Retrieving the Intrinsic Microwave Permittivity and Permeability of Ni-Zn Ferrites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Method
2.2. Materials under Study
2.3. Measurement Techniques
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harris, V.G. Modern Microwave Ferrites. IEEE Trans. Magn. 2012, 48, 1075–1104. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Z.; Song, X.; Ran, M.; Jiang, X.; Lan, Z.; Sun, K. Effects of Substrates on Thin-Film Growth of Nickel Zinc Ferrite by Spin-Spray Deposition. Coatings 2023, 13, 690. [Google Scholar] [CrossRef]
- Beatrice, C.; Tsakaloudi, V.; Dobák, S.; Zaspalis, V.; Fiorillo, F. Magnetic losses versus sintering treatment in Mn-Zn ferrites. J. Magn. Magn. Mater. 2017, 429, 129–137. [Google Scholar] [CrossRef]
- Suarez, A.; Victoria, J.; Alcarria, A.; Torres, J.; Martinez, P.A.; Martos, J.; Soret, J.; Garcia-Olcina, R.; Muetsch, S. Characterization of Different Cable Ferrite Materials to Reduce the Electromagnetic Noise in the 2–150 kHz Frequency Range. Materials 2018, 11, 174. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K.; Ishizuka, K.; Tokuda, M. A Study of RF Absorber for Anechoic Chambers Used in the Frequency Range for Power Line Communication System. PIERS Online 2006, 2, 538–543. [Google Scholar] [CrossRef]
- Randa, M.; Priyono. Ferrite phase of BaFe9(MnCo)1.5Ti1.5O19 as anti-radar coating material. In Proceedings of the 2015 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET), Bandung, Indonesia, 5–7 October 2015; pp. 46–49. [Google Scholar] [CrossRef]
- Qin, F.; Peng, M.; Estevez, D.; Brosseau, C. Electromagnetic composites: From effective medium theories to metamaterials. J. Appl. Phys. 2022, 132, 101101. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y. Effective medium theory for anisotropic metamaterials. Sci. Rep. 2015, 5, 7892. [Google Scholar] [CrossRef]
- Rozanov, K.N.; Koledintseva, M.Y.; Yelsukov, E.P. Frequency-dependent effective material parameters of composites as a function of inclusion shape. In Composites and Their Properties; Hu, N., Ed.; InTech: New York, NY, USA, 2012; pp. 331–358. [Google Scholar] [CrossRef]
- Kang, Y.; Tan, G.; Man, Q.; Ning, M.; Chen, S.; Pan, J.; Liu, X. A new low-density hydrogel-based matrix with hollow microsphere structure for weight reduction of microwave absorbing composites. Mater. Chem. Phys. 2021, 266, 124532. [Google Scholar] [CrossRef]
- García-Valenzuela, A.; Acevedo-Barrera, A.; Vázquez-Estrada, O.; Nahmad-Rohen, A.; Barrera, R.G. Full dynamic corrections to the Maxwell Garnett mixing formula and corresponding extensions beyond the dipolar approximation. J. Quant. Spectrosc. Radiat. Transf. 2023, 302, 108578. [Google Scholar] [CrossRef]
- Fung, T.H.; Veeken, T.; Payne, D.; Veettil, B.; Polman, A.; Abbott, M. Application and validity of the effective medium approximation to the optical properties of nano-textured silicon coated with a dielectric layer. Opt. Express 2019, 27, 38645–38660. [Google Scholar] [CrossRef]
- Nazarov, R.; Zhang, T.; Khodzitsky, M. Effective Medium Theory for Multi-Component Materials Based on Iterative Method. Photonics 2020, 7, 113. [Google Scholar] [CrossRef]
- Hasar, H.; Hasar, U.C.; Kaya, Y.; Ozturk, H.; Izginli, M.; Oztas, T.; Aslan, N.; Ertugrul, M.; Barroso, J.J.; Ramahi, O.M. Honey–Water Content Analysis by Mixing Models Using a Self-Calibrating Microwave Method. IEEE Trans. Microw. Theory Tech. 2023, 71, 691–697. [Google Scholar] [CrossRef]
- Merrill, W.M.; Diaz, R.E.; LoRe, M.M.; Squires, M.C.; Alexopoulos, N.G. Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum. IEEE Trans. Antennas Propag. 1999, 47, 142–148. [Google Scholar] [CrossRef]
- Goyal, N.; Panwar, R. Dielectric Characterization of Electromagnetic Mixing Model Assisted Optimization Derived Heterogeneous Composites for Stealth Technology. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 690–699. [Google Scholar] [CrossRef]
