Assessment of Heavy Metal Accumulation in Soil and Garlic Influenced by Waste-Derived Organic Amendments
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experiment
2.3. Sample Collection
2.3.1. Soil and Plant Sampling
2.3.2. Wet Digestion and Spectroscopic Analyses
2.4. Quality Control
2.4.1. Pollution Load Index (PLI)
2.4.2. Bioconcentration Factor (BCF)
2.4.3. Daily Intake of Metals (DIM)
2.4.4. Health Risk Index (HRI)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Concentration of Metal Ions in Soil
3.2. Heavy Metal Concentrations in Garlic Samples
Concentration of Metal Ions in Garlic
3.3. Bioconcentration Factor
3.4. Pollution Load Index
3.5. Metal Intake Associated Health Risks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, N.; Yadav, K.K.; Kumar, V.; Krishnan, S.; Kumar, S.; Nejad, Z.D.; Khan, M.M.; Alam, J. Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. Environ. Toxicol. Pharmacol. 2021, 82, 103563. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Awan, S.A.; Rizwan, M.; Ali, S.; Hassan, M.J.; Brestic, M.; Zhang, X.; Huang, L. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicol. Environ. Safe. 2021, 222, 112510. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Israr, M.; Ur Rehman, S.; Azizullah, A.; Gulab, H.; Idrees, M.; Iqbal, R.; Khattak, A.; Hussain, M.; Al-Zuaibr, F.M. Health risk assessment of heavy metals via consumption of dietary vegetables using wastewater for irrigation in Swabi, Khyber Pakhtunkhwa, Pakistan. PLoS ONE 2021, 16, e0255853. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gu, S.; Yang, S.; Deng, J.; Xu, J. Heavy metals in soil-vegetable system around E-waste site and the health risk assessment. Sci. Total Environ. 2021, 779, 146438. [Google Scholar] [CrossRef]
- Hussain, J.; Wei, X.; Xue-Gang, L.; Shah, S.R.U.; Aslam, M.; Ahmed, I.; Abdullah, S.; Babar, A.; Jakhar, A.M.; Azam, T. Garlic (Allium sativum) based interplanting alters the heavy metals absorption and bacterial diversity in neighboring plants. Sci. Rep. 2021, 11, 5833. [Google Scholar] [CrossRef]
- Haque, M.M.; Niloy, N.M.; Khirul, M.A.; Alam, M.F.; Tareq, S.M. Appraisal of probabilistic human health risks of heavy metals in vegetables from industrial, non-industrial and arsenic contaminated areas of Bangladesh. Heliyon 2021, 7, e06309. [Google Scholar] [CrossRef]
- Turfan, N. Effect of Different Organic Manures Application on the Bioactive Compound and Yield of Taşköprü Garlic (Allium sativum L.) under 50% Drought. Drought. Uluslararası Tarım Yaban Hayatı Bilimleri Derg. 2021, 7, 264–275. [Google Scholar] [CrossRef]
- Patle, A.K.; Singh, S.S.; Jadia, M.; Singh, K. Effect of organic, inorganic sources of nutrients on growth of garlic (Allium sativum L.). J. Pharmacogn. Phytochem. 2021, 10, 2214–2217. [Google Scholar]
- Mrema, E.; Mtunda, K.; Mbise, V. Influence of fertilization on growth and yield of onion under semi-arid conditions. Int. J. Veg. Sci. 2021, 1–8. [Google Scholar] [CrossRef]
- Ugulu, I.; Akhter, P.; Khan, Z.I.; Akhtar, M.; Ahmad, K. Trace metal accumulation in pepper (Capsicum annuum L.) grown using organic fertilizers and health risk assessment from consumption. Food Res. Int. 2021, 140, 109992. [Google Scholar] [CrossRef]
- Ali, S.; Noureen, S.; Shakoor, M.B.; Haroon, M.Y.; Rizwan, M.; Jilani, A.; Arif, M.S.; Khalil, U. Comparative evaluation of wheat straw and press mud biochars for Cr (VI) elimination from contaminated aqueous solution. Environ. Technol. Innov. 2020, 19, 101017. [Google Scholar] [CrossRef]
- Bashir, S.; Bashir, S.; Gulshan, A.B.; Khan, M.J.; Iqbal, J.; Sherani, J.; Husain, A.; Ahmed, N.; Shah, A.N.; Bukhari, M.A.; et al. The role of different organic amendments to improve maize growth in wastewater irrigated soil. J. King Saud Univ. Sci. 2021, 33, 101583. [Google Scholar] [CrossRef]
- Ozores-Hampton, M. Fertility Program Using Compost in Fruit Crops, Vegetable and Field Ornamental Production. In Compost Utilization in Production of Horticultural Crops; CRC Press: Boca Raton, FL, USA, 2021; pp. 27–44. Available online: http://data.europa.eu/eli/reg/2006/1881/2010-07-01 (accessed on 15 February 2022).
