Production of Nanofibers by Electrospinning as Carriers of Agrochemical
Abstract
:1. Introduction
2. Nanotechnology Applied to Agriculture
3. Nanofertilizers
4. Nanopesticides
5. Mechanism of Controlled Agrochemical Delivery
5.1. Slow Release Fertilizers (SRFs)
5.2. Controlled Release Fertilizers (CRFs)
6. Electrospinning Process
Electrospinning Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
Solution | Process | Ambient | ||||||
Cause | Effect | Reference | Cause | Effect | Reference | Cause | Effect | Reference |
Increase concentration | Higher diameter and no beads | [96,97] | Increase voltage | Lower fiber diameter | [85,86] | Increase temperature | Lower fiber diameter | [98] |
Increase viscosity | [89,99] | Increase gap 1 | Lower diameter and no beads | [85,100] | Increase humidity | 2 No defined | [101,102] | |
Increase molecular weight | No beads | [103,104] | Increase flow rate | Higher fiber diameter | [85,105] | |||
Decrease surface tension | Fiber formation | [81,106] | ||||||
Increase conductivity | Lower diameter and no beads | [107,108] |
7. Polymers Used in Electrospinning
Polymers-Coated Used in Agriculture
8. Nanofibers as Carriers of Agrochemical
8.1. Nanofibers as Carriers of Fertilizers
Author | Applied Voltage (kV) | Collector-Tip Distance (cm) | Flow Rate (mL/h) | Collector |
---|---|---|---|---|
Castro-Enriquez et al. (2012) [163] | 10–20 | 10, 15 | 0.01 to 0.1 | AF |
Kampeerapappun and Phanomkate (2013) [165] | 15 | 15 | 0.2–2.2 | AF |
Krishnamoorthy et al. (2016) [166] | 20 | 15 | 5.0 | AF |
Bulus et al. (2020) [168] | 30, 35 | 15 | 3.0, 3.5, 5 | ----- |
Nooeaid, et al. 2021 [169] | 15 | 15 | 0.2, 0.5 | ----- |
Javazmi et al. (2021) [162] | 12, 20 | 15 | 1.0 | AF |
Salehi and Kazemikia (2022) [170] | 25 | 10 | 0.5, 1.0, 1.5 | AF |
Ahmad et al. (2023) [171] | ---- | 20 | 0.5 | AF |
Malafatti et al. (2023) [173] | 16–20 | 5 | 0.6 | ---- |
8.2. Nanofibers as Carriers of Pesticides
Author | Applied Voltage (kV) | Collector-Tip Distance (cm) | Flow Rate (mL/h) | Collector |
---|---|---|---|---|
Thitiwongsawet et al. (2010) [174] | 15 | 15 | 1.0 | --- |
Xiang et al. (2012) [175] | 15 | 10 | 0.6 | AF |
Castañeda et al. (2014) [176] | 30 | 16 | 3.0 | ------ |
Souza et al 2015 [177] | 25 | 12 | 0.4 | ----- |
Roshani et al. (2016) [178] | 14 | 21 | 0.14 | ----- |
Latha et al. (2019) [179] | 20 | ----- | 0.3 | ----- |
Farias et al. (2019) [180] | 12.5 | 15 | 0.5 | AF |
Ciera et al. (2019) [181] | 12–23 | 14 | 1.0 | AF |
Gao et al. (2020) [182] | 15–20 | 12–16 | 0.5 | ----- |
Gao et al. (2021) [183] | 15–20 | 12–16 | 0.5 | AF |
Ryan et al. (2020) [184] | 15 | 10 | 0.9 | ----- |
Mukiri et al. (2021) [185] | 15 | ----- | 0.6 | ----- |
Saileela et al. (2023) [11] | 15 | 15 | 0.6 | ----- |
Merlini et al. (2023) [187] | 24 | 12 | 0.5 | ----- |
Reference | Polymers/Solvent | Encapsulated Pesticide | Fibers Morphology/Diameter | Fibers Application |
---|---|---|---|---|
Thitiwongsawet et al. (2010) [174] | CA/dimethylacetamide (DMA) | 2,6-Dichloro-4-nitroaniline | Smooth/241–320 nm | Design for a controlled-release system |
Xiang et al. (2012) [175] | PLA: cellulose nanocrystal/dimethylformamide (DMF) | CB (model pesticide) Thiomethoxan | Smooth/326 ± 139 nm 335 ± 144 nm 306 ± 90 nm | Design for a controlled-release system control whiteflies |
Castañeda et al. (2014) [176] | PVP/ethanol, DMF | Vitamax® Thiram® | Fused fibers, beads | Rice seed coating |
Souza et al. (2016) [177] | PLA/Hexafluoroisopropanol (HFIP) | Linalool | Smooth/176–240 nm | Design for a controlled-release system |
Roshani et al. (2016) [178] | PLLA/DMF | Thiram | Bead-free/no specific value of diameter | Design for a controlled-release system |
Latha et al. (2019) [179] | PVA/acetronile organic | Tebuconazole | Beads-free/293–373 nm 405.9–556.7 nm | Design for a controlled-release system |
Farias et al. (2019) [180] | CDA/acetic acid, DMA | Abamectin (Abm) Fluopyram (Flp) | Smooth, defect-free/335 ± 81 nm, 242 ± 12 nm, 129 ± 28 nm | Soybeans seeds coatings antifungal |
Ciera et al. (2019) [181] | PVA/water | Permethrin Catnip oil, chili oil, PMD | Bead-like, porous/386 ± 55 nm, 408 ± 67 nm | Repellent |
Gao et al. (2020) [182] | HPβCD/water | TBZ | Beadless, uniform/370 ± 198 nm | Design for a controlled-release system antifungal activity (Gibberella sp.) |
Gao et al. (2021) [183] | HPβCD/water | Thiram | Homogeneous, beads-free/270 ± 133 nm | Design for controlled release antifungal activity (Gibberella sp.) |
Ryan et al. (2020) [184] | Nylon-6,6/formic acid | Picaridin | Defect-free/279 ± 76 nm | Design for a controlled-release system |
Mukiri et al. (2021) [185] | PVA | Methylobacterium aminovorans | Defect-free/ 93.30 nm–166.1 nm 164.8–218.2 nm 194.4–303.2 nm | Design for controlled release viability microbial |
Das et al. (2023) [186] | H-PβCD/PVA | ATZ | Homogeneous, bead-free | Design for a controlled-release system activity herbicide (L. sativa) |
Saileela et al. (2023) [11] | PVA/acetone | Pendimethalin | Bead-free/ 231.6–313.5 nm 182.7–261.2 nm 143.2–210.3 nm | Seed coating (black gram seeds) germination and growth |
Merlini et al. (2023) [187] | PLA/DMF, dichloroethane (DCE) | ILS | 3D, randomly, continuous, porosity rough surfaces/0.55 ± 0.13 μm–1.00 ± 0.20 μm | Aphid-repellent activity (Acyrthosiphon pisum) |
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sekhon, B.S. Nanotechnology in agri-food production: An overview. Nanotechnology. Sci. Appl. 2014, 7, 31–53. [Google Scholar] [CrossRef]
- Sigh, M.; Goswami, S.P.; Ranjitha, G.; Sachan, P.; Sahu, D.K.; Beese, S.; Pandey, S.K. Nanotech for fertlizers and nutrient-improving nutrient use efficiency with nano-enabled fertilizers. J. Exp. Agric. Int. 2024, 46, 220–247. [Google Scholar] [CrossRef]