- Brosseau, C.; Talbot, P. Effective magnetic permeability of Ni and Co micro- and nanoparticles embedded in a ZnO matrix. J. Appl. Phys. 2005, 97, 104325. [Google Scholar] [CrossRef]
- Bergman, D.J.; Stroud, D. Physical Properties of Macroscopically Inhomogeneous Media. Solid State Phys. 1992, 46, 147. [Google Scholar] [CrossRef]
- Koledintseva, M.Y.; Xu, J.; De, S.; Drewniak, J.L.; He, Y.; Johnson, R. Systematic Analysis and Engineering of Absorbing Materials Containing Magnetic Inclusions for EMC Applications. IEEE Trans. Magn. 2011, 47, 317–323. [Google Scholar] [CrossRef]
- Rozanov, K.N.; Bobrovskii, S.Y.; Lagarkov, A.N.; Mishin, A.D.; Osipov, A.V.; Petrov, D.A.; Shiryaev, A.O.; Starostenko, S.N. Revealing the effect of interaction between inclusions on the effective microwave permeability of composites. Procedia Eng. 2017, 216, 85–92. [Google Scholar] [CrossRef]
- Hernandez-Cardoso, G.G.; Singh, A.K.; Castro-Camus, E. Empirical comparison between effective medium theory models for the dielectric response of biological tissue at terahertz frequencies. Appl. Opt. 2020, 59, D6–D11. [Google Scholar] [CrossRef]
- Holcman, V.; Liedermann, K. New mixing rule of polymer composite systems. WSEAS Trans. Electron. 2007, 4, 181–185. [Google Scholar]
- Tsutaoka, T.; Kasagi, T.; Hatakeyama, K.; Koledintseva, M.Y. Analysis of the permeability spectra of spinel ferrite composites using mixing rules. In Proceedings of the 2013 IEEE International Symposium on Electromagnetic Compatibility, Denver, CO, USA, 5–9 August 2013; pp. 545–550. [Google Scholar] [CrossRef]
- Tsutaoka, T. Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spinel ferrites and their composite materials. J. Appl. Phys. 2003, 93, 2789–2796. [Google Scholar] [CrossRef]
- Bellaredj, M.L.F.; Mueller, S.; Davis, A.K.; Kohl, P.; Swaminathan, M.; Mano, Y. Fabrication, Characterization and Comparison of FR4-Compatible Composite Magnetic Materials for High Efficiency Integrated Voltage Regulators with Embedded Magnetic Core Micro-Inductors. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 2008–2014. [Google Scholar] [CrossRef]
- Ramprasad, R.; Zurcher, P.; Petras, M.; Miller, M.; Renaud, P. Magnetic properties of metallic ferromagnetic nanoparticle composites. J. Appl. Phys. 2004, 96, 519–529. [Google Scholar] [CrossRef]
- Mattei, J.; Le Floc’h, M. Percolative behaviour and demagnetizing effects in disordered heterostructures. J. Magn. Magn. Mater. 2003, 257, 335–345. [Google Scholar] [CrossRef]
- Wei, X.; Pan, Y.; Chen, Z. 3D printing of NiZn ferrite architectures with high magnetic performance for efficient magnetic separation. J. Eur. Ceram. Soc. 2022, 42, 1522–1529. [Google Scholar] [CrossRef]
- Kotru, S.; Paul, R.; Jaber, A.Q. Synthesis and magnetic studies of pure and doped NiZn ferrite films using Sol gel method. Mater. Chem. Phys. 2022, 276, 125357. [Google Scholar] [CrossRef]
- Xiang, N.; Zhou, Z.; Ma, X.; Zhang, H.; Xu, X.; Chen, Y.; Guo, Z. The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property. Molecules 2023, 28, 4128. [Google Scholar] [CrossRef]
- Salem, M.M.; Morchenko, A.T.; Panina, L.V.; Kostishyn, V.G.; Andreev, V.G.; Bibikov, S.B.; Nikolaev, A.N. Dielectric and Magnetic Properties of Two-Phase Composite System: Mn-Zn or Ni-Zn ferrites in Dielectric Matrices. Phys. Procedia 2015, 75, 1360–1369. [Google Scholar] [CrossRef]
- Starostenko, S.N.; Rozanov, K.; Shiryaev, A.O.; Lagarkov, A. A Technique to Retrieve High-Frequency Permeability of Metals from Constitutive Parameters of Composites with Metal Inclusions of Arbitrary Shape, Estimate of the Microwave Permeability of Nickel. Prog. Electromagn. Res. M 2018, 76, 143–155. [Google Scholar] [CrossRef]
