Kinematic Evidence of Root-to-Shoot Signaling for the Coding of Support Thickness in Pea Plants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Supports
2.3. Growth Conditions and Germination
2.4. Video Recording and Data Analysis
3. Results
3.1. Qualitative Results
3.2. Kinematic Results
3.2.1. Control Conditions
3.2.2. ‘Thin-Below’ vs. ‘Control-Thick’
3.2.3. ‘Thick-Below’ vs. ‘Control-Thin’
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garbin, M.L.; Carrijo, T.T.; Sansevero, J.B.B.; Sánchez-Tapia, A.; Scarano, F.R. Subordinate, not dominant, woody species promote the diversity of climbing plants. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 257–265. [Google Scholar] [CrossRef]
- Putz, F.E. The natural history of lianas on Barro Colorado Island, Panama. Ecology 1984, 65, 1713–1724. [Google Scholar] [CrossRef]
- Gianoli, E. The behavioural ecology of climbing plants. AoB Plants 2015, 7, plv013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puntieri, J.G.; Pyšek, P. The effects of physical support and density on biomass production and size hierarchies of Galium aparine populations. Oikos 1993, 67, 279–284. [Google Scholar] [CrossRef] [Green Version]
- den Dubbelden, K.C.; Oosterbeek, B. The availability of external support affects allocation patterns and morphology of herbaceous climbing plants. Funct. Ecol. 1995, 9, 628–634. [Google Scholar] [CrossRef]
- Gianoli, E. Evolution of a climbing habit promotes diversification in flowering plants. Proc. R. Soc. Lond. B Biol. Sci. 2004, 271, 2011–2015. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, M.J. On the Mechanism of Contact Coiling of Tendrils. In Plant Growth Substances; Skoog, F., Ed.; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar] [CrossRef]
- Jaffe, M.J.; Galston, A.W. The physiology of tendrils. Annu. Rev. Plant Physiol. 1968, 19, 417–434. [Google Scholar] [CrossRef]
- Darwin, C. The Movements and Habits of Climbing Plants; John Murray: London, UK, 1875. [Google Scholar]
- Tronchet, A. Le comportement des vrilles en présence de tuteurs. Bull. SBF 1945, 92, 147–152. [Google Scholar] [CrossRef]
- Tronchet, A. Suite de nos observations sur le comportement des vrilles en présence de tuteurs. Bull. SBF 1946, 93, 13–18. [Google Scholar] [CrossRef]
- Gerbode, S.J.; Puzey, J.R.; Mccormick, A.G.; Mahadevan, L. How the cucumber tendril coils and overwinds. Science 2012, 33, 1087–1091. [Google Scholar] [CrossRef] [Green Version]
- Putz, F.E.; Holbrook, N.M. Biomechanical studies of vines. In The Biology of Vines; Putz, F.E., Mooney, H.A., Eds.; Cambridge University Press: Cambridge, UK, 1992; pp. 73–97. [Google Scholar]
- Stolarz, M. Circumnutation as a visible plant action and reaction. Plant Signal. Behav. 2009, 4, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Bowling, A.J.; Vaughn, K.C. Gelatinous fibers are widespread in coiling tendrils and twining vines. Am. J. Bot. 2009, 96, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Goriely, A.; Neukirch, S. Mechanics of climbing and attachment in twining plants. Phys. Rev. Lett. 2006, 97, 184302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carsten, L.D.; Juola, F.A.; Male, T.D.; Cherry, S. Host associations of lianas in a south-east Queensland rain forest. J. Trop. Ecol. 2002, 18, 107–120. [Google Scholar] [CrossRef]
- Putz, F.E.; Chai, P. Ecological studies of lianas in Lambir national park, Sarawak, Malaysia. J. Ecol. 1987, 75, 523–531. [Google Scholar] [CrossRef]