- Xu, T.; Ma, C.; Aytac, Z.; Hu, X.; Hg, K.W.; White, J.C.; Demokritou, P. Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustain. Chem. Eng. 2020, 8, 9537–9548. [Google Scholar] [CrossRef]
- Guha, T.; Gopal, G.; Kundu, R.; Mukherjee, A. Nanocomposites for delivering agrochemicals: A comprehensive review. J. Agric. Food Chem. 2020, 68, 3691–3702. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, W.; Zhu, G.; Tan, Z.; Huang, L.; Zhang, P.; Gao, L.; Rui, Y. Nano-pesticides and fertilizers: Solutions for global food security. Nanomaterials 2024, 14, 90. [Google Scholar] [CrossRef]
- Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, M. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef]
- Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials 2022, 12, 457. [Google Scholar] [CrossRef]
- Azeem, B.; KuShaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control Release 2014, 10, 11–21. [Google Scholar] [CrossRef]
- Nayl, A.A.; Abd-Elhamid, A.I.; Awwad, N.S.; Abdelgawad, M.A.; Wu, J.; Mo, X.; Gomha, S.M.; Aly, A.A.; Bräse, S. Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers 2022, 14, 1594. [Google Scholar] [CrossRef]
- Reddy, V.S.; Tian, Y.; Zhang, C.; Ye, Z.; Roy, K.; Chinnappan, A.; Ramakrishna, S.; Liu, W.; Ghosh, R. A Review on electrospun nanofibers based advanced applications: From health care to energy devices. Polymers 2021, 13, 3746. [Google Scholar] [CrossRef]
- Saileela, K.; Bharathi, C.; Raja, K.; Rahale, C.S.; Rajeswari, R. Synthesis, characterization of pendimethalin encapsulated PVA nanofiber and its impact on blackgram. Int. J. Plant Soil. Sci. 2023, 35, 1671–1681. [Google Scholar] [CrossRef]
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef] [PubMed]
- Sastry, R.K.; Rashmi, H.B.; Rao, N.H. Nanotechnology for enhancing food security in India. Food Policy 2011, 36, 391–400. [Google Scholar] [CrossRef]
- Dubey, A.; Mailapalli, D.R. Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2016; Volume 19, pp. 307–330. [Google Scholar]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bhushan, P.; Bhattacharya, S. Fabrication of nanostructures with bottom-up approach and their utility in diagnostics, therapeutics, and others. In Environmental, Chemical and Medical Sensors; Springer: Berlin/Heidelberg, Germany, 2018; pp. 167–198. [Google Scholar]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef]
- Solanki, P.; Bhargava, A.; Chhipa, H.; Jain, N.; Panwar, J. Nano-fertilizer and their smart delivery system. In Nanotechnologies in Food and Agriculture; Rai, M., Ribeiro, C., Mattoso, L., Duran, N., Eds.; Springer International Publishing AG: Cham, Switzerland, 2015; pp. 81–101. [Google Scholar]
- Liu, C.; Zhou, H.; Zhou, J. The Applications of Nanotechnology in Crop Production. Molecules 2021, 26, 7070. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Khan, F.; Ahmed, T.; Noman, M.; Zulfiqar, F.; Rizwan, M.; Chen, J.; Siddique, H.M.; Li, B. Nanobiotechnology to advance stress resilience in plants: Current opportunities and challenges. Mater. Today Bio 2023, 22, 100759. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Lu, L.; Wang, A.; Zhang, H.; Huang, M.; Wu, H.; Xing, B.; Wang, Z.; Ji, R. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem. 2020, 68, 1935–1947. [Google Scholar] [CrossRef] [PubMed]
- Heikal, Y.M.; Abdel-Aziz, H.M.M. Toxicology and safety aspects of nanosensor on environment, food, and agriculture. In Nanosensors for Environment, Food and Agriculture Vol. 1; Kumar, V., Guleria, P., Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Environmental Chemistry for a Sustainable World; Springer: Cham, Switzerland, 2021; Volume 60. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, Nano-guard for pesticides: A New window for safe application. J. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef]
- Alsaiari, N.S.; Alzahrani, F.M.; Amari, A.; Osman, H.; Harharah, H.N.; Elboughdiri, N.; Tahoon, M.A. Plant and microbial approaches as green methods for the synthesis of nanomaterials: Synthesis, applications, and future perspectives. Molecules 2023, 28, 463. [Google Scholar] [CrossRef]
- Ansari, M.A. Nanotechnology in Food and Plant Science: Challenges and future prospects. Plants 2023, 12, 2565. [Google Scholar] [CrossRef] [PubMed]
- Gajanan, K.; Tijare, S.N. Applications of nanomaterials. Mater. Today Proc. 2018, 5, 1093–1096. [Google Scholar] [CrossRef]
- Khan, F.; Pandey, P.; Upadhyay, T.K. Applications of nanotechnology-based agrochemicals in food security and sustainable agriculture: An Overview. Agriculture 2022, 12, 1672. [Google Scholar] [CrossRef]
- Shen, M.; Liu, S.; Jiang, C.; Zhang, T.; Chen, W. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. Eco-Environ. Health 2023, 2, 162–175. [Google Scholar] [CrossRef]
- Kale, S.K.; Parishwad, G.V.; Husainy, A.S.N.; Patil, A.S. Emerging agriculture applications of silver nanoparticles. ES Food Agrofor. 2021, 3, 17–22. [Google Scholar] [CrossRef]
- Arole, V.M.; Munde, S.V. Fabrication of nanomaterials by top-down and bottom-up approaches. An overview. J. Mater. Sci. 2014, 1, 89–93. [Google Scholar]
- Sharma, S.; Singh, S.S.; Bahuguna, A.; Yadav, B.; Barthwal, A.; Nandan, R.; Khatana, S.; Pandey, A.; Thakur, R.; Jatav, H.S. Nanotechnology: An efficient tool in plant nutrition management. In Ecosystem Services: Types, Management and Benefits; Jatav, H.S., Ed.; Nova Science Publisher, Inc.: Hauppauge, NY, USA, 2022; pp. 165–188. [Google Scholar]
- Sneha, N.; Hosamani, R.; Chandrashekhar, S.S.; Udikeri, S.S. Profenofos loaded nanoliposomes against agricultural insect pest. J. Nanomater. Mol. Nanotechnol. 2023, 12, 1. [Google Scholar]
- Kah, M.; Beulke, S.; Tiede, K.; Hofmann, T. Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1823–1867. [Google Scholar] [CrossRef]
- Miguel-Rojas, C.; Pérez-de-Luque, A. Nanobiosensors and nanoformulations in agricultura: New and challengues for sustainable agricultura. Emerg. Top. Life Sci. 2023, 7, 229–238. [Google Scholar] [CrossRef]
