Corrosion-Resistant Organic Superamphiphobic Coatings
Abstract
:1. Introduction
2. Principles of Superamphiphobicity
2.1. Basic Principles
2.1.1. Young’s Equation
2.1.2. Wenzel Model and Cassie–Baxter Model
2.2. Principle of Corrosion Resistance in Superamphiphobic Coatings
3. Regulation Strategies of Corrosion-Resistant Superamphiphobic Coating Performance
3.1. Liquid-Repellency Performance
3.2. Wear Resistance Performance
3.3. Adhesion Performance
3.4. Antibacterial Performance
3.5. Self-Repairing Performance
4. Summary and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Zhang, D.; Liu, Z.; Li, Z.; Du, C.; Dong, C. Materials science: Share corrosion data. Nature 2015, 527, 441–442. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Varney, J.; Thompson, N.; Moghissi, O.; Gould, M.; Payer, J. NACE International Impact Report: International Measures of Prevention, Application, and Economics of Corrosion Technologies Study; NACE International: Houston, TX, USA, 2016. [Google Scholar]
- Hou, B.; Li, X.; Ma, X.; Du, C.; Zhang, D.; Zheng, M.; Xu, W.; Lu, D.; Ma, F. The cost of corrosion in China. npj Mater. Degrad. 2017, 1, 4. [Google Scholar] [CrossRef]
- Cui, J.; Bao, Y.; Sun, Y.; Wang, H.; Jing, L.I. Critical factors on corrosion protective waterborne coatings containing functionalized graphene oxide: A review. Compos. Part A 2023, 174, 107729. [Google Scholar] [CrossRef]
- Kulyk, B.; Freitas, M.A.; Santos, N.F.; Mohseni, F.; Carvalho, A.F.; Yasakau, K.; Fernandes, A.J.S.; Bernardes, A.; Figueiredo, B.; Silva, R.; et al. A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Crit. Rev. Solid State Mater. Sci. 2021, 47, 309–355. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, H.; Yu, H. Bioinspired strategies for making superior graphene composite coatings. Chem. Eng. J. 2022, 435, 134808. [Google Scholar] [CrossRef]
- Zhu, X.; Zheng, W.; Zhao, H.; Wang, L. Non-covalent assembly of a super-tough, highly stretchable and environmentally adaptable self-healing material inspired by nacre. J. Mater. Chem. A 2021, 9, 20737–20747. [Google Scholar] [CrossRef]
- Raman, R.K.S.; Sanjid, A.; Banerjee, P.C.; Arya, A.K.; Parmar, R.; Amati, M.; Gregoratti, L. Remarkably Corrosion Resistant Graphene Coating on Steel Enabled Through Metallurgical Tailoring. Small 2023, e2302498. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, X.; Caldona, E.B.; Leng, W.; Street, J.; Wang, G.; Zhang, Z. Anticorrosive Epoxy Coatings Containing Ultrafine Bamboo Char and Zinc Particles. J. Environ. Chem. Eng. 2021, 9, 105707. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, H.; Zhou, M.; Liu, P.; Yu, H. Super-anticorrosive inverse nacre-like graphene-epoxy composite coating. Carbon 2021, 181, 204–211. [Google Scholar] [CrossRef]
- Song, S.; Yan, H.; Cai, M.; Huang, Y.; Fan, X.; Zhu, M. Multilayer structural epoxy composite coating towards long-term corrosion/wear protection. Carbon 2021, 183, 42–52. [Google Scholar] [CrossRef]
- Prabakaran, E.; Vasanth Kumar, D.; Jaganathan, A.; Ashok Kumar, P.; Veeerapathran, M. Analysis on Fiber Reinforced Epoxy Concrete Composite for Industrial Flooring—A Review. J. Phys. Conf. Ser. 2022, 2272, 012026. [Google Scholar] [CrossRef]
- Luo, H.; Wei, H.; Wang, L.; Gao, Q.; Chen, Y.; Xiang, J.; Fan, H. Anti-smudge and self-cleaning characteristics of waterborne polyurethane coating and its construction. J. Colloid Interface Sci. 2022, 628, 1070–1081. [Google Scholar] [CrossRef]