- Chalmers, A.C.; Turner, J.C. Climbing plants in relation to their supports in a stand of dry rainforest in the Hunter Valley, New South Wales. P. Linn. Soc. NSW 1994, 114, 73–90. [Google Scholar]
- Ceccarini, F.; Guerra, S.; Peressotti, A.; Peressotti, F.; Bulgheroni, M.; Baccinelli, W.; Bonato, B.; Castiello, U. Speed–accuracy trade-off in plants. Psychon. Bull. Rev. 2020, 27, 966–973. [Google Scholar] [CrossRef]
- Ceccarini, F.; Guerra, S.; Peressotti, A.; Peressotti, F.; Bulgheroni, M.; Baccinelli, W.; Bonato, B.; Castiello, U. On-line control of movement in plants. Biochem. Biophys. Res. Commun. 2021, 564, 86–91. [Google Scholar] [CrossRef]
- Guerra, S.; Peressotti, A.; Peressotti, F.; Bulgheroni, M.; Baccinelli, W.; D’Amico, E.; Gómez, A.; Massaccesi, S.; Ceccarini, F.; Castiello, U. Flexible control of movement in plants. Sci. Rep. 2019, 9, 16570. [Google Scholar] [CrossRef] [Green Version]
- Guerra, S.; Bonato, B.; Wang, Q.; Ceccarini, F.; Peressotti, A.; Peressotti, F.; Bacinelli, W.; Bulgheroni, M.; Castiello, U. The coding of object thickness in plants. J. Comp. Psychol. 2021, 135, 495–504. [Google Scholar] [CrossRef]
- Castiello, U. (Re)claiming plants in comparative psychology. J. Comp. Psychol. 2021, 135, 127. [Google Scholar] [CrossRef] [PubMed]
- Rowe, N.P.; Isnard, S.; Gallenmüller, F.; Speck, T. Diversity of mechanical architectures in climbing plants: An ecological perspective. In Ecology and Biomechanics: A Mechanical Approach to the Ecology of Animals and Plants; Herrel, A., Speck, T., Rowe, N.P., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 35–59. [Google Scholar]
- Karban, R. Plant Sensing and Communication; University of Chicago Press: Chicago, IL, USA, 2015. [Google Scholar]
- Hamant, O.; Moulia, B. How do plants read their own shapes? New Phytol. 2016, 212, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Ueda, H.; Shimada, T.; Tamura, K.; Kato, T.; Tasaka, M.; Morita, M.T.; Hara-Nishimura, I. Regulation of organ straightening and plant posture by an actin–myosin XI cytoskeleton. Nat. Plants 2015, 1, 15031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baluška, F.; Mancuso, S. Vision in plants via plant-specific ocelli? Trends Plant Sci. 2016, 21, 727–730. [Google Scholar] [CrossRef]
- Crepy, M.A.; Casal, J.J. Photoreceptor mediated kin recognition in plants. New Phytol. 2015, 205, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, M.; Mancuso, S.; Robert, D. Towards understanding plant bioacoustics. Trends Plant Sci. 2012, 17, 323–325. [Google Scholar] [CrossRef]
- Runyon, J.B.; Mescher, M.C.; De Moraes, C.M. Volatile chemical cues guide host location and host selection by parasitic plants. Science 2006, 313, 1964–1967. [Google Scholar] [CrossRef] [Green Version]
- Weidenhamer, J.D. Plant olfaction: Using analytical chemistry to elucidate mechanisms of plant growth and interaction. Plant Soil 2016, 407, 275–278. [Google Scholar] [CrossRef]
- Hodge, A. Root decisions. Plant Cell Environ. 2009, 32, 628–640. [Google Scholar] [CrossRef]
- Okada, K.; Shimura, Y. Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 1990, 250, 274–276. [Google Scholar] [CrossRef]
- Trewavas, A. What is plant behaviour? Plant Cell Environ. 2009, 32, 606–616. [Google Scholar] [CrossRef]
- Wilson, B.F. Root growth around barriers. Bot. Gaz. 1967, 128, 79–82. [Google Scholar] [CrossRef]
- Baluška, F.; Mancuso, S.; Volkmann, D.; Barlow, P. The ‘root-brain’hypothesis of Charles and Francis Darwin: Revival after more than 125 years. Plant Signal. Behav. 2009, 4, 1121–1127. [Google Scholar] [CrossRef] [Green Version]