- Gade, A.; Ingle, P.; Nimbalkar, U.; Rai, M.; Raut, R.; Vedpathak, M.; Jagtap, P.; Abd-Elsalam, K.A. Nanofertilizers: The Next Generation of Agrochemicals for Long-Term Impact on Sustainability in Farming Systems. Agrochemicals 2023, 2, 257–278. [Google Scholar] [CrossRef]
- Dilnawaz, F.; Kalaji, M.H.; Misra, A.N. Nanotechnology in improving photosynthesis under adverse climatic conditions: Cell to Canopy action. Plant Nano Biol. 2023, 4, 100035. [Google Scholar] [CrossRef]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enable fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, K.; Abd-Elsalam, K.A. Exploring the potential of nanofertilizers for a sustainable agriculture. Plant Nano Biol. 2023, 5, 100044. [Google Scholar] [CrossRef]
- Sabaghnia, N.; Janmohammadi, M. Influence of some nano-fertilizers on chickpeas under three irrigation strategies. Plant Nano Biol. 2023, 4, 100037. [Google Scholar] [CrossRef]
- Kah, M.; Hofmann, T. Nanopesticide research: Current trends and future priorities. Environ. Int. 2014, 63, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zeng, Z.; Cui, H.; Verheggen, F. Polymer-based nanoinsecticides: Current developments, environmental risks and future challenges. A review. Biotechnol. Agron. Soc. Environ. 2020, 24, 59–69. [Google Scholar] [CrossRef]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Boltnarova, B.; Kubackova, J.; Skoda, J.; Stefela, A.; Smekalova, M.; Svacinova, P.; Pavkova, I.; Dittrich, M.; Scherman, D.; Zbytovska, J. PLGA Based Nanospheres as a Potent Macrophage-Specific Drug Delivery System. Nanomaterials 2021, 11, 749. [Google Scholar] [CrossRef] [PubMed]
- Upadhayay, V.K.; Chitara, M.K.; Mishra, D.; Jha, M.N.; Jaiswal, A.; Kumari, G.; Ghosh, S.; Patel, V.K.; Naitam, M.G.; Singh, A.K.; et al. Synergistic impact of nanomaterials and plant probiotics in agriculture: A tale of two-way strategy for long-term sustainability. Front. Microbiol. 2023, 14, 1133968. [Google Scholar] [CrossRef]
- Aguilar-Pérez, K.M.; Avilés-Castrillo, J.I.; Medina, D.I.; Parra-Saldivar, R.; Iqbal, H.M.N. Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings. Front. Bioeng. Biotechnol. 2020, 8, 579536. [Google Scholar] [CrossRef]
- Gundloori, R.V.N.; Singam, A.; Killi, N. Nanobased intravenous and transdermal drug delivery systems. In Applications of Targeted Nano Drugs and Delivery Systems: Nanoscience and Nanotechnology in Drug Delivery; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Tomas, S., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 551–594. [Google Scholar]
- Badgar, K.; Abdalla, N.; El-Ramady, H.; Prokisch, J. Sustainable Applications of Nanofibers in Agriculture and Water Treatment: A Review. Sustainability 2022, 14, 464. [Google Scholar] [CrossRef]
- Fellet, G.; Pilotto, L.; Marchiol, L.; Braidot, E. Tools for nano-enabled agriculture: Fertilizers based on calcium phosphate, silicon, and chitosan nanostructures. Agronomy 2021, 11, 1239. [Google Scholar] [CrossRef]
- Carmona, F.J.; Guagliardi, A.; Masciocchi, N. Nanosized Calcium Phosphates as Novel Macronutrient Nano-Fertilizers. Nanomaterials 2022, 12, 2709. [Google Scholar] [CrossRef] [PubMed]
- Fertahi, S.; Ilsouk, M.; Zeroual, Y.; Oukarroum, A.; Barakat, A. Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. J. Control Release 2021, 330, 341–361. [Google Scholar] [CrossRef] [PubMed]
- Rop, K.; Karuku, G.N.; Mbui, D.; Michira, I.; Njomo, N. Formulation of slow release NPK fertilizer (cellulose-graft-poly(acrylamide)/nano-hydroxyapatite/soluble fertilizer) composite and evaluating its N mineralization potential. Ann. Agric. Sci. 2018, 63, 163–172. [Google Scholar] [CrossRef]
- Karthik, A.; Maheswari, M.U. Smart fertilizer strategy for better crop production. Agric. Rev. 2021, 42, 12–21. [Google Scholar] [CrossRef]
- Guo, H.; White, J.C.; Wang, Z.; Xing, B. Nano-enabled fertilizers to control the release and use efficiency of nutrient. Curr. Opin. Environ. Sci. Health 2018, 6, 77–83. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef]
- Nongbet, A.; Mishra, A.K.; Mohanta, Y.K.; Mahanta, S.; Ray, M.K.; Khan, M.; Baek, K.-H.; Chakrabartty, I. Nanofertilizers: A smart and sustainable attribute to modern agricultura. Plants 2022, 11, 2587. [Google Scholar] [CrossRef]
- Mastronardi, E.; Tsae, P.; Zhang, X.; Monreal, C.; De Rosa, M.C. Strategic role of nanotechnology in fertilizers: Potential and limitations. In Nanotechnologies in Food and Agriculture; Rai, M., Ribeiro, C., Mattoso, L., Duran, N., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Al-Juthery, H.W.A.; Lahmod, N.R.; Al-Taee, R.A.H.G. Intelligent, nano-fertilizers: A new technology for improvement nutrient use efficiency (article review). IOP Conf. Ser. Earth Environ. Sci. 2021, 735, 012086. [Google Scholar] [CrossRef]
- Junejo, N.; Khanif, M.Y.; Hanfi, M.M.; Yunis, W.M.Z.W.; Drarejo, K.A. Role of inhibitor and biodegradable material in mitigation of nitrogen losses from fertilized lands. Afr. J. Biotech. 2011, 10, 3504–3514. [Google Scholar]
- Raliya, R.; Saharan, V.; Dimkpa, C.; Biswas, P. Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. J. Agric. Food Chem. 2018, 66, 6487–6503. [Google Scholar] [CrossRef] [PubMed]
- Baliyarsingh, B.; Pradhan, C.K. Prospects of plant-derived metallic nanopesticides against storage pests—A review. J. Agric. Food Res. 2023, 14, 100687. [Google Scholar] [CrossRef]
- Bratovcic, A.; Hikal, W.M.; Said-Al Ahl, H.A.H.; Tkachenko, K.G.; Baeshen, R.S.; Sabra, A.S.; Sany, H. Nanopesticides and nanofertilizers and agricultural development: Scopes, advances and applications. Open J. Ecol. 2021, 11, 302–316. [Google Scholar] [CrossRef]