- Paraskar, P.M.; Prabhudesai, M.S.; Hatkar, V.M.; Kulkarni, R.D. Vegetable oil based polyurethane coatings—A sustainable approach: A review. Prog. Org. Coat. 2021, 156, 106267. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, Y.; Li, W.; Wang, W.; Zhao, X.; Song, L. Multi-level self-healing ability of shape memory polyurethane coating with microcapsules by induction heating. Chem. Eng. J. 2019, 368, 1033–1044. [Google Scholar] [CrossRef]
- Zhou, F.; Huang, J.; Jian, S.; Tan, H.; Lv, Y.; Hu, H.; Wang, W.; Yang, R.; Manuka, M.; Yin, Y.; et al. Photocurable resin as rapid in-situ protective coating for slag concrete against dry shrinkage. Constr. Build. Mater. 2023, 396, 132171. [Google Scholar] [CrossRef]
- Liu, H.; Liu, X.; Rao, Y.; Shen, X.; Tang, Z.; Chen, H. Facile fabrication of robust and universal UV-curable polyurethane composite coatings with antibacterial properties. Polym. Eng. Sci. 2023, 63, 3371–3381. [Google Scholar] [CrossRef]
- Ni, D.; Cheng, Y.; Zhang, J.; Liu, J.-X.; Zou, J.; Chen, B.; Wu, H.; Li, H.; Dong, S.; Han, J.; et al. Advances in ultra-high temperature ceramics, composites, and coatings. J. Adv. Ceram. 2022, 11, 1–56. [Google Scholar] [CrossRef]
- Wei, Z.-Y.; Meng, G.-H.; Chen, L.; Li, G.-R.; Liu, M.-J.; Zhang, W.-X.; Zhao, L.-N.; Zhang, Q.; Zhang, X.-D.; Wan, C.-L.; et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings. J. Adv. Ceram. 2022, 11, 985–1068. [Google Scholar] [CrossRef]
- Azarian, N.; Mousavi Khoei, S.M. Characteristics of a multi-component MgO-based bioceramic coating synthesized in-situ by plasma electrolytic oxidation. J. Magnes. Alloys 2021, 9, 1595–1608. [Google Scholar] [CrossRef]
- Yuan, Q.; Yan, L.; Tian, J.; Ding, W.; Heng, Z.; Liang, M.; Chen, Y.; Zou, H. In Situ Ceramization of Nanoscale Interface Enables Aerogel with Thermal Protection at 1950 °C. ACS Nano 2024, 18, 3520–3530. [Google Scholar] [CrossRef]
- Shi, Z.-A.; Wu, J.-M.; Fang, Z.-Q.; Tian, C.; Wang, Q.-W.; Mao, C.; Fu, L.-X.; Shi, Y.-S. Investigation of curing behavior and mechanical properties of SiC ceramics prepared by vat photopolymerization combined with pressureless liquid-phase sintering using Al2O3-coated SiC powder. Addit. Manuf. 2024, 79, 103942. [Google Scholar] [CrossRef]
- Tombesi, A.; Li, S.; Sathasivam, S.; Page, K.; Heale, F.L.; Pettinari, C.; Carmalt, C.J.; Parkin, I.P. Aerosol-assisted chemical vapour deposition of transparent superhydrophobic film by using mixed functional alkoxysilanes. Sci. Rep. 2019, 9, 7549. [Google Scholar] [CrossRef]
- Adarraga, O.; Agustín-Sáenz, C.; Bustero, I.; Brusciotti, F. Superhydrophobic and oleophobic microtextured aluminum surface with long durability under corrosive environment. Sci. Rep. 2023, 13, 1737. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guo, J.; Zhang, Y.; Hu, N.; Zhang, J. Superamphiphobic triple-scale micro-/nanostructured aluminum surfaces with self-cleaning and anti-icing properties. J. Mater. Sci. 2021, 56, 15463–15480. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, S.; Geng, H.; Zhang, X.; Zhang, M.; Xu, F.; Lin, D.; Gao, Y.; Wang, H. Robust and multifunctional superamphiphobic coating toward effective anti-adhesion. Chem. Eng. J. 2022, 428, 131162. [Google Scholar] [CrossRef]
- Sattari, M.; Olad, A.; Maryami, F.; Ahadzadeh, I.; Nofouzi, K. Facile fabrication of durable and fluorine-free liquid infused surfaces on aluminum substrates with excellent anti-icing, anticorrosion, and antibiofouling properties. Surf. Interfaces 2023, 38, 102860. [Google Scholar] [CrossRef]
