Preparation and Properties of Conductive Aluminum Powder (Al@Si@C) for Water-Borne Heavy-Duty Anticorrosive Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiments
2.2.1. Surface Treatment of Aluminum Powder
2.2.2. Preparation of SiO2-Modified Aluminum Powder
2.2.3. Preparation of Conductive Aluminum Powder
2.2.4. Preparation of Water-Borne Aluminum Coatings
2.3. Experimental Mechanism
2.4. Characterization Methods
3. Results and Discussion
3.1. FT-IR Analysis
3.2. SEM and EDS Analysis
3.3. XPS Analysis
3.4. XRD Analysis
3.5. Resistivity Test
3.6. Hydrogen Evolution Behavior
3.7. Water Contact Angle Test
3.8. Storage Stability Test
3.9. Electrochemical Polarization Test
3.10. Neutral Salt Spray Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serensen, P.A.; Kiil, S.; Dam-Johanson, K. Anticorrosive coatings: A review. J. Coat. Technol. Res. 2009, 6, 135–176. [Google Scholar] [CrossRef]
- Hou, B.; Li, X.; Ma, X.; Du, C.; Zhang, D.; Zheng, M.; Xu, W.; Lu, D.; Ma, F. The cost of corrosion in China. Npj Mater. Degrad. 2017, 1, 4. [Google Scholar] [CrossRef]
- Van, N.P.; Hoang, N.C.T.; Manh, T.D.; Dung, L.T.; Vu, N.S.H.; Vattikuti, S.V.P.; Panaitescu, C.; Pham, T.T.; Dang, N.N. Enhancing corrosion resistance of mild steel in hydrochloric acid with Chiquita banana sap extract. RSC Adv. 2024, 14, 14263–14277. [Google Scholar]
- Ianoş, R.; Muntean, E.; Păcurariu, C.; Lazău, R.; Bandas, C.; Delinescu, G. Combustion synthesis of a blue Co-doped zinc aluminate near-infrared reflective pigment. Dye. Pigment. 2017, 142, 24–31. [Google Scholar] [CrossRef]
- Anh, H.; Vu, N.S.H.; Huyen, L.T.; Tran, N.Q.; Thu, H.T.; Bach, L.X.; Trinh, Q.T.; Vattikuti, S.V.P.; Nam, N.D. Ficus racemosa leaf extract for inhibiting steel corrosion in a hydrochloric acid medium. Alex. Eng. J. 2020, 59, 4449–4462. [Google Scholar] [CrossRef]
- Scrinzi, E.; Rossi, S.; Deflorian, F.; Zanella, C. Evaluation of aesthetic durability of waterborne polyurethane coatings applied on wood for interior applications. Prog. Org. Coat. 2011, 72, 81–87. [Google Scholar] [CrossRef]
- Wu, G.M.; Kong, Z.W.; Chen, J.; Huo, S.P.; Liu, G.F. Preparation and properties of waterborne polyurethane/epoxy resin composite coating from anionic terpene-based polyol dispersion. Prog. Org. Coat. 2014, 77, 315–321. [Google Scholar] [CrossRef]
- Kearns, M. Development and applications of ultrafine aluminium powders. Mater. Sci. Eng. A 2004, 375–377, 120–126. [Google Scholar] [CrossRef]
- Zhao, J.R.; Hung, F.Y.; Pan, C.Y. Application of New Al-Si Welding Filler with High Concentration of Copper and Magnesium: High-Temperature Strength and Anti-Corrosion Mechanism. Materials 2024, 17, 126. [Google Scholar] [CrossRef]
- Li, K.; Li, W.F.; Yi, A.H.; Zhu, W.; Liao, Z.M.; Chen, K.; Li, W.M. Tuning the Surface Characteristic of Al-Si Alloys and Its Impacts on the Formation of Micro Arc Oxidation Layers. Coatings 2021, 11, 453. [Google Scholar] [CrossRef]
- Kiehl, A.; Greiwe, K. Encapsulated aluminium pigments. Prog. Org. Coat. 1999, 37, 179–183. [Google Scholar] [CrossRef]
- Karlsson, P.; Palmqvist, A.E.; Holmberg, K. Surface modification for aluminium pigment inhibition. Adv. Colloid Interface Sci. 2006, 128, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Vostrikov, A.A.; Shishkin, A.V.; Fedyaeva, O.N. Conjugated processes of bulk aluminum and hydrogen combustion in water-oxygen mixtures. Int. J. Hydrogen Energy 2020, 45, 1061–1071. [Google Scholar] [CrossRef]