- Paul, S.K.; Sohrawardy, H.; Mahmud, N.U.; Roy, P.C.; Islam, T. Nanopesticides for crop protection. In Agricultural Nanobiotechnology Biogenic Nanoparticles, Nanofertilizers and Nanoscale Biocontrol Agents, 1st ed.; Ghosh, S., Thongmee, S., Kumar, A., Eds.; Woodhead Publishing: Cambridge, UK, 2022; pp. 389–438. [Google Scholar]
- Hayles, J.; Johnson, L.; Worthley, C.; Losic, D. Nanopesticides: A review of current research and perspectives. In New Pesticides and Soil Sensors, 1st ed.; Grumezescu, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 193–225. [Google Scholar]
- Yin, J.; Su, X.; Yan, S.; Shen, J. Multifunctional nanoparticles and nanopesticides in agricultural application. Nanomaterials 2023, 13, 1255. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Saleh, N.B.; Byro, A.; Zepp, R.; Sahle-Demessie, E.; Luxton, T.P.; Ho, K.T.; Burguess, R.M.; Flury, M.; White, J.C.; et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 2022, 17, 347–360. [Google Scholar] [CrossRef]
- Roy, A.; Singh, S.K.; Bajpai, J.; Bajpai, A.K. Controlled pesticide release from biodegradable polymers. Cent. Eur. J. Chem. 2014, 12, 453–469. [Google Scholar] [CrossRef]
- Allan, G.G.; Carroll, J.P. Controlled release delivery of agrochemicals: Looking back and looking forward. In International Atomic Energy Agency, Research and Development of Controlled Release Formulations of Pesticides -Development and Evaluation of Controlled Release Formulations of Pesticides; FAO/IAEA: Vienna, Austria, 1994; Volume 1, pp. 13–22. [Google Scholar]
- Shaviv, A. Advances in controlled-release fertilizers. Adv. Agron. 2000, 71, 1–49. [Google Scholar] [CrossRef]
- Sempeho, S.I.; Kim, H.T.; Mubofu, E.; Hilonga, A. Meticulous overview on the controlled release fertilizers. Adv. Chem. 2014, 363071, 1–16. [Google Scholar] [CrossRef]
- Abd El-Aziz, M.E.; Salama, D.M.; Morsi, S.M.; Youssef, A.M.; El-Sakhawy, M.A. Development of polymer composites and encapsulation technology for slow-release fertilizers. Rev. Chem. Eng. 2021, 38, 603–616. [Google Scholar] [CrossRef]
- Trenkel, M.E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, 2nd ed.; International Fertilizer Industry Association (IFA): Paris, France, 2010; pp. 14–133. [Google Scholar]
- Kalia, A.; Sharma, S.P.; Kaur, H.; Kaur, H. Novel nanocomposite-based controlled-release fertilizer and pesticide formulations: Prospects and challenges. In Micro and Nano Technologies, Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food Ecosystems, Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 99–134. [Google Scholar] [CrossRef]
- Pereira, E.I.; Giroto, A.S.; Bortolin, A.; Yamamoto, C.F.; Marconcini, J.M.; de Campos Bernardi, A.C.; Ribeiro, C. Perspectives in nanocomposites for the slow and controlled release of agrochemicals: Fertilizers and pesticides. In Nanotechnologies in Food and Agriculture, 1st ed.; Rai, M., Ribeiro, C., Mattoso, L., Duran, N., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 241–265. [Google Scholar] [CrossRef]
- Sopeña, F.; Maqueda, C.; Morillo, E. Controlled release formulations of herbicides base on micro-encapsulation. Cienc. Investig. Agrar. 2009, 35, 27–42. [Google Scholar] [CrossRef]
- Meraz-Dávila, S.; Pérez-García, C.E.; Feregrino-Perez, A.A. Challenges and advantages of electrospun nanofibers in agriculture: A review. Mater. Res. Express 2021, 8, 042001. [Google Scholar] [CrossRef]
- Frenot, A.; Chronakis, I.S. Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid. Interface Sci. 2003, 8, 64–75. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Sill, T.J.; von Recum, H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008, 29, 1989–2006. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Layman, J.M.; Watkins, J.R.; Bowlin, G.L.; Matthews, J.A.; Simpson, D.G.; Wnek, G.E. Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials 2003, 24, 907–913. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef]
- El Fawal, G.F. Polymer nanofibers electrospinning: A review. Egypt. J. Chem. 2020, 63, 1279–1303. [Google Scholar] [CrossRef]
- Blesson, I.; Taylor, R.M.; Reifsnider, K. Mechanical and dielectric properties of aligned electrospun fibers. Fibers 2021, 9, 4. [Google Scholar] [CrossRef]
- Moon, S.; Ryu, B.-Y.; Choi, J.; Jo, B.; Farris, R.J. The morphology and mechanical properties of sodium alginate based electrospun poly(ethylene oxide) nanofibers. Polym. Eng. Sci. 2009, 49, 52–59. [Google Scholar] [CrossRef]
- Chowdhury, M.; Stylios, G. Effect of experimental parameters on the morphology of electropsun nylon 6 fibres. Int. J. Basic Appl. Sci. 2010, 10, 70–78. [Google Scholar]
- Megelski, S.; Stephens, J.S.; Chase, B.; Rabolt, J.F. Micro and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002, 35, 8456–8466. [Google Scholar] [CrossRef]
- Fennessey, S.F.; Farris, J. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 2004, 45, 4217–4225. [Google Scholar] [CrossRef]
- Bakar, S.S.S.; Fong, K.C.; Eleyas, A.; Nazeri, M.F.M. Effect of voltage and flow rate electrospinning parameters on polyacrylonitrile electrospun fibers. Mater. Sci. Eng. 2018, 318, 012076. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J. Study on morphology of electrospun poly (vinyl alcohol) mats. Eur. Polym. J. 2005, 41, 423–432. [Google Scholar] [CrossRef]
- Gu, S.Y.; Ren, J.; Vancso, G.J. Process optimization and empirical modeling for electrospun polyaccrylonitrile (PAN) nanofiber precursor of carbon nanofiber. Eur. Polym. J. 2005, 42, 2559–2568. [Google Scholar] [CrossRef]
- Yördem, O.S.; Papila, M.; Menceloglu, Y.Z. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology. Mater. Des. 2008, 29, 34–44. [Google Scholar] [CrossRef]
- Sirin, S.; Çetiner, S.; Saraç, A.S. Polymer Nanofibers Via Electrospinning: Factors Affecting Nanofiber Quality. J. Eng. Sci. 2013, 16, 1–12. [Google Scholar]
- Kailasa, S.; Reddy, M.S.B.; Rani, B.G.; Maurya, M.R.; Rao, K.V.; Sadasivuni, K.K. Electrospun Nanofibers: Materials, synthesis parameters and their role in sensing applications. Macromol. Mater. Eng. 2021, 306, 2100410. [Google Scholar] [CrossRef]