- Si, W.; Guo, Z. Enhancing the lifespan and durability of superamphiphobic surfaces for potential industrial applications: A review. Adv. Colloid Interface Sci. 2022, 310, 102797. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; He, J.; Xiao, F.; Yuan, S.; Lu, H.; Liang, B. Preparation and Antiscaling Application of Superhydrophobic Anodized CuO Nanowire Surfaces. Ind. Eng. Chem. Res. 2015, 54, 6874–6883. [Google Scholar] [CrossRef]
- Peng, J.; Geng, H.; Xu, F.; Zhang, M.; Ye, P.; Jiang, Y.; Wang, H. Endowing versatility and superamphiphobicity to composite coating via a bioinspired strategy. Chem. Eng. J. 2022, 455, 140772. [Google Scholar]
- Xu, W.; Song, J.; Sun, J.; Lu, Y.; Yu, Z. Rapid Fabrication of Large-Area, Corrosion-Resistant Superhydrophobic Mg Alloy Surfaces. ACS Appl. Mater. Interfaces 2011, 3, 4404–4414. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Z.; Liu, W. Special Superwetting Materials from Bioinspired to Intelligent Surface for On-Demand Oil/Water Separation: A Comprehensive Review. Small 2022, 18, 48. [Google Scholar] [CrossRef] [PubMed]
- Yong, J.; Chen, F.; Yang, Q.; Huo, J.; Hou, X. Superoleophobic surfaces. Chem. Soc. Rev. 2017, 46, 4168–4217. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, S.; Zhao, X.; Shao, L.; Pan, Y. Durable Superoleophobic Janus Fabric with Oil Repellence and Anisotropic Water-Transport Integration toward Energetic-Efficient Oil–Water Separation. ACS Appl. Mater. Interfaces 2022, 32, 37170–37181. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tian, Z.; Luo, X.; Chen, C.; Jiang, G.; Hu, X.; Peng, R.; Zhang, H.; Zhong, M. Superomniphobic surfaces for easy-removals of environmental-related liquids after icing and melting. Nano Res. 2022, 16, 3267–3277. [Google Scholar] [CrossRef]
- Zhang, H.; Li, D.; Huang, J.; Guo, Z.; Liu, W. Advance in Structural Classification and Stability Study of Superamphiphobic Surfaces. J. Bionic Eng. 2022, 20, 366–389. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Q.; Jin, R.; Lin, Z.; Qiu, H.; Xu, Y. Mechanism analysis and durability evaluation of anti-icing property of superhydrophobic surface. Int. J. Heat Mass Transfer 2020, 156, 119768. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, H.; Gu, X.; Yang, T.; Tian, C. Thermal-hydraulic performance of super-amphiphobic louver-fin flat-tube heat exchanger under fouled condition. Appl. Therm. Eng. 2023, 233, 121142. [Google Scholar] [CrossRef]
- Yin, X.; Liu, L.; Yan, Y.; Yang, K.; Pi, P.; Peng, X.; Wen, X. Superamphiphobic surface with high aperture ratio interconnected pore structures for anti–condensation and repelling hot fluids. Mater. Today Nano 2023, 24, 100417. [Google Scholar] [CrossRef]
- Zarghami, S.; Mohammadi, T.; Sadrzadeh, M.; Van der Bruggen, B. Superhydrophilic and underwater superoleophobic membranes—A review of synthesis methods. Prog. Polym. Sci. 2019, 98, 101166. [Google Scholar] [CrossRef]
- Nosonovsky, M.; Hejazi, V. Why Superhydrophobic Surfaces Are Not Always Icephobic. ACS Nano 2012, 6, 8488–8491. [Google Scholar] [CrossRef]
- Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1832, 1, 171–172. [Google Scholar]