- Braam, J. In touch: Plant responses to mechanical stimuli. New Phytol. 2005, 165, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C.; Darwin, F. The Power of Movement in Plants; John Murray: London, UK, 1880. [Google Scholar]
- Del Bianco, M.; Kepinski, S. How plants get round problems: New insights into the root obstacle avoidance response. New Phytol. 2021, 231, 8–10. [Google Scholar] [CrossRef]
- Massa, G.D.; Gilroy, S. Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J. 2003, 33, 435–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semchenko, M.; Zobel, K.; Heinemeyer, A.; Hutchings, M.J. Foraging for space and avoidance of physical obstructions by plant roots: A comparative study of grasses from contrasting habitats. New Phytol. 2008, 179, 1162–1170. [Google Scholar] [CrossRef]
- Falik, O.; Reides, P.; Gersani, M.; Novoplansky, A. Root navigation by self inhibition. Plant Cell Environ. 2005, 28, 562–569. [Google Scholar] [CrossRef]
- Turner, N.C. Adaptation to Water Deficits: A Changing Perspective. Aust. J. Plant Physiol. 1986, 13, 175–190. [Google Scholar] [CrossRef]
- Rosenthal, R. Meta-Analytic Procedures for Social Research, 2nd ed.; Sage: Newbury Park, CA, USA, 1991. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Sousa-Baena, M.S.; Hernandes-Lopes, J.; Van Sluys, M.A. Reaching the top through a tortuous path: Helical growth in climbing plants. Curr. Opin. Plant Biol. 2021, 59, 101982. [Google Scholar] [CrossRef]
- Aiken, R.M.; Smucker, A.J.M. Root system regulation of whole plant growth. Annu. Rev. Phytopathol. 1996, 34, 325–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouwer, R. Some aspects of the equilibrium between overground and underground plant parts. Jaarb. Van Het Inst. Voor Biol. En Scheikd. Onderz. Aan Landbouwgewassen 1963, 1963, 31–39. [Google Scholar]
- Parise. A.G.; Gagliano, M.; Souza, G.M. Extended cognition in plants: Is it possible? Plant Signal. Behav. 2020, 15, 1710661. [Google Scholar] [CrossRef] [PubMed]
Control-Thick vs. Thin-Below | ||
Control-Thick | Thin-Below | |
N° | 10 | 10 |
Germination period | 6 d (±0.5; Range 4–10) | 5 d (±1.22; Range 5–12) |
Age | 21 d (±3.1; Range 14–26) | 16.5 d (±1.7; Range 14–19) |
Control-Thin vs. Thick-Below | ||
Control-Thin | Thick-Below | |
N° | 10 | 10 |
Germination period | 5.5 d (±0.6; Range 4–7) | 5 d (±1.5; Range 3–10) |
Age | 14 d (±2; Range 10–20) | 21.5 d (±5.6; Range 9–26) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra, S.; Bonato, B.; Wang, Q.; Peressotti, A.; Peressotti, F.; Baccinelli, W.; Bulgheroni, M.; Castiello, U. Kinematic Evidence of Root-to-Shoot Signaling for the Coding of Support Thickness in Pea Plants. Biology 2022, 11, 405. https://doi.org/10.3390/biology11030405
Guerra S, Bonato B, Wang Q, Peressotti A, Peressotti F, Baccinelli W, Bulgheroni M, Castiello U. Kinematic Evidence of Root-to-Shoot Signaling for the Coding of Support Thickness in Pea Plants. Biology. 2022; 11(3):405. https://doi.org/10.3390/biology11030405
Chicago/Turabian StyleGuerra, Silvia, Bianca Bonato, Qiuran Wang, Alessandro Peressotti, Francesca Peressotti, Walter Baccinelli, Maria Bulgheroni, and Umberto Castiello. 2022. "Kinematic Evidence of Root-to-Shoot Signaling for the Coding of Support Thickness in Pea Plants" Biology 11, no. 3: 405. https://doi.org/10.3390/biology11030405
APA StyleGuerra, S., Bonato, B., Wang, Q., Peressotti, A., Peressotti, F., Baccinelli, W., Bulgheroni, M., & Castiello, U. (2022). Kinematic Evidence of Root-to-Shoot Signaling for the Coding of Support Thickness in Pea Plants. Biology, 11(3), 405. https://doi.org/10.3390/biology11030405