Comparison of Exterior Coatings Applied to Oak Wood as a Function of Natural and Artificial Weathering Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation, Coatings and Weathering Process
2.2. Colour Change (ΔE*) Test
2.3. Gloss Change (ΔG*) Test
2.4. Surface Wettability Change (ΔW*) Test
2.5. Macroscopic and Microscopic Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Colour Change of the Samples
3.2. Gloss Change of the Samples
3.3. Surface Wettability of the Samples
3.4. Macroscopic and Microscopic Evaluation of the Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EN 350. Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials; European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- Zahri, S.; Belloncle, C.; Charrier, F.; Pardon, P.; Quideau, S.; Charrier, B. UV light impact on ellagitannins and wood surface colour of European oak (Quercus petraea and Quercus robur). Appl. Surf. Sci. 2007, 253, 4985–4989. [Google Scholar] [CrossRef]
- Sivrikaya, H. Impregnability and Durability Characteristics of Sapwood and Heartwood. Ph.D. Thesis, Zonguldak Karaelmas University, Graduate School of Natural and Applied Sciences, Zonguldak, Turkey, 2003. [Google Scholar]
- Ayadi, N. Vieillissement Climatique d’un Systéme Bois-Vernis-Absorbeur UV Inorganique. Ph.D. Thesis, Université de Nantes, Nantes, France, 2004. [Google Scholar]
- Browne, F.L. Wood Properties that Affect Paint Performance; U.S. Forest Service, Forest Products Laboratory: Madison, WI, USA, 1958.
- Oberhofnerová, E.; Pánek, M.; García-Cimarras, A. The effect of natural weathering on untreated wood surface. Maderas Ciencia y Tecnología 2017, 19, 173–184. [Google Scholar] [CrossRef] [Green Version]
- George, B.; Suttie, E.; Merlin, A.; Deglise, X. Photodegradation and photostabilisation of wood—The state of the art. Polym. Degrad. Stab. 2005, 88, 268–274. [Google Scholar] [CrossRef]
- Auclair, N.; Riedl, B.; Blanchard, V.; Blanchet, P. Improvement of photoprotection of wood coatings by using inorganic nanoparticles as ultraviolet absorbers. For. Prod. J. 2011, 61, 20–27. [Google Scholar] [CrossRef]
- Feist, W.C.; Hon, D.N.S. Chemistry of weathering and protection. In The Chemistry of Solid Wood; ACS: Washington, DC, USA, 1984; pp. 401–451. [Google Scholar]
- Evans, P.D. Weathering and photoprotection of wood. In Development of Commercial Wood Preservatives; ACS: Washington, DC, USA, 2008; Volume 982, pp. 69–117. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V. Evaluation of the impacts of four weathering methods on two acrylic paints: Showcasing distinctions and particularities. Coatings 2019, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- De Meijer, M. Review on the durability of exterior wood coatings with reduced VOC-content. Prog. Org. Coat. 2001, 43, 217–225. [Google Scholar] [CrossRef]
- Evans, P.; Haase, J.; Seman, A.S.B.M.; Kiguchi, M. The search for durable exterior clear coatings for wood. Coatings 2015, 5, 830–864. [Google Scholar] [CrossRef] [Green Version]
- Miniutti, V.P. Microscale changes in cell structure at softwood surfaces during weathering. For. Prod. J. 1964, 14, 571–576. [Google Scholar]
- Šimůnková, K.; Oberhofnerová, E.; Reinprecht, L.; Pánek, M.; Podlena, M.; Štěrbová, I. Durability of selected transparent and semi-transparent coatings on Siberian and European larch during artificial weathering. Coatings 2019, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Forsthuber, B.; Ecker, M.; Truskaller, M.; Grüll, G. Rapid prediction of surface characteristics of European and Siberian larch wood by FT-NIRS. Eur. J. Wood Wood Prod. 2017, 75, 569–580. [Google Scholar] [CrossRef]
- Gobakken, L.R.; Lebow, P.K. Modelling mould growth on coated modified and unmodified wood substrates exposed outdoors. Wood Sci. Technol. 2010, 44, 315–333. [Google Scholar] [CrossRef]
- De Windt, I.; Van den Bulcke, J.; Wuijtens, I.; Coppens, H.; Van Acker, J. Outdoor weathering performance parameters of exterior wood coating systems on tropical hardwood substrates. Eur. J. Wood Wood Prod. 2014, 72, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Gaylarde, C.C.; Morton, L.H.G.; Loh, K.; Shirakawa, M.A. Biodeterioration of external architectural paint films—A review. Int. Biodeterior. Biodegrad. 2011, 65, 1189–1198. [Google Scholar] [CrossRef]
