Effects of High-Intensity Resistance Training on Physical Fitness, Hormonal and Antioxidant Factors: A Randomized Controlled Study Conducted on Young Adult Male Soccer Players
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Participants
2.4. Testing Procedures and Context
2.5. Anthropometry
2.6. Blood Sampling
2.7. Running-Based Anaerobic Sprint Test (RAST)
2.8. Linear Sprint
2.9. Change-of-Direction Test
2.10. The Yo-Yo Intermittent Recovery Test—Level 1 (YYIRT)
2.11. Training Intervention
2.12. Statistical Procedures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stolen, T.; Chamari, K.; Castagna, C.; Wisloff, U. Physiology of soccer: An update. Sport. Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Dolci, F.; Hart, N.H.; Kilding, A.E.; Chivers, P.; Piggott, B.; Spiteri, T. Physical and Energetic Demand of Soccer: A Brief Review. Strength Cond. J. 2020, 42, 70–77. [Google Scholar] [CrossRef]
- Gonçalves, L.G.C.; Clemente, F.; Palucci Vieira, L.H.; Bedo, B.; Puggina, E.F.; Moura, F.; Mesquita, F.; Pereira Santiago, P.R.; Almeida, R.; Aquino, R. Effects of match location, quality of opposition, match outcome, and playing position on load parameters and players’ prominence during official matches in professional soccer players. Hum. Mov. 2021, 22, 35–44. [Google Scholar] [CrossRef]
- Bush, M.; Barnes, C.; Archer, D.T.; Hogg, B.; Bradley, P.S. Evolution of match performance parameters for various playing positions in the English Premier League. Hum. Mov. Sci. 2015, 39, 1–11. [Google Scholar] [CrossRef]
- Bradley, P.S.; Archer, D.T.; Hogg, B.; Schuth, G.; Bush, M.; Carling, C.; Barnes, C. Tier-specific evolution of match performance characteristics in the English Premier League: It’s getting tougher at the top. J. Sports Sci. 2016, 34, 980–987. [Google Scholar] [CrossRef]
- Slimani, M.; Nikolaidis, P.T. Anthropometric and physiological characteristics of male soccer players according to their competitive level, playing position and age group: A systematic review. J. Sports Med. Phys. Fitness 2017, 59, 141–163. [Google Scholar] [CrossRef]
- Turner, A.N.; Stewart, P.F. Strength and Conditioning for Soccer Players. Strength Cond. J. 2014, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Weldon, A.; Duncan, M.J.; Turner, A.; Sampaio, J.; Noon, M.; Wong, D.; Lai, V.W. Contemporary practices of strength and conditioning coaches in professional soccer. Biol. Sport 2021, 38, 377–390. [Google Scholar] [CrossRef]
- Ostojic, S.M. Elite and Nonelite Soccer Players: Preseasonal Physical and Physiological Characteristics. Res. Sport. Med. 2004, 12, 143–150. [Google Scholar] [CrossRef]
- Manou, V.; Dalamitros, A.A.; Kellis, S. Variations in important aerobic fitness parameters and physical characteristics during two consecutive preseason periods in adolescent soccer players. Hum. Mov. 2018, 2018, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Redkva, P.E.; Paes, M.R.; Fernandez, R.; Da-Silva, S.G. Correlation Between Match Performance and Field Tests in Professional Soccer Players. J. Hum. Kinet. 2018, 62, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aquino, R.; Carling, C.; Maia, J.; Vieira, L.H.P.; Wilson, R.S.; Smith, N.; Almeida, R.; Gonçalves, L.G.C.; Kalva-Filho, C.A.; Garganta, J.; et al. Relationships between running demands in soccer match-play, anthropometric, and physical fitness characteristics: A systematic review. Int. J. Perform. Anal. Sport 2020, 20, 534–555. [Google Scholar] [CrossRef]
- Ferreira, I.; Santos, J.; Souza, M.; Teixeira, A.; Barbosa, A.; Nakamura, F.; Barbosa, A. Isometric knee torque, quadriceps-hamstrings ratio, and jumping parameters in Brazilian soccer players of different age categories. Hum. Mov. 2022, 23, 81–91. [Google Scholar] [CrossRef]
- Hoff, J. Training and testing physical capacities for elite soccer players. J. Sports Sci. 2005, 23, 573–582. [Google Scholar] [CrossRef]