- Urbonavicius, M.; Varnagiris, S.; Milcius, D. Generation of hydrogen through the reaction between plasma-modified aluminum and Water. Energy Technol. 2017, 5, 2300–2308. [Google Scholar] [CrossRef]
- He, L.; Zhao, Y.; Xing, L.; Liu, P.; Wang, Z.; Zhang, Y.; Liu, X. Preparation of phosphonic acid functionalized graphene oxide-modified aluminum powder with enhanced anticorrosive properties. Appl. Surf. Sci. 2017, 411, 235–239. [Google Scholar] [CrossRef]
- Wang, H.; Huang, S.L.; Zuo, Y.J.; Zhou, T.; Zhang, L.R. Corrosion resistance of lamellar aluminium pigments coated by SiO2 by sol–gel method. Corros. Sci. 2011, 53, 161–167. [Google Scholar] [CrossRef]
- Kiehl, A.; Brendel, H. Corrosion inhibited metal pigments. Macromol. Symposia 2002, 187, 109–120. [Google Scholar] [CrossRef]
- Liu, H.; Ye, H.; Zhang, Y.; Tang, X. Preparation and characterization of poly (trimethylolpropane triacrylate)/flaky aluminum composite particle by in situ polymerization. Dye. Pigment. 2008, 79, 236–241. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Z.; Sheng, Y. Flaky polyacrylic acid/aluminium composite particles prepared using in-situ polymerization. Dye. Pigment. 2010, 86, 155–160. [Google Scholar] [CrossRef]
- Supplit, R.; Schubert, U. Corrosion protection of aluminum pigments by sol-gel coatings. Corros. Sci. 2007, 49, 3325–3332. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, H.; Liu, H.; Han, K. Preparation and characterisation of aluminium pigments coated with silica for corrosion protection. Corros. Sci. 2011, 53, 1694–1699. [Google Scholar] [CrossRef]
- Li, L.; Pi, P.; Wen, X. Aluminum pigments encapsulated by inorganic–organic hybrid coatings and their stability in alkaline aqueous media. J. Coat. Technol. Res. 2008, 5, 77–83. [Google Scholar] [CrossRef]
- Ma, Z.; Li, C.; Wei, H.; Ding, D. Silica sol–gel anchoring on aluminum pigments surface for corrosion resistance based on aluminum oxidized by hydrogen peroxide. Dye. Pigment. 2015, 114, 253–258. [Google Scholar] [CrossRef]
- He, Y.; Li, H.; Ou, L.; Ding, F.; Zhan, Z.; Zhong, Y. Preparation and characterisation of water-based aluminium pigments modified with SiO2 and polymer brushes. Corros. Sci. 2016, 111, 802–810. [Google Scholar] [CrossRef]
- Pi, P.; Liu, C.; Wen, X.; Zheng, L.; Xu, S.; Cheng, J. Improved performance of aluminum pigments encapsulated in hybrid inorganic-organic films. Particuology 2015, 19, 93–98. [Google Scholar] [CrossRef]
- Haghtalab, A.; Mohammadi, M.; Fakhroueian, Z. Absorption and solubility measurement of CO2 in water-based ZnO and SiO2 nanofluids. Fluid Phase Equilibr. 2015, 392, 33–42. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.G.; Du, C.W.; Cheng, Y.F. Effect of cathodic protection on corrosion of pipeline steel under disbonded coating. Corros. Sci. 2009, 51, 2242–2245. [Google Scholar] [CrossRef]
- González, S.; Cáceres, F.; Fox, V.; Souto, R.M. Resistance of metallic substrates protected by an organic coating containing aluminum powder. Prog. Org. Coat. 2003, 46, 317–323. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, L.; Liu, C.; Mai, Y.; Zhang, Y.; Jie, X. Deposition of Zn-G/Al composite coating with excellent cathodic protection on low-carbon steel by low-pressure cold spraying. J. Alloys Compd. 2020, 821, 153483. [Google Scholar] [CrossRef]
