Controlled Synthesis of Mg-MOF-74 and Its CO2 Adsorption in Flue Gas
Abstract
:1. Introduction
2. Experimental Part
2.1. Reagents and Characterization
2.2. Synthesis of Mg-MOF-74
2.3. Evaluation of Adsorbents
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xin, C.L.; Ren, Y.; Zhang, Z.F.; Liu, L.L.; Wang, X.; Yang, J.M. Enhancement of Hydrothermal Stability and CO2 Adsorption of Mg-MOF-74/MCF Composites. ACS Omega 2021, 6, 7739–7745. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Drese, J.H.; Jones, C.W. Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources. ChemSusChem 2009, 2, 796–854. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Bollini, P.; Didas, S.A.; Choi, S.; Drese, J.H.; Jones, C.W. Structural Changes of Silica Mesocellular Foam Supported Amine-Functionalized CO2 Adsorbents Upon Exposure to Steam. ACS Appl. Mater. Interfaces 2010, 2, 3363–3372. [Google Scholar] [CrossRef]
- Comotti, A.; Fraccarollo, A.; Bracco, S.; Beretta, M.; Distefano, G.; Cossi, M.; Marchese, L.; Riccardi, C.; Sozzani, P. Porous dipeptide crystals as selective CO2 adsorbents: Experimental isotherms vs. grand canonical Monte Carlo simulations and MAS NMR spectroscopy. Crystengcomm 2013, 15, 1503–1507. [Google Scholar] [CrossRef]
- Halabi, M.H.; de Croon, M.H.J.M.; van der Schaaf, J.; Cobden, P.D.; Schouten, J.C. Kinetic and structural requirements for a CO2 adsorbent in sorption enhanced catalytic reforming of methane—Part I: Reaction kinetics and sorbent capacity. Fuel 2012, 99, 154–164. [Google Scholar] [CrossRef]
- Chui, S.S. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Mayr, F.; Gagliardi, A. Adsorption and sensing properties of SF6 decomposed gases on Mg-MOF-74. Solid State Commun. 2023, 363, 115120–115124. [Google Scholar] [CrossRef]
- Yang, R.H.; Ullah, S.; Chen, X.; Ma, J.X.; Gao, Y.; Wang, Y.J.; Luo, G.S. Selective adsorption of liquid long-chain α-olefin/paraffin on Mg-MOF-74: Adsorption behavior and interaction mechanism. Nano Res. 2023, 16, 1595–1605. [Google Scholar] [CrossRef]
- Mallick, A.; Mouchaham, G.; Bhatt, P.M.; Liang, W.; Belmabkhout, Y.; Adil, K.; Jamal, A.; Eddaoudi, M. Advances in Shaping of Metal–Organic Frameworks for CO2 Capture: Understanding the Effect of Rubbery and Glassy Polymeric Binders. Ind. Eng. Chem. Res. 2018, 57, 16897–16902. [Google Scholar] [CrossRef]
- Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P.M.; Weselinski, L.J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P.N.; Emwas, A.H.; et al. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc. 2015, 137, 13308–13318. [Google Scholar] [CrossRef]
- CREAMER, A.E.; Gao, B. Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review. Environ. Sci. Technol. 2016, 50, 7276–7289. [Google Scholar] [CrossRef]
- Hu, J.Q.; Chen, Y.; Zhang, H.; Chen, Z.X. Controlled syntheses of Mg-MOF-74 nanorods for drug delivery. J. Solid State Chem. 2021, 294, 121853. [Google Scholar] [CrossRef]
- Chen, C.; Li, B.X.; Zhou, L.J.; Xia, Z.F.; Feng, N.J.; Ding, J.; Wang, L.; Wan, H.; Guan, G.F. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal Organic Framework with Mesoporous Silica for CO2 Adsorption. ACS Appl. Mater. Interfaces 2017, 9, 23060–23071. [Google Scholar] [CrossRef]