- Anup, N.; Chavan, T.; Chavan, S.; Polanka, S.; Kalyane, D.; Abed, S.N.; Venugopala, K.N.; Kalia, K.; Tekade, R.K. Reinforced electrospun nanofiber compossites for drug delivery applicactions. J. Biomed. Mater. Res. 2021, 109, 2036–2064. [Google Scholar] [CrossRef]
- Ahmadi Bonakdar, M.; Rodrigue, D. Electrospinning: Processes, Structures, and Materials. Macromol 2024, 4, 58–103. [Google Scholar] [CrossRef]
- Bosworth, L.A.; Downes, S. Acetone, a Sustainable Solvent for Electrospinning Poly(ε-Caprolactone) Fibres: Effect of varying parameters and solution concentrations on Fibre Diameter. J. Polym. Environ. 2012, 20, 879–886. [Google Scholar] [CrossRef]
- Gu, S.Y.; Ren, J. Process optimization and empirical modeling for electrospun poly(D,L-lactide) fibers using response surface methodology. Macromol. Mater. Eng. 2005, 290, 1097–1105. [Google Scholar] [CrossRef]
- De Vrieze, S.; Van Camp, T.; Nelvig, A.; Hagstrom, B.; Westbroek, P.; De Clerck, K. The Effect of Temperature and Humidity on Electrospinning. J. Mater. Sci. 2009, 44, 1357–1362. [Google Scholar] [CrossRef]
- Zaarour, B.; Zhu, L.; Jin, X. Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Mater. 2019, 17, 181–189. [Google Scholar] [CrossRef]
- Hekmati, A.H.; Rashidi, A.; Ghazisaeidi, R.; Drean, J.Y. Effect of Needle Length, Electrospinning Distance, and Solution Concentration on Morphological Properties of Polyamide-6 Electrospun Nanowebs. Text. Res. J. 2013, 83, 1452–1466. [Google Scholar] [CrossRef]
- Szewczyk, P.K.; Stachewicz, U. The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Adv. Colloid. Interface Sci. 2020, 286, 102315. [Google Scholar] [CrossRef] [PubMed]
- Icoglu, H.I.; Ogulata, R.T. Effect of ambient parameters on morphology of electrospun polyetherimide (PEI) fibers. Tekst. Konfeksiyon 2013, 23, 313–318. [Google Scholar]
- Mwiiri, F.K.; Daniels, R. Influence of PVA molecular weight and concentration on electrospinnability of birch bark extract-loaded nanofibrous scaffolds intended for enhanced wound healing. Molecules 2020, 25, 4799. [Google Scholar] [CrossRef]
- Eda, G.; Shivkumar, S. Bead-to-fiber transition in electrospun polystyrene. J. Appl. Polym. Sci. 2007, 106, 475–487. [Google Scholar] [CrossRef]
- Zargham, S.; Bazgir, S.; Tavakoli, A.; Rashidi, A.S.; Damerchely, R. The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber. J. Eng. Fibers Fabr. 2012, 7, 155892501200700. [Google Scholar] [CrossRef]
- Korotcenkov, G. Electrospun metal oxide nanofibers and their conductometric gas sensor application. Part 1: Nanofibers and features of their forming. Nanomaterials 2021, 11, 1544. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Xu, Y.; Zhou, X.; Chen, F.; Fu, Q. Effect of salt concentration in spinning solution on fiber diameter and mechanical property of electrospun styrene-butadiene-styrene tri-block copolymer membrane. Polymer 2018, 153, 61–69. [Google Scholar] [CrossRef]
- Zeng, J.; Haoqing, H.; Schaper, A.; Wendorff, J.H.; Greiner, A. Poly-L-lactide nanofibers by electrospinning—Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 2003, 3, 1–9. [Google Scholar] [CrossRef]
- Colín, O.J. Synthesis of Nanofibers from Biomaterials by Electrospinning as Component Active Carriers. Ph.D. Thesis, National Polytechnic Institute, Mexico City, Mexico, 2013. [Google Scholar]
- Dutta, P.K.; Dutta, J.; Tripathi, V. Chitin and chitosan: Chemistry, properties and applications. J. Sci. Ind. Res. 2004, 63, 20–31. [Google Scholar]
- Shankar, S.; Wang, L.-F.; Rhim, J.-W. Preparations and characterization of alginate/silver composite films: Effect of types of silver particles. Carbohydr. Polym. 2016, 146, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.A.; Wnek, G.E.; Simpson, D.G.; Bowlin, G.L. Electrospinning of Collagen Nanofibers. Biomacromolecules 2002, 3, 232–238. [Google Scholar] [CrossRef]
- Ohkawa, K.; Cha, D.; Kim, H.; Nishida, A.; Yamamoto, H. Electrospinning of chitosan. Macromol. Rapid Commun. 2004, 25, 1600–1605. [Google Scholar] [CrossRef]
- Homayoni, H.; Ravandi, S.A.H.; Valizadeh, M. Electrospinning of chitosan nanofibers: Processing optimization. Carbohydr. Polym. 2009, 77, 656–661. [Google Scholar] [CrossRef]
- Su, P.; Wang, C.; Yang, X.; Chen, X.; Gao, C.; Feng, X.X.; Chen, J.C.; Ye, J.; Gou, Z. Electrospinning of chitosan nanofibers: The favorable effect of metal ions. Carbohydr. Polym. 2011, 84, 239–246. [Google Scholar] [CrossRef]
- Ziani, K.; Henrist, C.; Jérôme, C.; Aqil, A.; Maté, J.I.; Cloots, R. Effect of nonionic surfactant and acidity on chitosan nanofibers with different molecular weights. Carbohydr. Polym. 2011, 83, 470–476. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Zhang, Y.Z.; Ramakrishna, S.; Lim, C.T. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 2004, 45, 361–5368. [Google Scholar] [CrossRef]
- Okutan, N.; Terzi, P.; Altay, F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll. 2014, 39, 19–26. [Google Scholar] [CrossRef]
- Kim, S.H.; Nam, Y.S.; Lee, T.S.; Park, W.H. Silk fibroin nanofiber. Electrospinning and structure. Polym. J. 2003, 35, 185–190. [Google Scholar] [CrossRef]
- Khoshnevisan, K.; Maleki, H.; Samadian, H.; Shahsavari, S.; Sarrafzadeh, M.H.; Larijani, B.; Dorkoosh, F.A.; Haghpanah, V.; Khorramizadeh, M.R. Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydr. Polym. 2018, 198, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska-Krepsztu, J.; Rydzkowski, T.; Michalska-Pozoga, I.; Thakur, V.K. Biopolymers for biomedical and pharmaceutical applications: Recent advances and overview of alginate electrospinning. Nanomaterials 2019, 9, 404. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, R.; Huang, X.; Wang, X.; Tang, S. Fabrication and biocompatibility of agarose acetate nanofibrous membrane by electrospinning. Carbohydr. Polym. 2018, 197, 237–245. [Google Scholar] [CrossRef]