- Islam, I.; Sultana, S.; Kumer Ray, S.; Parvin Nur, H.; Hossain, M.; Md Ajmotgir, W. Electrical and tensile properties of carbon black reinforced polyvinyl chloride conductive composites. C 2018, 4, 15. [Google Scholar] [CrossRef]
- Thongruang, W.; Ritthichaiwong, C.; Bunnaul, P.; Smithmaitrie, P.; Chetpattananondh, K. Electrical and mechanical properties of ternary composites from natural rubber and conductive fillers. Songklanakarin J. Sci. Technol. 2008, 30, 361–366. [Google Scholar]
- Krupa, I.; Cecen, V.; Boudenne, A.; Prokeš, J.; Novák, I. The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder. Mater. Des. 2013, 51, 620–628. [Google Scholar] [CrossRef]
- Li, W.; Xie, Z.; Li, Z. Synthesis, characterization of polyacrylate-g-carbon black and its application to soap-free waterborne coating. J. Appl. Polym. Sci. 2001, 81, 1100–1106. [Google Scholar] [CrossRef]
- Lee, W.J.; Ramasamy, E.; Lee, D.Y.; Song, J.S. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl. Mater. Interfaces 2009, 1, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.B.; Chen, Y.; Wang, F.; Hong, R.Y. Surface modification of carbon black for the reinforcement of polycarbonate/acrylonitrile-butadiene-styrene blends. Appl. Surf. Sci. 2015, 351, 280–288. [Google Scholar] [CrossRef]
- Liu, H.; Wen, S.; Wang, J.; Zhu, Y. Preparation and characterization of carbon black-polystyrene composite particles by high-speed homogenization assisted suspension polymerization. J. Appl. Polym. Sci. 2012, 123, 3255–3260. [Google Scholar] [CrossRef]
- Yan, J.; Miao, X.; Zhang, Q.; Cui, X.; Li, J.; Wang, H. One-step preparation of black polystyrene particles via in situ suspension polymerization. Polym. Eng. Sci. 2011, 51, 294–301. [Google Scholar] [CrossRef]
- Roy, N.; Sengupta, R.; Bhowmick, A.K. Modifications of carbon for polymer composites and nanocomposites. Prog. Polym. Sci. 2012, 37, 781–819. [Google Scholar] [CrossRef]
- Litvinov, V.M.; Steeman, P.A.M. EPDM-carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR. Macromolecules 1999, 32, 8476–8490. [Google Scholar] [CrossRef]
- Lysenko, G.N.; Mardilovich, P.P.; Trokhimetz, A.I. Inhomogeneity of strong Lewis acid centers on Al2O3 surface. React. Kinet. Catal. Lett. 1986, 31, 377–381. [Google Scholar] [CrossRef]
- Xu, B.; Chen, C.; Ma, E.; Wei, Z.; Li, X. Preparation of SiO2/polymer co-coated colored aluminum pigments with excellent corrosion resistance and UV protection and their application in fabrics. Compos. Interface. 2021, 28, 129–144. [Google Scholar] [CrossRef]
- Hamciuc, V.; Giurgiu, D.; Marcu, M.; Butuc, E.; Ionescu, C.; Pricop, L. Polysulfone-polydimethylsiloxane block copolymers containing Si-OC bonds. J. Macromol. Sci. A 1998, 35, 563–575. [Google Scholar] [CrossRef]
- Jiang, J.; Cao, J.; Wang, W. Characteristics of wood-silica composites influenced by the pH value of silica sols. Holzforschung 2018, 72, 311–319. [Google Scholar] [CrossRef]
- GB/T 10125-2012; Corrosion Tests in Artificial Atmospheres—Salt Spray Tests. China Standards Press: Beijing, China, 2012.