- Yu, C.P.; Cui, J.W.; Wang, Y.; Zheng, H.M.; Zhang, J.F.; Shu, X.; Liu, J.Q.; Zhang, Y.; Wu, Y.C. Porous HKUST-1 derived CuO/Cu2O shell wrapped Cu(OH)2 derived CuO/Cu2O core nanowire arrays for electrochemical nonenzymatic glucose sensors with ultrahigh sensitivity. Appl. Surf. Sci. 2018, 439, 11–17. [Google Scholar] [CrossRef]
- Yang, D.A.; Cho, H.Y.; Kim, J.; Yang, S.T.; Ahn, W.S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 2012, 5, 6465. [Google Scholar] [CrossRef]
- Yao, Z.Y.; Guo, J.H.; Wang, P.; Liu, Y.; Guo, F.; Sun, W.Y. Controlled synthesis of micro/nanoscale Mg-MOF-74 materials and their adsorption property. Mater. Lett. 2018, 223, 174–177. [Google Scholar] [CrossRef]
- Peng, X.Q.; Zhang, J.; Sun, J.Q.; Liu, X.C.; Zhao, X.F.; Yu, S.M.; Yuan, Z.P.; Liu, S.J.; Yi, X.B. Hierarchically Porous Mg-MOF-74/Sodium Alginate Composite Aerogel for CO2 Capture. ACS Appl. Nano Mater. 2023, 6, 16694–16701. [Google Scholar] [CrossRef]
- Xin, C.; Zhan, H.; Huang, X.; Li, H.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y. Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO2 adsorption. RSC Adv. 2015, 5, 27901–27911. [Google Scholar] [CrossRef]
- Xin, C.; Jiao, X.; Yin, Y.; Zhan, H.; Li, H.; Li, L.; Zhao, N.; Xiao, F.; Wei, W. Enhanced CO2 Adsorption Capacity and Hydrothermal Stability of HKUST-1 via Introduction of Siliceous Mesocellular Foams (MCFs). Ind. Eng. Chem. Res. 2016, 55, 7950–7957. [Google Scholar] [CrossRef]
- Chakraborty, A.; Maji, T.K. Mg-MOF-74@SBA-15 hybrids: Synthesis, characterization, and adsorption properties. APL Mater. 2014, 2, 124107–124113. [Google Scholar] [CrossRef]
- Li, F.F.; Chen, Y.N.; Gong, M.; Chen, A.J.; Li, L.; Zhang, Z.T.; Liu, Y.; Dan, N.H.; Li, Z.J. Core-shell structure Mg-MOF-74@MSiO2 with mesoporous silica shell having efficiently sustained release ability of magnesium ions potential for bone repair application. J. Non-Cryst. Solids 2023, 600, 122018. [Google Scholar] [CrossRef]
- An, H.F.; Tian, W.J.; Lu, X.; Yuan, H.M.; Yang, L.Y.; Zhang, H.; Shen, H.M.; Bai, H. Boosting the CO2 adsorption performance by defect-rich hierarchical porous Mg-MOF-74. Chem. Eng. J. 2023, 469, 144052. [Google Scholar] [CrossRef]
Samples | Specific Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
Mg-MOF-74 | 570.3 | 0.218 | 0.91 |
Mg-MOF-74-N2 | 624.7 | 0.264 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, C.; Hou, S.; Yu, L.; Zhou, X.; Fu, Y.; Yang, X.; Sun, W.; Yang, F.; Wang, X.; Liu, L. Controlled Synthesis of Mg-MOF-74 and Its CO2 Adsorption in Flue Gas. Coatings 2024, 14, 383. https://doi.org/10.3390/coatings14040383
Xin C, Hou S, Yu L, Zhou X, Fu Y, Yang X, Sun W, Yang F, Wang X, Liu L. Controlled Synthesis of Mg-MOF-74 and Its CO2 Adsorption in Flue Gas. Coatings. 2024; 14(4):383. https://doi.org/10.3390/coatings14040383
Chicago/Turabian StyleXin, Chunling, Shufen Hou, Lei Yu, Xiaojing Zhou, Yunkai Fu, Xiaoteng Yang, Weiwei Sun, Fan Yang, Xia Wang, and Lili Liu. 2024. "Controlled Synthesis of Mg-MOF-74 and Its CO2 Adsorption in Flue Gas" Coatings 14, no. 4: 383. https://doi.org/10.3390/coatings14040383
APA StyleXin, C., Hou, S., Yu, L., Zhou, X., Fu, Y., Yang, X., Sun, W., Yang, F., Wang, X., & Liu, L. (2024). Controlled Synthesis of Mg-MOF-74 and Its CO2 Adsorption in Flue Gas. Coatings, 14(4), 383. https://doi.org/10.3390/coatings14040383