- Venkatarayalu, N.V.; Yuan, C.J. Eliminating errors due to position uncertainty in coaxial airline based measurement of material parameters. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 November 2017; pp. 464–467. [Google Scholar] [CrossRef]
- Costa, F.; Borgese, M.; Degiorgi, M.; Monorchio, A. Electromagnetic Characterisation of Materials by Using Transmission/Reflection (T/R) Devices. Electronics 2017, 6, 95. [Google Scholar] [CrossRef]
- Angiulli, G.; Versaci, M. Extraction of the Electromagnetic Parameters of a Metamaterial Using the Nicolson–Ross–Weir Method: An Analysis Based on Global Analytic Functions and Riemann Surfaces. Appl. Sci. 2022, 12, 11121. [Google Scholar] [CrossRef]
- Kostishin, V.G.; Vergazov, R.M.; Andreev, V.G.; Bibikov, S.B.; Podgornaya, S.V.; Morchenko, A.T. Effect of the microstructure on the properties of radio-absorbing nickel-zinc ferrites. Russ. Microelectron. 2011, 40, 574–577. [Google Scholar] [CrossRef]
- Rozanov, K.N.; Koledintseva, M.Y. Application of generalized Snoek’s law over a finite frequency range: A case study. J. Appl. Phys. 2016, 119, 073901. [Google Scholar] [CrossRef]
- Aharoni, A.; Jakubovics, J.P. Theoretical single-domain size of NiZn ferrite. J. Phys. IV Fr. 1998, 8, Pr2-389–Pr2-392. [Google Scholar] [CrossRef]
- Van der Zaag, P.J.; Van der Valk, P.J.; Rekveldt, M.T. A domain size effect in the magnetic hysteresis of NiZn-ferrites. Appl. Phys. Lett. 1996, 69, 2927–2929. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Wang, X. Facile fabrication of urchin-like carbon nanotube–modified Cu0.48Ni0.16Co2.36O4/CuO with high optical–infrared–microwave attenuation. Opt. Express 2021, 29, 26004–26013. [Google Scholar] [CrossRef]
- Liu, Y.; Ouyang, C.; Xu, Q.; Su, X.; Yang, Q.; Ma, J.; Li, Y.; Tian, Z.; Gu, J.; Liu, L.; et al. Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface. Photon. Res. 2022, 10, 2056–2065. [Google Scholar] [CrossRef]
- Liu, Z.; Banar, B.; Butun, S.; Kocer, H.; Wang, K.; Scheuer, J.; Wu, J.; Aydin, K. Dynamic infrared thin-film absorbers with tunable absorption level based on VO2 phase transition. Opt. Mater. Express 2018, 8, 2151–2158. [Google Scholar] [CrossRef]
- Dong, T.; Luo, J.; Chu, H.; Xiong, X.; Peng, R.; Wang, M.; Lai, Y. Breakdown of Maxwell Garnett theory due to evanescent fields at deep-subwavelength scale. Photon. Res. 2021, 9, 848–855. [Google Scholar] [CrossRef]
Mixing Rule | Formula | Number |
---|---|---|
The Maxwell Garnet (MG) | (1) | |
The effective medium theory (EMT) | (2) | |
The asymmetric Bruggeman theory | (3) | |
The Landau–Lifshitz–Looyenga (LLL) | (4) |
Materials | O, atom% | Fe, atom% | Ni, atom% | Zn, atom% |
---|---|---|---|---|
bulk ferrite | 54 | 32 | 4.9 | 8.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiryaev, A.; Rozanov, K.; Kostishin, V.; Petrov, D.; Maklakov, S.; Dolmatov, A.; Isaev, I. Retrieving the Intrinsic Microwave Permittivity and Permeability of Ni-Zn Ferrites. Coatings 2023, 13, 1599. https://doi.org/10.3390/coatings13091599
Shiryaev A, Rozanov K, Kostishin V, Petrov D, Maklakov S, Dolmatov A, Isaev I. Retrieving the Intrinsic Microwave Permittivity and Permeability of Ni-Zn Ferrites. Coatings. 2023; 13(9):1599. https://doi.org/10.3390/coatings13091599
Chicago/Turabian StyleShiryaev, Artem, Konstantin Rozanov, Vladimir Kostishin, Dmitry Petrov, Sergey Maklakov, Arthur Dolmatov, and Igor Isaev. 2023. "Retrieving the Intrinsic Microwave Permittivity and Permeability of Ni-Zn Ferrites" Coatings 13, no. 9: 1599. https://doi.org/10.3390/coatings13091599
APA StyleShiryaev, A., Rozanov, K., Kostishin, V., Petrov, D., Maklakov, S., Dolmatov, A., & Isaev, I. (2023). Retrieving the Intrinsic Microwave Permittivity and Permeability of Ni-Zn Ferrites. Coatings, 13(9), 1599. https://doi.org/10.3390/coatings13091599