- Abdelrahman, M.; Hirata, S.; Mukae, T.; Yamada, T.; Sawada, Y.; El-Syaed, M.; Yamada, Y.; Sato, M.; Hirai, M.Y.; Shigyo, M. Comprehensive metabolite profiling in genetic resources of garlic (Allium sativum L.) collected from different geographical regions. Molecules 2021, 26, 1415. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Ntatsi, G.; Petrotos, K.; Barros, L.; Ferreira, I.C. Nutritional value, chemical characterization and bulb morphology of Greek garlic landraces. Molecules 2018, 23, 319. [Google Scholar] [CrossRef] [Green Version]
- Koch, H.P.; Lawson, L.D. Garlic: The Science and Therapeutic Application of Allium Sativum L. and Related Species; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1996. [Google Scholar]
- White, D. Healthy Uses for Garlic. Nurs. Clin. N. Am. 2021, 56, 153–156. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Akram, N.A.; Mehmood, N.; Yasmeen, S. Heavy metal contamination in water, soil and a potential vegetable garlic (Allium sativum L.) in Punjab, Pakistan. Pak. J. Bot. 2017, 49, 547–552. [Google Scholar]
- Wang, Y.; Hu, Y.; Duan, Y.; Feng, R.; Gong, H. Silicon reduces long-term cadmium toxicities in potted garlic plants. Acta Physiol. Plant 2016, 38, 211. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No.1181/2006: Setting Maximum Levels for Certain Contaminants in Food Stuffs. 2006. Available online: http://eurlex.europa.eu/legalcontent/EN/ALL/?uri=CELEX:02006R1881-20100701 (accessed on 15 February 2022).
- Armbruster, D.A.; Tillman, M.D.; Hubbs, L.M. Limit of detection (LQD)/limit of quantitation (LOQ): Comparison of the empirical and the statistical methods exemplified with GC–MS assays of abused drugs. Clin. Chem. 1994, 40, 1233–1238. [Google Scholar] [CrossRef]
- Liu, W.H.; Zhao, J.Z.; Ouyang, Z.Y.; Söderlund, L.; Liu, G.H. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ. Int. 2005, 31, 805–812. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Safdar, H.; Ugulu, I.; Wajid, K.; Munir, M.; Dogan, Y. Monitoring of zinc profile of forages irrigated with city effluent. Pak. J. Anal. Environ. Chem. 2020, 21, 303–313. [Google Scholar] [CrossRef]
- Chen, F.; Saqlain, L.; Ma, J.; Khan, Z.I.; Ahmad, K.; Ashfaq, A.; Sultana, R.; Muhammad, F.G.; Maqsood, A.; Naeem, M.; et al. Evaluation of potential ecological risk and prediction of zinc accumulation and its transfer in soil plants and ruminants: Public health implications. Environ. Sci. Pollut. Res. 2022, 29, 3386–3393. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency. Exposure Factors Handbook; Food Ingestion Factors; EPA/600//P-95/002Fa; Office of Research and Development; US Environmental Protection Agency: Washington, DC, USA, 1997; Volume II.