- Grüll, G.; Truskaller, M.; Podgorski, L.; Bollmus, S.; Tscherne, F. Maintenance procedures and definition of limit states for exterior wood coatings. Eur. J. Wood Wood Prod. 2011, 69, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Dawson, B.S.; Singh, A.P.; Kroese, H.W.; Schwitzer, M.A.; Gallagher, S.; Riddiough, S.J.; Wu, S. Enhancing exterior performance of clear coatings through photostabilization of wood. Part 2: Coating and weathering performance. J. Coat. Technol. Res. 2008, 5, 207–219. [Google Scholar] [CrossRef]
- Van den Bulcke, J.; De Windt, I.; Defoirdt, N.; De Smet, J.; Van Acker, J. Moisture dynamics and fungal susceptibility of plywood. Int. Biodeterior. Biodegrad. 2011, 65, 708–716. [Google Scholar] [CrossRef] [Green Version]
- Grüll, G.; Tscherne, F.; Spitaler, I.; Forsthuber, B. Comparison of wood coating durability in natural weathering and artificial weathering using fluorescent UV-lamps and water. Eur. J. Wood Wood Prod. 2014, 72, 367–376. [Google Scholar] [CrossRef]
- Žlahtič, M.; Humar, M. Influence of artificial and natural weathering on the hydrophobicity and surface properties of wood. BioResources 2016, 11, 4964–4989. [Google Scholar] [CrossRef] [Green Version]
- Miklečić, J.; Turkulin, H.; Jirouš-Rajković, V. Weathering performance of surface of thermally modified wood finished with nanoparticles-modified waterborne polyacrylate coatings. Appl. Surf. Sci. 2017, 408, 103–109. [Google Scholar] [CrossRef]
- EN 927-3. Paints and Varnishes. Coating Materials and Coating System for Exterior Wood, Part 3: Natural Weathering Test; European Committee for Standardization: Brussels, Belgium, 2006. [Google Scholar]
- EN 927-6. Paints and Varnishes. Coating Materials and Coating Systems for Exterior Wood, Part 6: Exposure of Wood Coatings to Artificial Weathering Using Fluorescent UV Lamps and Water; European Committee for Standardization: Brussels, Belgium, 2006. [Google Scholar]
- Reinprecht, L.; Pánek, M. Effects of wood roughness, light pigments, and water repellent on the color stability of painted spruce subjected to natural and accelerated weathering. BioResources 2015, 10, 7203–7219. [Google Scholar] [CrossRef] [Green Version]
- Deflorian, F.; Rossi, S.; Fedrizzi, L.; Zanella, C. Comparison of organic coating accelerated tests and natural weathering considering meteorological data. Prog. Org. Coat. 2007, 59, 244–250. [Google Scholar] [CrossRef]
- Moya, R.; Rodríguez-Zúñiga, A.; Vega-Baudrit, J.; Puente-Urbina, A. Effects of adding TiO2 nanoparticles to a water-based varnish for wood applied to nine tropical woods of Costa Rica exposed to natural and accelerated weathering. J. Coat. Technol. Res. 2017, 14, 141–152. [Google Scholar] [CrossRef]
- Oberhofnerová, E.; Pánek, M.; Böhm, M. Effect of surface pretreatment with natural essential oils on the weathering performance of spruce wood. BioResources 2018, 13, 7053–7070. [Google Scholar] [CrossRef]
- Valverde, J.C.; Moya, R. Correlation and modeling between color variation and quality of the surface between accelerated and natural tropical weathering in Acacia mangium, Cedrela odorata and Tectona grandis wood with two coating. Color Res. Appl. 2014, 39, 519–529. [Google Scholar] [CrossRef]
- Jirous-Rajkovic, V.; Bogner, A.; Radovan, D. The efficiency of various treatments in protecting wood surfaces against weathering. Surf. Coat. Int. B Coat. Trans. 2004, 87, 15–19. [Google Scholar] [CrossRef]
- Merlatti, C.; Perrin, F.X.; Aragon, E.; Margaillan, A. Natural and artificial weathering characteristics of stabilized acrylic–urethane paints. Polym. Degrad. Stab. 2008, 93, 896–903. [Google Scholar] [CrossRef]
- Oltean, L.; Teischinger, A.; Hansmann, C. Wood surface discolouration due to simulated indoor sunlight exposure. Holz Roh-und Werkst. 2008, 66, 51. [Google Scholar] [CrossRef]
- Creemers, J.; De Meijer, M.; Zimmermann, T.; Sell, J. Influence of climatic factors on the weathering of coated wood. Eur. J. Wood Wood Prod. 2002, 60, 411–420. [Google Scholar] [CrossRef]
- ČSN 49 0108. Drevo. Zist’ovanie Hustoty [Wood. Determination of the Density]; Český Normalizační Institut: Prague, Czech Republic, 1993.