- Ji, Y.; Ghosh, K.; Shu, X.Z.; Li, B.; Sokolov, J.C.; Prestwich, G.D.; Clark, R.A.; Rafailovich, M.H. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 2006, 27, 3782–3792. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, G.; Fang, D.; Xu, J.; Zhang, H.; Nie, J. Effects of solution properties and electric field on the electrospinning of hyaluronic acid. Carbohydr. Polym. 2011, 83, 1011–1015. [Google Scholar] [CrossRef]
- Vega-Lugo, A.-C.; Lim, L.-T. Electrospinning of soy protein isolate nanofibers. J. Biobased Mater. Bioenergy 2008, 2, 223–230. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Ocio, M.J.; Lagaron, J.M. Novel antimicrobial ultrathin structures of zein/chitosan blends obtained by electrospinning. Carbohydr. Polym. 2009, 77, 261–266. [Google Scholar] [CrossRef]
- Fernandez, A.; Torres-Giner, S.; Lagaron, J.M. Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers zein prolamine. Food Hydrocoll. 2009, 23, 1427–1432. [Google Scholar] [CrossRef]
- Malafaya, P.B.; Silva, G.A.; Reis, R.L. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 2007, 59, 207–233. [Google Scholar] [CrossRef]
- Huang, C.; Thomas, N.L. Fabricating porous poly(lactic acid) fibres via electrospinning. Eur. Polym. J. 2018, 99, 464–476. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.; Jin, K.; Liu, W.; Qiu, X.; Li, C. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater. Sci. Eng. C 2016, 59, 1181–1194. [Google Scholar] [CrossRef]
- Cho, S.J.; Jung, S.M.; Kang, M.; Shin, H.S.; Youk, J.H. Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP- b -PCL block copolymers for enhanced cell biocompatibility. Polymer 2015, 69, 95–102. [Google Scholar] [CrossRef]
- You, Y.; Youk, J.H.; Lee, S.W.; Min, B.-M.; Lee, S.J.; Park, W.H. Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Mater. Lett. 2006, 60, 757–760. [Google Scholar] [CrossRef]
- Jing, X.; Salick, M.R.; Cordie, T.; Mi, H.-Y.; Peng, X.-F.; Turng, L.-S. Electrospinning Homogeneous nanofibrous poly(propylene carbonate)/gelatin composite scaffolds for tissue engineering. Industrial & engineering. Chem. Res. 2014, 53, 9391–9400. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Reda, M.M.; Klingner, A. Preparation and characterization of green carboxymethylchitosan (CMCS)—Polyvinyl alcohol (PVA) electrospun nanofibers containing gold nanoparticles (AuNPs) and its potential use as biomaterials. Int. J. Biol. Macromol. 2020, 151, 821–829. [Google Scholar] [CrossRef]
- Wang, M.; Li, D.; Li, J.; Li, S.; Chen, Z.; Yu, D.-G.; Liu, Z.; Guo, J.Z. Electrospun Janus zein–PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater. Des. 2020, 196, 109075. [Google Scholar] [CrossRef]
- Kumar, V.; Mirzaei, A.; Bonyani, M.; Kim, K.-H.; Kim, H.W.; Kim, S.S. Advances in electrospun nanofiber fabrication for polyaniline (PANI)-based chemoresistive sensors for gaseous ammonia. TrAC Trends Anal. Chem. 2020, 129, 115938. [Google Scholar] [CrossRef]
- Jafari, S.; Hosseini Salekdeh, S.S.; Solouk, A.; Yousefzadeh, M. Electrospun polyethylene terephthalate (PET) nanofibrous conduit for biomedical application. Poly. Adv. Technol. 2019, 31, 284–296. [Google Scholar] [CrossRef]
- Sadeghianmaryan, A.; Sardroud, H.A.; Allafasghari, S.; Yazdanpanah, Z.; Naghieh, S.; Gorji, M.; Chen, X. Electropinning of polyurethane/grapheme oxide for skin wound dressing and its in vitro characterization. J. Biomater. Appl. 2020, 35, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Govindasamy, K.; Dahlan, N.A.; Janarthanan, P.; Goh, K.L.; Chai, S.-P.; Pasbakhsh, P. Electrospun chitosan/polyethylene-oxide (PEO)/halloysites (HAL) membranes for bone regeneration applications. Appl. Clay. Sci. 2020, 190, 105601. [Google Scholar] [CrossRef]
- Wang, D.; Yu, J.; Duan, G.; Liu, K.; Hou, H. Electrospun polyimide nonwovens with enhanced mechanical and thermal properties by addition of trace plasticizer. J. Mater. Sci. 2020, 55, 5667–5679. [Google Scholar] [CrossRef]
- Jeong, J.H.; Kim, Y.A.; Kim, B.-H. Electrospun polyacrylonitrile/cyclodextrin-derived hierarchical porous carbon nanofiber/MnO2 composites for supercapacitor applications. Carbon 2020, 164, 296–304. [Google Scholar] [CrossRef]
- Yang, D.; Li, Y.; Nie, J. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr. Polym. 2007, 69, 538–543. [Google Scholar] [CrossRef]
- Lu, J.W.; Zhu, Y.L.; Guo, Z.X.; Hu, P.; Yu, J. Electrospinning of sodium alginate with poly (ethylene oxide). Polymer 2006, 47, 8026–8031. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, L.; Zhou, Z.; Wu, X.; Wang, Y. Preparation and properties of electrospun soy protein isolate/polyethylene oxide nanofiber membranes. ACS Appl. Mater. Interfaces 2012, 4, 4331–4337. [Google Scholar] [CrossRef]
- Meng, Z.X.; Xu, X.X.; Zheng, W.; Zhou, H.M.; Li, L.; Zheng, Y.F.; Lou, X. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids Surf. B Biointerfaces 2011, 84, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Aluigi, A.; Vineis, C.; Varesano, A.; Mazzuchetti, G.; Ferrero, F.; Tonin, C. Structure and properties of keratin/PEO blend nanofibres. Eur. Polym. J. 2008, 44, 2465–2475. [Google Scholar] [CrossRef]
- Milani, P.; França, D.; Balieiro, A.G.; Faez, R. Polymers and its applications in agriculture. Polymers 2017, 27, 256–266. [Google Scholar] [CrossRef]
- Maurizka, H.; Armin, F.; Djamaan, A. Utilization od polystyrene waste as coting material for slow-release urea fertilizer. J. Pharm. Biol. Sci. 2020, 15, 47–54. [Google Scholar]
- Liao, Y.; Cao, B.; Liu, L.; Wu, X.; Guo, S.; Mi, C.; Li, K.; Wang, M. Structure and properties of bio-based polyurethane coatings for controlled-release fertilizer. J. Appl. Polym. Sci. 2020, 138, e50179. [Google Scholar] [CrossRef]