- Wang, B.; Nian, J.-Y.; Tie, L.; Zhang, Y.-B.; Guo, Z.-G. Theoretical progress in designs of stable superhydrophobic surfaces. Acta Phys. Sin. 2013, 62, 146801. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Rodriguez, E.; Roberts, M.R.; Yu, H.; Huh, C.; Bryant, S.L. Enhanced Migration of Surface-Treated Nanoparticles in Sedimentary Rocks. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 4–7 October 2009. [Google Scholar]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Jeong, W.-J.; Ha, M.Y.; Yoon, H.S.; Ambrosia, M. Dynamic Behavior of Water Droplets on Solid Surfaces with Pillar-Type Nanostructures. Langmuir 2012, 28, 5360–5371. [Google Scholar] [CrossRef]
- Quéré, D. Wetting and Roughness. Annu. Rev. Mater. Res. 2008, 38, 71–99. [Google Scholar] [CrossRef]
- Öner, D.; McCarthy, T.J. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 2000, 16, 7777–7782. [Google Scholar] [CrossRef]
- Marmur, A. Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir 2003, 19, 8343–8348. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Abdullah, A.M.; Younan, N.A. Corrosion behavior of superhydrophobic surfaces: A review. Arab. J. Chem. 2015, 8, 749–765. [Google Scholar] [CrossRef]
- Yi, W.; Kai, Y.; Guilin, X.; Chenguang, Y.; Dong, W. Facile preparation of super-oleophobic TiO2/SiO2 composite coatings by spraying method. Prog. Org. Coat. 2021, 159, 106411. [Google Scholar]
- Liu, P.; Liu, S.Q.; Yu, X.Q.; Zhang, Y.F. Silane-triggered fabrication of stable waterborne superamphiphobic coatings. Chem. Eng. J. 2021, 406, 127153. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, J.; Li, X.; Hou, B. Self-cleaning and corrosion-resistant superamphiphobic coating with super-repellency towards low-surface-tension liquids. J. Mater. Res. Technol. 2023, 23, 1094–1104. [Google Scholar] [CrossRef]
- Chu, D.; Singh, S.C.; Yong, J.; Zhan, Z.; Sun, X.; Duan, J.A.; Guo, C. Superamphiphobic Surfaces with Controllable Adhesion Fabricated by Femtosecond Laser Bessel Beam on PTFE. Adv. Mater. Interfaces 2019, 6, 14. [Google Scholar] [CrossRef]
- Song, W.; Major, Z.; Guo, Y.; Karsch, S.; Guo, H.; Ferenc, K.; Fukumoto, M.; Dingwell, D.B. Biomimetic Super “Silicate” Phobicity and Superhydrophobicity of Ceramic Material. Adv. Mater. Interfaces 2022, 9, 2201267. [Google Scholar] [CrossRef]
- Ye, Z.; Li, S.; Zhao, S.; Deng, L.; Zhang, J.; Dong, A. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties. Chem. Eng. J. 2021, 420, 127680. [Google Scholar] [CrossRef]
- Xia, Y.; Gu, W.; Shao, L.; Jiao, X.; Ji, Y.; Deng, W.; Yu, X.; Zhang, Y.; Zhang, Y. Flexibility and abrasion tolerance of superamphiphobic coatings with rigid core–shell particles. Chem. Eng. J. 2023, 476, 146746. [Google Scholar] [CrossRef]
- Jiao, X.; Li, M.; Yu, X.; Wong, W.S.Y.; Zhang, Y. Oil-immersion stable superamphiphobic coatings for long-term super liquid-repellency. Chem. Eng. J. 2021, 420, 127606. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, J.; Fu, Y.; Zhao, P.; Zhang, Y.; He, B.; He, P. Underwater superoleophobic APTES-SiO2/PVA organohydrogel for low-temperature tolerant, self-healing, recoverable oil/water separation mesh. Chem. Eng. J. 2020, 382, 122925. [Google Scholar] [CrossRef]
- Xu, H.; Miao, C.; Wang, L.; Zhang, L.; Feng, H.; Qiu, J. A Robust Superhydrophobic Perfluoropolysiloxane and Self-doped Polyaniline/Epoxy Resin Composite Coating with Excellent Performance. Chem. Lett. 2021, 50, 1818–1821. [Google Scholar] [CrossRef]