- Najafi, A.; Golestani-Fard, F.; Rezaie, H.R.; Ehsani, N. A study on sol–gel synthesis and characterization of SiC nano powder. J. Sol-Gel Sci. Techn. 2011, 59, 205–214. [Google Scholar] [CrossRef]
- Noshay, A.; Matzner, M.; Merriam, C.N. Polysulfone-polydimethylsiloxane block copolymers. J. Polym. Sci. Pol. Chem. 1971, 9, 3147–3159. [Google Scholar] [CrossRef]
- Chen, B.; Wu, S.; Ye, Q. Fabrication and characterization of biodegradable KH560 crosslinked chitin hydrogels with high toughness and good biocompatibility. Carbohyd. Polym. 2021, 259, 117707. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Kang, S.H.; Han, W.; Kim, K.W.; Kim, B.J. Facile method to enhance the mechanical interfacial strength between carbon fibers and polyamide 6 using modified silane coupling agents. Carbon Lett. 2022, 32, 1463–1472. [Google Scholar] [CrossRef]
- Cheng, Z.P.; Yi, Y.; LI, F.S.; Pan, Z.H. Synthesis and characterization of aluminum particles coated with uniform silica shell. Trans. Nonferrous Metal. Soc. 2008, 18, 378–382. [Google Scholar] [CrossRef]
- Xia, Y.; Fang, R.; Xiao, Z.; Ruan, L.; Yan, R.; Huang, H.; Zhang, W. Supercritical fluid assisted biotemplating synthesis of Si-O-C microspheres from microalgae for advanced Li-ion batteries. RSC Adv. 2016, 6, 69764–69772. [Google Scholar] [CrossRef]
- Strohmeier, B.R.; Hercules, D.M. Surface spectroscopic characterization of the interaction between zinc ions and γ-alumina. J. Catal. 1984, 86, 266–279. [Google Scholar] [CrossRef]
- Gonzalez-Elipe, A.R.; Espinos, J.P.; Munuera, G.; Sanz, J.; Serratosa, J.M. Bonding-state characterization of constituent elements in phyllosilicate minerals by XPS and NMR. J. Phys. Chem. 1988, 92, 3471–3476. [Google Scholar] [CrossRef]
- Harichandran, G.; Amalraj, S.D.; Shanmugam, P. Synthesis and characterization of phosphate anchored MnO2 catalyzed solvent free synthesis of xanthene laser dyes. J. Mol. Catal. A Chem. 2014, 392, 31–38. [Google Scholar] [CrossRef]
- Herreros, B.; He, H.; Barr, T.L.; Klinowski, J. ESCA studies of framework silicates with the sodalite structure: 1. Comparison of purely siliceous sodalite and aluminosilicate sodalite. J. Phys. Chem. 1994, 98, 1302–1305. [Google Scholar] [CrossRef]
- Hinnen, C.; Imbert, D.; Siffre, J.M.; Marcus, P. An in situ XPS study of sputter-deposited aluminium thin films on graphite. Appl. Surf. Sci. 1994, 78, 219–231. [Google Scholar] [CrossRef]
- Kirkpatrick, S. Classical transport in disordered media: Scaling and effective-medium theories. Phys. Rev. Lett. 1971, 27, 1722. [Google Scholar] [CrossRef]
- Zhang, M.; Lyu, J.; Zuo, Y.; Li, X.; Li, P. Effect of KH560 concentration on adhesion between silicate modified poplar and waterborne varnish. Prog. Org. Coat. 2023, 174, 107267. [Google Scholar] [CrossRef]
- Zhang, W.; Xiong, S.; Lv, D. Preparation and characterization of hydrogen-containing silicone oil-modified polyurethane/Al composite coating with low-infrared emissivity. J. Coat. Technol. Res. 2022, 19, 897–905. [Google Scholar] [CrossRef]