- Chaudhry, U.K.; Shahzad, S.; Naqqash, M.N.; Saboor, A.; Yaqoob, S.; Salim, M.; Khalid, M. Integration of biochar and chemical fertilizer to enhance quality of soil and wheat crop (Triticum aestivum L.). PeerJ Prepr. 2016, 4, e1631v1. [Google Scholar]
- Naramabuye, F.X.; Haynes, R.J. Effect of organic amendments on soil pH and Al solubility and use of laboratory indices to predict their liming effect. Soil Sci. 2006, 171, 754–763. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.; Liu, W.; Cheng, L.; Jiang, Q.; Zhanga, Y. Exploratory of immobilization remediation of hydroxyapatite (HAP) on lead-contaminated soils. Environ. Sci. Pollut. Res. 2019, 26, 26674–26684. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Hussain, Z.; Khan, A.; Khan, M.A.; Rab, A.; Asif, M.; Shah, M.A.; Muhammad, A. The effects of organic amendments on heavy metals bioavailability in mine impacted soil and associated human health risk. Sci. Hortic. 2020, 262, 109067. [Google Scholar] [CrossRef]
- Qin, X.; Liu, Y.; Wang, L.; Li, B.; Wang, H.; Xu, Y. Remediation of heavy metal–polluted alkaline vegetable soil using mercapto-grafted palygorskite: Effects of field-scale application and soil environmental quality. Environ. Sci. Pollut. Res. 2021, 28, 60526–60536. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Asghar, H.N.; Zahir, Z.A. Comparative growth analysis of okra (Abelmoschus esculentus) in the presence of PGPR and press mud in chromium contaminated soil. Chemosphere 2021, 262, 127865. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, S.; Cheng, P.; Zhang, S.; Sun, Y. Effects of soil amendments on heavy metal immobilization and accumulation by maize grown in a multiple-metal-contaminated soil and their potential for safe crop production. Toxics 2020, 8, 102. [Google Scholar] [CrossRef]
- World Health Organization. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Addis, W.; Abebaw, A. Determination of heavy metal concentration in soils used for cultivation of Allium sativum L.(garlic) in East Gojjam Zone, Amhara Region, Ethiopia. Cogent Chem. 2017, 3, 1419422. [Google Scholar] [CrossRef]
- Andrea, V.; Grattacaso, M.; Canali, G.; Nannoni, F.; Di Lella, L.A.; Protano, G.; Biagiotti, S.; Loppi, S. Potentially Toxic Elements (PTEs) in Soils and Bulbs of Elephant Garlic (Allium ampeloprasum L.) Grown in Valdichiana, a Traditional Cultivation Area of Tuscany, Italy. Appl. Sci. 2021, 11, 7023. [Google Scholar]
- Ashraf, I.; Ahmad, F.; Sharif, A.; Altaf, A.R.; Teng, H. Heavy metals assessment in water, soil, vegetables and their associated health risks via consumption of vegetables, District Kasur, Pakistan. SN Appl. Sci. 2021, 3, 552. [Google Scholar] [CrossRef]
- Ali, N.; Eqani, S.A.M.A.S.; Nazar, E.; Alhakamy, N.A.; Rashid, M.I.; Shahzad, K.; Zeb, J.; Shen, H.; Ismail, I.M.I.; Albar, H.M.S.A. Arsenic and lead in the indoor residential settings of different socio-economic status; assessment of human health risk via dust exposure. Environ. Sci. Pollut. Res. 2021, 28, 13288–13299. [Google Scholar] [CrossRef]
- Ugulu, I.; Khan, Z.I.; Safdar, H.; Ahmad, K.; Bashir, H. Chromium Bioaccumulation by Plants and Grazing Livestock as Affected by the Application of Sewage Irrigation Water: Implications to the Food Chain and Health Risk. Int. J. Environ. Res. 2021, 15, 261–274. [Google Scholar] [CrossRef]