- Parsaee, S.; Mirabeddini, M.; Farnood, R.; Alizadegan, F. Development of self-healing coatings on urea-formaldehyde/polyurethane microcapsules containing epoxy resin. J. Appl. Polym. Sci. 2020, 137, 49663. [Google Scholar] [CrossRef]
- Zhao, C.; Tian, H.; Zhang, Q.; Liu, Z.; Zhang, M.; Wang, J. Preparation of urea-containing starch castor oil superabsorbent polyurethane coated urea and investigation of controlled nitrogen release. Carbohydr. Polym. 2021, 253, 117240. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Zhang, M.; Lu, P. Preparation and characterization of polyurethane-/MMT nanocimposite-coated as controlled-release fertilizers. Polym. Plast. Technol. Mater. 2020, 59, 975–984. [Google Scholar] [CrossRef]
- Sasson, E.; Malka, E.; Caspi, A.; Kanovsky, N.; Margel, S. Engineered thin coating of cross-linked silane polymers with urea group onto polypropylene fabrics for controlled release of thymol against molds in hay. Mater. Today Chem. 2024, 37, 102009. [Google Scholar] [CrossRef]
- Behera, S.; Mahanwar, P.A. Superabsorbent polymers in agriculture and other applications: A review. Polym.-Plast. Technol. Mater. 2019, 59, 341–356. [Google Scholar] [CrossRef]
- Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H.; Tang, S.Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants 2021, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Szymanek, I.; Cvek, M.; Rogacz, D.; Żarski, A.; Lewicka, K.; Sedlarik, V.; Rychter, P. Degradation of Polylactic Acid/Polypropylene Carbonate Films in Soil and Phosphate Buffer and Their Potential Usefulness in Agriculture and Agrochemistry. Int. J. Mol. Sci. 2024, 25, 653. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cao, L.; Wang, L.; Qi, Y.; Zhao, Y.; Lu, H.; Lu, L.; Zhang, D.; Wang, Z.; Zhang, H. Preparation and ppplication of degradable lignin/poly (vinyl alcohol) polymers as urea slow-release coating materials. Molecules 2024, 29, 1699. [Google Scholar] [CrossRef]
- Kimmelshue, c.; Goggi, A.S.; Cademartiri, R. The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. Nebraskensis in maize seeds. Sci. Rep. 2019, 9, 17950. [Google Scholar] [CrossRef] [PubMed]
- Krasnopeeva, E.L.; Panova, G.G.; Yakimansky, A.V. Agricultural Applications of Superabsorbent Polymer Hydrogels. Int. J. Mol. Sci. 2022, 23, 15134. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Lu, Y.; Yang, G.; Zhang, A. Water and fertilizer integrated hydrogel derived from the polymerization of acrylic and urea as a slow-release N fertilizer and water retention in agriculture. J. Agric. Food. Chem. 2018, 66, 5762–5769. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, Y.; Chen, A.; Chen, Z.; Guo, C.; Li, S. Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecol. Eng. 2014, 62, 27–32. [Google Scholar] [CrossRef]
- Javazmi, L.; Young, A.; Ash, G.J.; Low, T. Kinetics of slow release of nitrogen fertiliser from multi-layered nanofibrous structures. Sci. Rep. 2021, 11, 4871. [Google Scholar] [CrossRef] [PubMed]
- Castro-Enríquez, D.D.; Rodríguez-Félix, F.; Ramírez-Wong, B.; Torres-Chávez, P.I.; Castillo-Ortega, M.M.; Rodríguez-Félix, D.E.; Armenta-Villegas, L.; Ledesma-Osuna, A.I. Preparation, characterization and release of urea from wheat gluten electrospun membranes. Materials 2012, 5, 2903–2916. [Google Scholar] [CrossRef]
- Chen, L.; Xie, Z.; Zhuang, X.; Chen, X.; Jing, X. Controlled release of urea encapsulated by starch-g-poly(L-lactide). Carbohydr. Polym. 2008, 72, 342–348. [Google Scholar] [CrossRef]
- Kampeerapappun, P.; Phanomkate, N. Slow release fertilizer from core-shell electrospun fibers. Chiang Mai J. Sci. 2013, 40, 775–782. [Google Scholar]
- Krishnamoorthy, V.; Elumalai, G.; Rajiv, S. Environment friendly synthesis of polyvinylpyrrolidone nanofibers and their potential use as seed coats. New J. Chem. 2016, 40, 3268–3276. [Google Scholar] [CrossRef]
- de Cesare, F.; Pietrini, F.; Zacchini, M.; Mugnozza, G.S.; Macagnano, A. Catechol-loading nanofibrous membranes for eco-friendly iron nutrition of Plants. Nanomaterials 2019, 9, 1315. [Google Scholar] [CrossRef] [PubMed]
- Bulus, E.; Sakarya Bulus, G.; Yakuphanoglu, F. Production and characterization of novel nature-friendly organic fertilizer covers based on nanotechnology for the agricultural sector. J. Mater. Electron. Device 2020, 5, 12–16. [Google Scholar]
- Nooeaid, P.; Chuysinuan, P.; Pitakdantham, W.; Aryuwananon, D.; Techasakul, S.; Dechtrirat, D. Eco-friendly polyvinyl alcohol/polylactic acid core/shell structured fibers as controlled-release fertilizers for sustainable agriculture. J. Polym. Environ. 2021, 29, 552–564. [Google Scholar] [CrossRef]
- Salehi, M.A.; Kazemikia, F. Chemical fertilizer release control using encapsulation in polymer matrix by electrospinning. Sci. Iran. 2022, 29, 3198–3207. [Google Scholar]
- Ahmad, W.; Zou, Z.; Awais, M.; Munsif, F.; Khan, A.; Nepal, J.; Ahmad, M.; Akbar, S.; Ahmad, I.; Khan, M.S.; et al. Seed-Primed and foliar oxozinc nanofiber application increased wheat production and zn biofortification in calcareous-alkaline soil. Agronomy 2023, 13, 400. [Google Scholar] [CrossRef]
- Schmidt, S.B.; Husted, S. The Biochemical Properties of manganese in plants. Plants 2019, 8, 381. [Google Scholar] [CrossRef] [PubMed]
- Malafatti, J.O.D.; Ruellas, T.M.O.; Sciena, C.R.; Paris, E.C. PLA/starch biodegradable fibers obtained by the electrospinning method for micronutrients mineral release. AIMS Mater. Sci. 2023, 10, 200–212. [Google Scholar] [CrossRef]
- Thitiwongsawet, P.; Ouykul, P.; Khaoroppan, A. 2,6-Dicholoro-4-nitroaniline-loaded electrospun cellulose acetate fiber mats and their release characteristics. ASEAN J. Chem. Eng. 2010, 2, 41–47. [Google Scholar] [CrossRef]
- Xiang, C.; Taylor, A.G.; Hinestroza, J.P.; Frey, M.W. Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J. Appl. Polym. Sci. 2012, 127, 79–86. [Google Scholar] [CrossRef]