- Meteostation of the Faculty of Agronomy—Department of Agroecology and Biometeorology, Prague, Czech Republic. 2019. Available online: http://meteostanice.agrobiologie.cz (accessed on 27 November 2019).
- Pánek, M.; Oberhofnerová, E.; Zeidler, A.; Šedivka, P. Efficacy of hydrophobic coatings in protecting oak wood surfaces during accelerated weathering. Coatings 2017, 7, 172. [Google Scholar] [CrossRef] [Green Version]
- Commission Internationale de l’Eclairage (CIE). Colorimetry, 2nd ed.; (CIE Pub. No. 15.2); Commission Internationale de l’Eclairage: Vienna, Austria, 1986. [Google Scholar]
- EN ISO 2813. Paints and Varnishes—Determination of Gloss Value at 20 Degrees, 60 Degrees and 85 Degrees; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- Bastani, A.; Adamopoulos, S.; Militz, H. Water uptake and wetting behaviour of furfurylated, N-methylol melamine modified and heat-treated wood. Eur. J. Wood Wood Prod. 2015, 73, 627–634. [Google Scholar] [CrossRef]
- Ozgenc, O.; Hiziroglu, S.; Yildiz, U.C. Weathering properties of wood species treated with different coating applications. BioResources 2012, 7, 4875–4888. [Google Scholar] [CrossRef]
- Turkoglu, T.; Baysal, E.; Toker, H. The effects of natural weathering on color stability of impregnated and varnished wood materials. Adv. Mater. Sci. Eng. 2015. [Google Scholar] [CrossRef] [Green Version]
- Sehlstedt-Persson, M. Color responses to heat-treatment of extractives and sap from pine and spruce. In Proceedings of the 8th IUFRO International Wood Drying Conference: Improvement and Innovation in Wood Drying: A Major Issue for a Renewable Material, Brasov, Romania, 24–29 August 2003; Faculty of Wood Industry, Transilvania University of Brasov: Brasov, Romania, 2003; pp. 459–464. [Google Scholar]
- Ghosh, M.; Gupta, S.; Kumar, V.S. Studies on the loss of gloss of shellac and polyurethane finishes exposed to UV. Maderas Ciencia y Tecnología 2015, 17, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Kubovský, I.; Oberhofnerová, E.; Kačík, F.; Pánek, M. Surface changes of selected hardwoods due to weather conditions. Forests 2018, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Sivrikaya, H.; Hafizoglu, H.; Yasav, A.; Aydemir, D. Natural weathering of oak (Quercus petrae) and chestnut (Castanea sativa) coated with various finishes. Color Res. Appl. 2011, 36, 72–78. [Google Scholar] [CrossRef]
- Temiz, A.; Terziev, N.; Eikenes, M.; Hafren, J. Effect of accelerated weathering on surface chemistry of modified wood. Appl. Surf. Sci. 2007, 253, 5355–5362. [Google Scholar] [CrossRef]
- Singh, T.; Singh, A.P. A review on natural products as wood protectant. Wood Sci. Technol. 2012, 46, 851–870. [Google Scholar] [CrossRef]
- Pánek, M.; Reinprecht, L. Colour stability and surface defects of naturally aged wood treated with transparent paints for exterior constructions. Wood Res. 2014, 59, 421–430. [Google Scholar]
- Pánek, M.; Reinprecht, L. Critical view on the possibility of color changes prediction in the surfaces of painted wood exposed outdoors using accelerated weathering in Xenotest. J. Coat. Technol. Res. 2019, 16, 339–352. [Google Scholar] [CrossRef]
- Q-LAB. Correlation of Laboratory to Natural Weathering. Technical Bulletin LU-0824. 1977. Available online: www.q-lab.com/resources/technical-articles.aspx (accessed on 16 December 2019).