- Abowaly, M.E.; Belal, A.A.A.; Abd Elkhalek, E.E.; Elsayed, S.; Abou Samra, R.M.; Alshammari, A.S.; Moghanm, F.S.; Shaltout, K.H.; Alamri, S.A.; Eid, E.M. Assessment of Soil Pollution Levels in North Nile Delta, by Integrating Contamination Indices, GIS, and Multivariate Modeling. Sustainability 2021, 13, 8027. [Google Scholar] [CrossRef]
- Wajid, K.; Ahmad, K.; Khan, Z.I.; Nadeem, M.; Bashir, H.; Chen, F.; Ugulu, I. Effect of organic manure and mineral fertilizers on bioaccumulation and translocation of trace metals in maize. Bull. Environ. Contam. Toxicol. 2020, 104, 649–657. [Google Scholar] [CrossRef]
- Setia, R.; Dhaliwal, S.S.; Singh, R.; Kumar, V.; Taneja, S.; Kukal, S.S.; Pateriya, B. Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere 2021, 263, 128321. [Google Scholar] [CrossRef]
- Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef]
- Kharazi, A.; Leili, M.; Khazaei, M.; Alikhani, M.Y.; Shokoohi, R. Human health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran. J. Food Compos. Anal. 2021, 100, 103890. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Ashraf, M.; Akram, N.A.; Rizwan, Y.; Shaheen, M.; Arshad, F. Assessment of potential toxicological risk for public health of heavy metals in wheat crop irrigated with wastewater: A case study in Sargodha, Pakistan. Asian J. Chem. 2013, 25, 9704–9706. [Google Scholar] [CrossRef]
- Vinnarasi, F.; Srinivasamoorthy, K.; Saravanan, K.; Kanna, A.R.; Gopinath, S.; Prakash, R.; Ponnumani, G.; Babu, C. Hydrogeochemical characteristics and risk evaluation of potential toxic elements in groundwater from Shanmuganatha, Tamil Nādu, India. Environ. Res. 2021, 204, 112199. [Google Scholar] [CrossRef]
Metal (mg kg−1) | Treatments | MPL (mg kg−1) | |||
---|---|---|---|---|---|
C | PW | PM | FYM | ||
Soil | |||||
Cd | 0.448 ± 0.003 | 0.332 ± 0.068 | 0.457 ± 0.004 | 0.394 ± 0.011 | 0.5 |
Co | 0.537 ± 0.0026 | 0.455 ± 0.093 | 0.562 ± 0.056 | 0.488 ± 0.005 | 1 |
Cr | 0.135 ± 0.014 | 0.146 ± 0.004 | 0.779 ± 0.006 | 0.189 ± 0.004 | 50 |
Cu | 1.222 ± 0.006 | 1.310 ± 0.041 | 1.251 ± 0.006 | 1.254 ± 0.005 | 20 |
Fe | 0.179 ± 0.015 | 0.126 ± 0.020 | 0.108 ± 0.016 | 0.141 ± 0.016 | 10 |
Mn | 1.868 ± 0.759 | 5.682 ± 0.150 | 5.682 ± 0.150 | 0.7196 ± 0.013 | 1000 |
Pb | 0.537 ± 0.006 | 0.023 ± 0.004 | 0.082 ± 0.032 | 0.0529 ± 0.027 | 30 |
Zn | 4.535 ± 0.57 | 17.633 ± 1.120 | 12.69 ± 0.022 | 10.713 ± 2.714 | 50 |
A. Sativum | |||||
Cd | 0.444 ± 0.007 | 0.459 ± 0.004 | 0.495 ± 0.012 | 0.457 ± 0.011 | 0.5 |
Co | 0.402 ± 0.028 | 0.442 ± 0.017 | 0.411 ± 0.033 | 0.463 ± 0.022 | 1 |
Cr | 0.298 ± 0.158 | 0.169 ± 0.004 | 0.381 ± 0.159 | 0.272 ± 0.123 | 50 |
Cu | 1.152 ± 0.008 | 1.151 ± 0.005 | 1.130 ± 0.020 | 1.189 ± 0.002 | 20 |
Fe | 0.192 ± 0.003 | 0.311 ± 0.023 | 0.966 ± 0.657 | 0.187 ± 0.012 | 10 |
Mn | 2.949 ± 0.534 | 3.472 ± 0.900 | 3.458 ± 0.940 | 5.682 ± 0.150 | 1000 |
Pb | 0.327 ± 0.050 | 0.052 ± 0.0192 | 0.501 ± 0.162 | 0.488 ± 0.188 | 30 |
Zn | 16.04 ± 0.031 | 18.28 ± 0.804 | 9.348 ± 3.22 | 4.535 ± 0.571 | 50 |
Metals | Soil | Plant |
---|---|---|
Cd | 5.516 * | 0.003 ** |