- Castañeda, L.M.F.; Genro, C.; Roggia, I.; Bender, S.S.; Bender, R.J.; Preira, C.N. Innovate rice seed coatong (Oryza Sativa) with polymer nanofibres and microparticles using the electrspinning method. J. Res. Updates Polym. Sci. 2014, 3, 33–39. [Google Scholar] [CrossRef]
- Souza, M.A.; Oliveira, J.E.; Medeiros, E.S.; Glenn, G.M.; Mattoso, L.H.C. Controlled release of linalool using nanofibrous membranes of poly(lactic acid) obtained by electrospinning and solution blow spinning: A comparative study. J. Nanosci. Nanotechnol. 2015, 15, 5628–5636. [Google Scholar] [CrossRef] [PubMed]
- Roshani, B.; Tavanai, H.; Morshed, M.; Khajehali, J. Controlled release of thiram pesticide from poly(L-lactic acid) nanofibers. J. Text. Inst. 2016, 108, 1504–1509. [Google Scholar] [CrossRef]
- Latha, M.; Raja, K.; Subramanian, K.; Karthikeyan, M.; Lakshmanan, A. Fabrication and characterization of tebuconazole loaded PVA nanofiber. Int. J. Agric. Sci. 2019, 10, 8514–8517. [Google Scholar]
- Farias, B.V.; Pirzada, T.; Mathew, R.; Sit, T.L.; Opperman, C.; Khan, S.A. Electrospun polymer nanofibers as seed coatongs for crop protection. ACA Sustain. Chem. Eng. 2019, 7, 19848–19856. [Google Scholar] [CrossRef]
- Ciera, L.; Beladjal, L.; Landuyt, L.V.; Menger, D.; Holdinga, M.; Mertens, J.; Langenhove, L.V.; De Clerk, K.; Gheysens, T. Electrospinning repellents in polyvinyl alcohol-nanofibres for obtaining mosquito-repelling fabrics. R. Soc. Open Sci. 2019, 6, 182139. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Liu, Y.; Jiang, J.; Li, X.; Zhao, L.; Fu, Y.; Ye, F. Encapsulation of thiabendazole in hydroxypropyl-β-cyclodextrin nanofibers via polymer-free electrospinning and its characterization. Pest. Manag. Sci. 2020, 76, 3264–3272. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Liu, Y.; Jiang, J.; Li, X.; Ye, F.; Fu, Y.; Zhao, L. Thiram/hydroxypropyl-β-cyclodextrin inclusion complex electrospun nanofibers for a fast dissolving water-based drug delivery system. Colloids Surf. B 2021, 201, 111625. [Google Scholar] [CrossRef]
- Ryan, J.J.; Casalini, R.; Orlicki, J.A.; Lundin, J.G. Controlled release of the insect repellent picaridin from electrospun nylon-6,6 nanofibers. Polym. Adv. Technol. 2020, 31, 3039–3047. [Google Scholar] [CrossRef]
- Mukiri, C.; Raja, K.; Senthilkumar, M.; Subramanian, K.S.; Govindaraju, K.; Pradeep, D.; Ranjan, S. Immovilization of beneficial microbe Methylobacterium aminovorans in electrospun nanofibre as germination and growth of groundnut Arachis hypogaea. Plant Growth Regul. 2021, 97, 419–427. [Google Scholar] [CrossRef]
- Das, K.P.; Singh, P.; Satapathy, B.K. Nanofibrous-substrate-based controlled herbicidal release systems: Atrazine/hydroxypropyl-β-cyclodextrin inclusion complex loaded PVA agro-augmenting electrospun mats. J. Environ. Chem. Eng. 2023, 6, 111586. [Google Scholar] [CrossRef]
- Merlini, C.; Lacotte, V.; Castro, V.O.; Perli, G.; Da Silva, P.; Livi, S. Novel aphid-repellent fiber mats based on poly(lactic acid)-containing ionic liquids. ACS Omega 2024, 9, 5406–5417. [Google Scholar] [CrossRef] [PubMed]
Reference | Polymers/Solvent | Encapsulated Fertilizer | Fibers Morphology/Diameter | Fibers Application |
---|---|---|---|---|
Castro-Enriquez et al. (2012) [163] | WG Acetic acid/ethanol/1-propanol/ 2-propanol/acetone /2-mercaptoethanol | Urea | Smooth and porous/ 0.683 to 5.45 μm | Design for a controlled-release system |
Kampeerapappun and Phanomkate, (2013) [165] | PLA/dimethylformamide (DMF) PHB/Choloform | NPK 21-21-21 | Core-shell/3.9 to 4.5 μm | Design for a controlled-release system |
Krishnamoorthy et al. (2016) [166] | urea–PVP–CoNPs/ ethanol and chloroform | Urea-CoNPs | Smooth surface, aligned and continuous/ 0.43–1.5 μm; 0.8–1.6 μm, and 0.06–0.8 μm | Coatings cowpea seeds (Vigna unguiculata) |
De Cesare et al. (2018) [167] | PCL/PHB | Catechol(CL-NMs) | Mean diameter 0.502 ± 0.173 μm | Coating duckweeds (Lemma minor L.) |
Bulus et al. (2020) [168] | PCL/DMF | Liquid fertilizer | Smooth, thinner/ 150–300 nm | Design for a controlled-release system |
Nooeaid, et al., 2021 [169] | PVA/deionized PLA/DMF/Dichloromethane (DCM) | NPK | Core-shell/ 0.1–0.3 μm; 0.2–0.5 μm | Growth of green cos lettuce and red cos lettuce |
Javazmi et al. (2021) [162] | PLLA/chloroform: acetone PHB/DMF: chloroform | Urea (N-P-K; 46-0-0) | Smooth fibers/PLLA 496–782 nm PHB/428 ± 64 nm. | Design for a controlled-release system |
Salehi and Kazemikia (2022) [170] | CA/acetic acid, distilled water | Urea | Continuous, uniform fibers/87 nm | Design for a controlled-release system |
Ahmad et al. (2023) [171] | PVA | Zn nanoparticles | Round, irregular, and hexagonal shape/not explicitly valor | Foliar application, seed priming, seed coating to wheat (Triticum aestivum L.) |
Malafatti et al. (2023) [173] | PLA/starch/chloroform, DMF | MnCO3 | Homogeneity and smooth structure/not explicitly valor diameter | Design for a controlled-release system |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colín-Orozco, J.; Colín-Orozco, E.; Valdivia-Barrientos, R. Production of Nanofibers by Electrospinning as Carriers of Agrochemical. Fibers 2024, 12, 64. https://doi.org/10.3390/fib12080064
Colín-Orozco J, Colín-Orozco E, Valdivia-Barrientos R. Production of Nanofibers by Electrospinning as Carriers of Agrochemical. Fibers. 2024; 12(8):64. https://doi.org/10.3390/fib12080064
Chicago/Turabian StyleColín-Orozco, Julia, Elena Colín-Orozco, and Ricardo Valdivia-Barrientos. 2024. "Production of Nanofibers by Electrospinning as Carriers of Agrochemical" Fibers 12, no. 8: 64. https://doi.org/10.3390/fib12080064
APA StyleColín-Orozco, J., Colín-Orozco, E., & Valdivia-Barrientos, R. (2024). Production of Nanofibers by Electrospinning as Carriers of Agrochemical. Fibers, 12(8), 64. https://doi.org/10.3390/fib12080064