- Miao, C.; Xun, X.; Dodd, L.J.; Niu, S.; Wang, H.; Yan, P.; Wang, X.-C.; Li, J.; Wu, X.; Hasell, T.; et al. Inverse Vulcanization with SiO2-Embedded Elemental Sulfur for Superhydrophobic, Anticorrosion, and Antibacterial Coatings. ACS Appl. Polym. Mater. 2022, 4, 4901–4911. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, B.; Ye, T.; Gao, W.; Pei, G.; Luo, J.; Deng, J.; Yuan, W. One-Step Fabrication of Flexible Bioinspired Superomniphobic Surfaces. ACS Appl. Mater. Interfaces 2022, 34, 39665–39672. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sun, Q.; Hokkanen, M.J.; Zhang, C.; Lin, F.-Y.; Liu, Q.; Zhu, S.-P.; Zhou, T.; Chang, Q.; He, B.; et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wei, J.; Tian, N.; Liang, W.; Zhang, J. Facile Preparation of Robust Superamphiphobic Coatings on Complex Substrates via Nonsolvent-Induced Phase Separation. ACS Appl. Mater. Interfaces 2022, 14, 49047–49058. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Bhushan, B. Transparent, wear-resistant, superhydrophobic and superoleophobic poly(dimethylsiloxane) (PDMS) surfaces. J. Colloid Interface Sci. 2016, 488, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liang, W.; Zhang, B.; Zhang, J. Waterborne robust superamphiphobic coatings based on palygorskite for self-cleaning and anti-fouling. Colloids Surf. A 2023, 672, 131759. [Google Scholar] [CrossRef]
- Song, S.; Yan, H.; Cai, M.; Huang, Y.; Fan, X.; Zhu, M. Constructing Mechanochemical Durable Superhydrophobic Composite Coating towards Superior Anticorrosion. Adv. Mater. Technol. 2022, 7, 2101223. [Google Scholar] [CrossRef]
- Zheng, H.; Pan, M.; Wen, J.; Yuan, J.; Zhu, L.; Yu, H. Robust, Transparent, and Superhydrophobic Coating Fabricated with Waterborne Polyurethane and Inorganic Nanoparticle Composites. Ind. Eng. Chem. Res. 2019, 19, 8050–8060. [Google Scholar] [CrossRef]
- Qiao, Z.; Ren, G.; Chen, X.; Gao, Y.; Tuo, Y.; Lu, C. Fabrication of Robust Waterborne Superamphiphobic Coatings with Antifouling, Heat Insulation, and Anticorrosion. ACS Omega 2023, 8, 804–818. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Yanping, D. Improve the mechanical durability of superhydrophobic/superamphiphobic coating through multiple cross-linked mesh structure. Colloids Surf. A 2022, 642, 5. [Google Scholar]
- Yu, D.; Huang, J.; Zhang, Z.; Weng, J.; Xu, X.; Zhang, G.; Zhang, J.; Wu, X.; Johnson, M.; Lyu, J.; et al. Simultaneous Realization of Superoleophobicity and Strong Substrate Adhesion in Water via a Unique Segment Orientation Mechanism. Adv. Mater. 2021, 34, 2106908. [Google Scholar] [CrossRef]
- Meena, M.K.; Tudu, B.K.; Kumar, A.; Bhushan, B. Development of polyurethane-based superhydrophobic coatings on steel surfaces. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190446. [Google Scholar] [CrossRef]
- Xie, J.; Yang, Y.; Gao, B.; Wan, Y.; Li, Y.C.; Xu, J.; Zhao, Q. Biomimetic Superhydrophobic Biobased Polyurethane-Coated Fertilizer with Atmosphere “Outerwear”. ACS Appl. Mater. Interfaces 2017, 18, 15868–15879. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Tian, K.; Li, Y.; Su, C.; Duan, F.; Xu, Y. Super-hydrophobic PTFE hollow fiber membrane fabricated by electrospinning of Pullulan/PTFE emulsion for membrane deamination. Sep. Purif. Technol. 2020, 274, 118186. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, J.; Liu, W.; Steffen, W.; Butt, H.-J. Fabrication of Stretchable Superamphiphobic Surfaces with Deformation-Induced Rearrangeable Structures. Adv. Mater. 2022, 34, 2107901. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Yu, S.; Amirfazli, A.; Rahim Siddiqui, A.; Li, W. Recent Advances in Antibacterial Superhydrophobic Coatings. Adv. Eng. Mater. 2022, 24, 2101053. [Google Scholar] [CrossRef]