Co | 1.163 ns | 0.005 * |
Cr | 2.114 *** | 0.046 * |
Cu | 2.372 * | 0.004 ** |
Pb | 12.984 ** | 0.831 * |
Fe | 60.111ns | 8.918 ** |
Mn | 2.724 * | 0.262 ** |
Zn | 711.514 ** | 237.171 *** |
Metals | Treatments | |||
---|---|---|---|---|
Control | PW | PM | FYM | |
Cd | 1.9103 | 5.40 | 3.245902 | 1.322338 |
Co | 0.069 | 0.984 | 0.309573 | 0.18898 |
Cr | 0.437 | 2.608 | 1.970213 | 0.788406 |
Cu | 1.68 | 1.23 | 0.192482 | 0.305656 |
Pb | 3.58 | 3.273 | 25.76 | 3.351254 |
Fe | 0.172 | 1.628136 | 1.199653 | 1.592935 |
Mn | 1.900 | 0.034899 | 1.027692 | 2.076 |
Zn | 2.40 | 0.80952 | 2.002892 | 0.428801 |
Metals | Treatments | |||
---|---|---|---|---|
C | PW | PM | FYM | |
Cd | 0.1560 | 0.057 | 0.102 | 0.231 |
Co | 0.6387 | 0.049 | 0.238 | 0.269 |
Cr | 0.455 | 0.043 | 0.156 | 0.23 |
Cu | 0.0813 | 0.110 | 0.700 | 0.463 |
Pb | 0.0006 | 0.037 | 0.050 | 0.062 |
Fe | 0.2998 | 0.011 | 0.010 | 0.005 |
Mn | 0.1509 | 0.511 | 0.105 | 0.239 |
Zn | 0.3861 | 0.226 | 0.099 | 0.511 |
Metals | Treatments | C | PW | PM | FYM |
---|---|---|---|---|---|
Cd | DIM | 0.0025 | 0.0026 | 0.0028 | 0.00267 |
HRI | 2.5972 | 2.6849 | 2.8944 | 2.67228 | |
Co | DIM | 0.0023 | 0.0025 | 0.0028 | 0.00270 |
HRI | 0.0547 | 0.0602 | 0.0912 | 0.06296 | |
Cr | DIM | 0.0017 | 0.0009 | 0.0027 | 0.00159 |
HRI | 0.0011 | 0.0006 | 0.0018 | 0.00106 | |
Cu | DIM | 0.0067 | 0.0067 | 0.0066 | 0.00693 |
HRI | 0.1685 | 0.1683 | 0.1653 | 0.17381 | |
Pb | DIM | 0.0011 | 0.0018 | 0.0056 | 0.00109 |
HRI | 0.3222 | 0.5195 | 1.6138 | 0.31242 | |
Fe | DIM | 0.0172 | 0.0203 | 0.0202 | 0.03322 |
HRI | 0.0246 | 0.0290 | 0.0288 | 0.04746 | |
Mn | DIM | 0.0019 | 0.0003 | 0.0546 | 0.00285 |
HRI | 0.0246 | 0.0074 | 0.0714 | 0.06959 | |
Zn | DIM | 0.0938 | 0.1069 | 0.0546 | 0.02651 |
HRI | 0.2535 | 0.2889 | 0.1477 | 0.07167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhter, P.; Khan, Z.I.; Hussain, M.I.; Ahmad, K.; Farooq Awan, M.U.; Ashfaq, A.; Chaudhry, U.K.; Fahad Ullah, M.; Abideen, Z.; Almaary, K.S.; et al. Assessment of Heavy Metal Accumulation in Soil and Garlic Influenced by Waste-Derived Organic Amendments. Biology 2022, 11, 850. https://doi.org/10.3390/biology11060850
Akhter P, Khan ZI, Hussain MI, Ahmad K, Farooq Awan MU, Ashfaq A, Chaudhry UK, Fahad Ullah M, Abideen Z, Almaary KS, et al. Assessment of Heavy Metal Accumulation in Soil and Garlic Influenced by Waste-Derived Organic Amendments. Biology. 2022; 11(6):850. https://doi.org/10.3390/biology11060850
Chicago/Turabian StyleAkhter, Pervaiz, Zafar Iqbal Khan, Muhammad Iftikhar Hussain, Kafeel Ahmad, Muhammad Umer Farooq Awan, Asma Ashfaq, Usman Khalid Chaudhry, Muhammad Fahad Ullah, Zainul Abideen, Khalid S. Almaary, and et al. 2022. "Assessment of Heavy Metal Accumulation in Soil and Garlic Influenced by Waste-Derived Organic Amendments" Biology 11, no. 6: 850. https://doi.org/10.3390/biology11060850
APA StyleAkhter, P., Khan, Z. I., Hussain, M. I., Ahmad, K., Farooq Awan, M. U., Ashfaq, A., Chaudhry, U. K., Fahad Ullah, M., Abideen, Z., Almaary, K. S., Alwahibi, M. S., & Elshikh, M. S. (2022). Assessment of Heavy Metal Accumulation in Soil and Garlic Influenced by Waste-Derived Organic Amendments. Biology, 11(6), 850. https://doi.org/10.3390/biology11060850