- Mattos, B.D.; De Cademartori, P.H.G.; Lourençon, T.V.; Gatto, D.A. Colour changes of Brazilian eucalypts wood by natural weathering. Int. Wood Prod. J. 2014, 5, 33–38. [Google Scholar] [CrossRef]
Coating Symbol | Coating Specification | Type of Coating | Transparent (T) or Pigmented (P) | Number of Layers (Dry Film Thickness) |
---|---|---|---|---|
CS | Control reference (REF) native samples without any coating system | - | - | - |
AC1 | Acrylate thick-layer water-based stain with fungicides (5-chloro-2-methylisothiazol-3(2H)-one) | Acrylate | T | 2 (40 µm) |
AC2 | Acrylate thin-layer water-based coating with a UV light absorber (1,2-benzoisothiazol-3(2H)-one), IPBC as fungicide | Acrylate | T | 3 (20 µm) |
AL1 | Thixotropic alkyd coating with microparticles as a UV-stabilizer | Alkyd | T | 3 (40 µm) |
AL2 | Thick-layer mixture of alkyds and oils with IPBC and pigments | Alkyd/Oil | P | 2 (40 µm) |
O1 | Thin-layer oil-based with micronized pigments (TiO2) and fungicides (propiconazole < 1%) | Oil | P | 2 (10 µm) |
O2 | Thin-layer oil-based with dark micronized pigments (Fe2O3) and fungicides (propiconazole < 1%) | Oil | P | 2 (5 µm) |
O3 | Oil-based coating with fungicides (propiconazole 0.5%) | Oil | T | 3 (10 µm) |
S1 | Thin-layer solvent-based stain—urethane alkyds with additives in white spirit with IPBC | Urethane alkyd | P | 2 (25 µm) |
Period of Outdoor Exposure in 2018 (months) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Measured data per day | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Average temperature (°C) | 3.5 | −1.9 | 2.1 | 13.8 | 17.4 | 18.7 | 21.6 | 22.0 | 16.0 | 10.7 | 4.7 | 2.9 |
Average relative humidity (%) | 81.2 | 73.4 | 70.3 | 57.8 | 59.7 | 63.4 | 49.2 | 53.4 | 64.0 | 70.3 | 84.5 | 82.2 |
Total precipitation (mm) | 17.2 | 4.6 | 29.1 | 14.2 | 20.8 | 87.9 | 8.8 | 56.5 | 43.5 | 23.9 | 6.5 | 40.6 |
Average solar radiation (kJ/m2) | 2432 | 6473 | 8305 | 17,365 | 21,428 | 20,253 | 22,177 | 18,250 | 12,455 | 7915 | 3280 | 1992 |
ΔL * | ΔE * | ΔG * | ΔW * | ||
---|---|---|---|---|---|
Type of coating system | AW | 0.000 * | 0.001 * | 0.000 * | 0.000 * |
NW | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
Type of Coating | Number of Valid Tests | Spearman R | p-Value | |
---|---|---|---|---|
ΔE6AW * × ΔE12NW * | Transparent | 5 | 0.10 | 0.87 |
Pigmented | 4 | 0.40 | 0.60 | |
All coatings | 9 | 0.18 | 0.64 | |
ΔL6AW * × ΔL12NW * | Transparent | 5 | −0.10 | 0.87 |
Pigmented | 4 | −0.40 | 0.60 | |
All coatings | 9 | −0.03 | 0.93 | |
ΔG6AW * × ΔG12NW * | Transparent | 5 | 0.90 | 0.04 * |
Pigmented | 4 | 0.40 | 0.60 | |
All coatings | 9 | 0.77 | 0.02 * | |
ΔW6AW * × ΔW12NW * | Transparent | 5 | 0.90 | 0.04 * |
Pigmented | 4 | −0.80 | 0.20 | |
All coatings | 9 | 0.53 | 0.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberhofnerová, E.; Šimůnková, K.; Dvořák, O.; Štěrbová, I.; Hiziroglu, S.; Šedivka, P.; Pánek, M. Comparison of Exterior Coatings Applied to Oak Wood as a Function of Natural and Artificial Weathering Exposure. Coatings 2019, 9, 864. https://doi.org/10.3390/coatings9120864
Oberhofnerová E, Šimůnková K, Dvořák O, Štěrbová I, Hiziroglu S, Šedivka P, Pánek M. Comparison of Exterior Coatings Applied to Oak Wood as a Function of Natural and Artificial Weathering Exposure. Coatings. 2019; 9(12):864. https://doi.org/10.3390/coatings9120864
Chicago/Turabian StyleOberhofnerová, Eliška, Kristýna Šimůnková, Ondřej Dvořák, Irena Štěrbová, Salim Hiziroglu, Přemysl Šedivka, and Miloš Pánek. 2019. "Comparison of Exterior Coatings Applied to Oak Wood as a Function of Natural and Artificial Weathering Exposure" Coatings 9, no. 12: 864. https://doi.org/10.3390/coatings9120864
APA StyleOberhofnerová, E., Šimůnková, K., Dvořák, O., Štěrbová, I., Hiziroglu, S., Šedivka, P., & Pánek, M. (2019). Comparison of Exterior Coatings Applied to Oak Wood as a Function of Natural and Artificial Weathering Exposure. Coatings, 9(12), 864. https://doi.org/10.3390/coatings9120864