- Xu, R.S.; He, T.S. Corrosion of self-curing waterborne zinc oxide-potassium silicate coating modified with aluminium powder. J. Alloys Compd. 2019, 811, 152008. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, X.; Xiao, Y.; Ma, L. Research on Zn-Al15 thermal spray metal coating and its organic painting composite system protection performance. Procedia Eng. 2012, 27, 1644–1653. [Google Scholar] [CrossRef]
- Matsuzaki, A.; Yamaji, T.; Yamashita, M. Development of a new organic composite coating for enhancing corrosion resistance of 55% Al–Zn alloy coated steel sheet. Surf. Coat. Technol. 2003, 169–170, 655–657. [Google Scholar] [CrossRef]
Samples | Al | Si | C | O |
---|---|---|---|---|
Al | 90.87 | 0.06 | 8.13 | 0.95 |
Al-Si | 88.88 | 0.98 | 7.82 | 2.32 |
Al-Si-1wt% C | 84.04 | 0.96 | 12.12 | 2.89 |
Al-Si-3wt% C | 79.24 | 1.04 | 16.66 | 3.06 |
Al-Si-5wt% C | 77.48 | 0.77 | 19.31 | 2.43 |
Al-Si-7wt% C | 73.49 | 0.48 | 23.58 | 2.45 |
Samples | Al | Si | C | O | N |
---|---|---|---|---|---|
Al | 20.23 | 0.97 | 35.43 | 42.67 | 0.90 |
Al-Si | 0.99 | 14.07 | 43.16 | 40.42 | 1.36 |
Al-Si-C | 0.76 | 9.55 | 55.98 | 32.35 | 1.36 |
Samples | V23+ (mV) | V23− (mV) | V24+ (mV) | V24− (mV) | Resistivity (Ω·cm) | Conductivity (S·cm) | Average Resistivity |
---|---|---|---|---|---|---|---|
Al | 3.06 | 6.33 | 2.21 | 5.83 | 4.1 | 0.2439 | 3.24 |
3.19 | 6.56 | 6.03 | 2.21 | 4.4 | 0.2273 | ||
2.85 | 6.12 | 5.72 | 1.92 | 4.0 | 0.2500 | ||
3.77 | 7.14 | 6.66 | 2.97 | 4.4 | 0.2273 | ||
Al–Si | 9.86 | 13.29 | 6.96 | 10.66 | 12.2 | 0.0820 | 12.95 |
15.79 | 12.62 | 13.50 | 9.73 | 13.5 | 0.0741 | ||
15.42 | 12.25 | 12.52 | 8.83 | 14.4 | 0.0694 | ||
15.86 | 12.67 | 14.39 | 10.67 | 11.7 | 0.0855 | ||
Al–Si–C | 3.79 | 0.49 | 0.96 | 2.74 | 1.8 | 0.5556 | 2.30 |
3.89 | 0.45 | 3.76 | 0.06 | 1.8 | 0.5556 | ||
4.67 | 1.27 | 4.68 | 0.71 | 2.2 | 0.4545 | ||
5.04 | 1.80 | 4.52 | 0.90 | 3.4 | 0.2941 |
Samples | φcorr (V) | jcorr (A/cm2) | Rp (Ω·cm2) |
---|---|---|---|
Al coating | −0.53 ± 0.03 | (2.12 ± 0.09) × 10−6 | (1.22 ± 0.08) × 104 |
Al-Si coating | −0.43 ± 0.02 | (3.47 ± 0.13) × 10−7 | (7.51 ± 0.21) × 104 |
Al-Si-C coating | −0.46 ± 0.02 | (4.08 ± 0.15) × 10−8 | (6.38 ± 0.17) × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Liu, J.; Jiang, T.; An, X.; Wang, N.; Xu, Z.; Guo, W.; Zhang, L.; Liu, X. Preparation and Properties of Conductive Aluminum Powder (Al@Si@C) for Water-Borne Heavy-Duty Anticorrosive Coatings. Coatings 2024, 14, 1082. https://doi.org/10.3390/coatings14091082
Li Q, Liu J, Jiang T, An X, Wang N, Xu Z, Guo W, Zhang L, Liu X. Preparation and Properties of Conductive Aluminum Powder (Al@Si@C) for Water-Borne Heavy-Duty Anticorrosive Coatings. Coatings. 2024; 14(9):1082. https://doi.org/10.3390/coatings14091082
Chicago/Turabian StyleLi, Qingpeng, Jiaxing Liu, Tiancheng Jiang, Xiaoyun An, Na Wang, Zhixiu Xu, Wanyuan Guo, Liang Zhang, and Xiaofeng Liu. 2024. "Preparation and Properties of Conductive Aluminum Powder (Al@Si@C) for Water-Borne Heavy-Duty Anticorrosive Coatings" Coatings 14, no. 9: 1082. https://doi.org/10.3390/coatings14091082
APA StyleLi, Q., Liu, J., Jiang, T., An, X., Wang, N., Xu, Z., Guo, W., Zhang, L., & Liu, X. (2024). Preparation and Properties of Conductive Aluminum Powder (Al@Si@C) for Water-Borne Heavy-Duty Anticorrosive Coatings. Coatings, 14(9), 1082. https://doi.org/10.3390/coatings14091082