- Wang, Z.; Su, Y.; Li, Q.; Liu, Y.; She, Z.; Chen, F.; Li, L.; Zhang, X.; Zhang, P. Researching a highly anti-corrosion superhydrophobic film fabricated on AZ91D magnesium alloy and its anti-bacteria adhesion effect. Mater. Charact. 2015, 99, 200–209. [Google Scholar] [CrossRef]
- Uzoma, P.C.; Wang, Q.; Zhang, W.; Gao, N.; Li, J.; Okonkwo, P.C.; Liu, F.; Han, E.-H. Anti-bacterial, icephobic, and corrosion protection potentials of superhydrophobic nanodiamond composite coating. Colloids Surf. A 2021, 630, 127532. [Google Scholar] [CrossRef]
- Bruzaud, J.; Tarrade, J.; Celia, E.; Darmanin, T.; Taffin de Givenchy, E.; Guittard, F.; Herry, J.-M.; Guilbaud, M.; Bellon-Fontaine, M.-N. The design of superhydrophobic stainless steel surfaces by controlling nanostructures: A key parameter to reduce the implantation of pathogenic bacteria. Mater. Sci. Eng. C 2017, 73, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.; Li, C.; Huang, X.; Yang, T.; Wang, Y.; Mao, J.; Wang, Y.; Cui, X.; Xu, H.; Wu, X. A robust anticorrosive coating derived from superhydrophobic, superoleophobic, and antibacterial SiO2@POS/N+ composite materials. Mater. Today Commun. 2023, 35, 105566. [Google Scholar] [CrossRef]
- Xue, Y.; Xiao, H.; Zhang, Y. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. Int. J. Mol. Sci. 2015, 16, 3626–3655. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Z. Recent advances in self-healing superhydrophobic coatings. Nano Today 2023, 51, 101933. [Google Scholar] [CrossRef]
- Qin, L.; Chen, N.; Zhou, X.; Pan, Q. A superhydrophobic aerogel with robust self-healability. J. Mater. Chem. A 2018, 6, 4424–4431. [Google Scholar] [CrossRef]
- Zheng, Y.; Cui, J.; He, Y.; Sun, L.; Zhao, Y.; Zhang, X. Heating repairable superamphiphobic coatings for long-lasting antifouling application. Colloids Surf. A 2023, 678, 132517. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, S.; Wu, L. Self-Healing Underwater Superoleophobic and Antibiofouling Coatings Based on the Assembly of Hierarchical Microgel Spheres. ACS Nano 2015, 10, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
Dsilica (nm) | 10 | 15 | 50 | 100 |
---|---|---|---|---|
CA(deg) | 162 ± 1.3 | 163.9 ± 2.3 | 154.1 ± 1.5 | 151.4 ± 2.2 |
SA (deg) | 4.0 ± 1.0 | 2.0 ± 0.6 | 17.3 ± 2.1 |
Step | Low-Molecular-Weight Biocides | Polymeric Biocides | Dendritic Biocides |
---|---|---|---|
Initial adsorption | Low | High | High |
Binding to the membrane | Low | Medium | High |
Diffusion past the cell wall | High | Low | Medium |
Disruption of the membrane | Low | Medium | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Wei, R.; Zhang, Q.; Fu, A.; Lv, N.; Yuan, J. Corrosion-Resistant Organic Superamphiphobic Coatings. Coatings 2024, 14, 678. https://doi.org/10.3390/coatings14060678
Qi Y, Wei R, Zhang Q, Fu A, Lv N, Yuan J. Corrosion-Resistant Organic Superamphiphobic Coatings. Coatings. 2024; 14(6):678. https://doi.org/10.3390/coatings14060678
Chicago/Turabian StyleQi, Yixing, Rong Wei, Qiuli Zhang, Anqing Fu, Naixin Lv, and Juntao Yuan. 2024. "Corrosion-Resistant Organic Superamphiphobic Coatings" Coatings 14, no. 6: 678. https://doi.org/10.3390/coatings14060678
APA StyleQi, Y., Wei, R., Zhang, Q., Fu, A., Lv, N., & Yuan, J. (2024). Corrosion-Resistant Organic Superamphiphobic Coatings. Coatings, 14(6), 678. https://doi.org/10.3390/coatings14060678