ivanov, Y.F.; Koval, N.N.; Akhmadeev, Y.H.; Uglov, V.V.; Shugurov, V.V.; Petrikova, E.A.; Krysina, O.V.; Prokopenko, N.A.; Azhazha, I.I. Structure and properties of multi-layer films of high-entropy alloys deposited by ion-plasma method. Rus. Phys. J. 2021, 64, 32–37. [Google Scholar] [CrossRef]
- Milman, Y.V. Plasticity characteristic obtained by indentation. J. Phys. D Appl. Phys. 2008, 41, 074013. [Google Scholar] [CrossRef]
- Ni, W.; Cheng, Y.-T.; Grummon, D.S. Microscopic shape memory and superelastic effects under complex loading conditions. Surf. Coat. Technol. 2004, 177–178, 512–517. [Google Scholar] [CrossRef]
- Guillonneau, G.; Wheeler, J.; Wehrs, J.; Philippe, L.; Baral, P.; Höppel, H.W.; Göken, M.; Michler, J. Determination of the true projected contact area by in situ indentation testing. J. Mater. Res. 2019, 34, 2859–2868. [Google Scholar] [CrossRef]
- Braic, V.; Vladescu, A.; Balaceanu, M.; Luculescu, C.; Braic, M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf. Coat. Technol. 2012, 211, 117–121. [Google Scholar] [CrossRef]
Element | Concentration | |
---|---|---|
wt.% | at.% | |
N | 06.45 | 37.13 |
Ti | 03.11 | 05.23 |
Hf | 29.38 | 13.27 |
Ta | 21.15 | 09.42 |
Zr | 20.15 | 17.81 |
Nb | 19.76 | 17.14 |
Detected Phases | Volume Fraction, vol.% | Lattice Parameters, Å | CSR Width D, nm | Crystal Lattice Distortion ∆d/d × 10−3 |
---|---|---|---|---|
(TiNbZrTaHf)N | 45 | a = 4.4465 | 22 | 7 |
Ta4N | 26 | a = 6.8272 c = 4.1697 | 10 | 7 |
TiNbZrTaHf | 29 | a = 3.3396 | 8 | 5 |
Fmax, mN | hmax, nm | S, mN/nm | hc, nm | hr, nm | hp, nm | ε | Ap, nm2 | ν |
---|---|---|---|---|---|---|---|---|
30.12 | 223.51 | 0.328 | 153.94 | 131.7 | 90.41 | 0.76 | 759362.6 | 0.25 |
Er, GPa | H, GPa | H/Er | (H3/(Er)2, GPa | δh, % | η, % | εelast, % | εinelast, % | εplast, % | hr/hmax |
---|---|---|---|---|---|---|---|---|---|
322.7 | 36.7 | 0.114 | 0.476 | 58.9 | 41.1 | 31.1 | 9.95 | 58.9 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, Y.F.; Akhmadeev, Y.K.; Krysina, O.V.; Koval, N.N.; Shugurov, V.V.; Petrikova, E.A.; Prokopenko, N.A.; Tolkachev, O.S. Structure and Properties of Cermet Coatings Produced by Vacuum-Arc Evaporation of a High-Entropy Alloy. Coatings 2023, 13, 1381. https://doi.org/10.3390/coatings13081381
Ivanov YF, Akhmadeev YK, Krysina OV, Koval NN, Shugurov VV, Petrikova EA, Prokopenko NA, Tolkachev OS. Structure and Properties of Cermet Coatings Produced by Vacuum-Arc Evaporation of a High-Entropy Alloy. Coatings. 2023; 13(8):1381. https://doi.org/10.3390/coatings13081381
Chicago/Turabian StyleIvanov, Yurii F., Yuriy Kh. Akhmadeev, Olga V. Krysina, Nikolai N. Koval, Vladimir V. Shugurov, Elizaveta A. Petrikova, Nikita A. Prokopenko, and Oleg S. Tolkachev. 2023. "Structure and Properties of Cermet Coatings Produced by Vacuum-Arc Evaporation of a High-Entropy Alloy" Coatings 13, no. 8: 1381. https://doi.org/10.3390/coatings13081381
APA StyleIvanov, Y. F., Akhmadeev, Y. K., Krysina, O. V., Koval, N. N., Shugurov, V. V., Petrikova, E. A., Prokopenko, N. A., & Tolkachev, O. S. (2023). Structure and Properties of Cermet Coatings Produced by Vacuum-Arc Evaporation of a High-Entropy Alloy. Coatings, 13(8), 1381. https://doi.org/10.3390/coatings13081381