- Köklü, Y.; Alemdaroğlu, U.; Özkan, A.; Koz, M.; Ersöz, G. The relationship between sprint ability, agility and vertical jump performance in young soccer players. Sci. Sport. 2015, 30, e1–e5. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Fílter, A.; Olivares-Jabalera, J.; Reis, V.P.; Fernandes, V.; Freitas, T.T.; Requena, B. Curve sprinting in soccer: Relationship with linear sprints and vertical jump performance. Biol. Sport 2020, 37, 277–283. [Google Scholar] [CrossRef]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef]
- Haugen, T.A.; Tønnessen, E.; Seiler, S. Speed and countermovement-jump characteristics of elite female soccer players, 1995–2010. Int. J. Sports Physiol. Perform. 2012, 7, 340–349. [Google Scholar] [CrossRef]
- Clemente, F.M.; Ramirez-Campillo, R.; Nakamura, F.Y.; Sarmento, H. Effects of high-intensity interval training in men soccer player’s physical fitness: A systematic review with meta-analysis of randomized-controlled and non-controlled trials. J. Sports Sci. 2021, 39, 1–22. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef]
- Engel, F.A.; Ackermann, A.; Chtourou, H.; Sperlich, B. High-Intensity Interval Training Performed by Young Athletes: A Systematic Review and Meta-Analysis. Front. Physiol. 2018, 9, 1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín-Pagán, C.; Blazevich, A.J.; Chung, L.H.; Romero-Arenas, S.; Freitas, T.T.; Alcaraz, P.E. Acute Physiological Responses to High-Intensity Resistance Circuit Training vs. Traditional Strength Training in Soccer Players. Biology 2020, 9, 383. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Heinrich, K.; Butcher, S.; Poston, W. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falk Neto, J.; Kennedy, M. The Multimodal Nature of High-Intensity Functional Training: Potential Applications to Improve Sport Performance. Sports 2019, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Hermassi, S.; Wollny, R.; Schwesig, R.; Shephard, R.J.; Chelly, M.S. Effects of In-Season Circuit Training on Physical Abilities in Male Handball Players. J. Strength Cond. Res. 2019, 33, 944–957. [Google Scholar] [CrossRef]
- Baron, J.; Bieniec, A.; Swinarew, A.S.; Gabryś, T.; Stanula, A. Effect of 12-Week Functional Training Intervention on the Speed of Young Footballers. Int. J. Environ. Res. Public Health 2019, 17, 160. [Google Scholar] [CrossRef] [Green Version]
- Kliszczewicz, B.; Williamson, C.; Bechke, E.; McKenzie, M.; Hoffstetter, W. Autonomic response to a short and long bout of high-intensity functional training. J. Sports Sci. 2018, 36, 1872–1879. [Google Scholar] [CrossRef]
- Seiler, S.; Jøranson, K.; Olesen, B.V.; Hetlelid, K.J. Adaptations to aerobic interval training: Interactive effects of exercise intensity and total work duration. Scand. J. Med. Sci. Sports 2013, 23, 74–83. [Google Scholar] [CrossRef]
- Crawford, D.; Drake, N.; Carper, M.; DeBlauw, J.; Heinrich, K. Are Changes in Physical Work Capacity Induced by High-Intensity Functional Training Related to Changes in Associated Physiologic Measures? Sports 2018, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Mangine, G.; Van Dusseldorp, T.; Feito, Y.; Holmes, A.; Serafini, P.; Box, A.; Gonzalez, A. Testosterone and Cortisol Responses to Five High-Intensity Functional Training Competition Workouts in Recreationally Active Adults. Sports 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Cadegiani, F.A.; Kater, C.E.; Gazola, M. Clinical and biochemical characteristics of high-intensity functional training (HIFT) and overtraining syndrome: Findings from the EROS study (The EROS-HIFT). J. Sports Sci. 2019, 37, 1296–1307. [Google Scholar] [CrossRef] [PubMed]
- Muscella, A.; Vetrugno, C.; Spedicato, M.; Stefàno, E.; Marsigliante, S. The effects of training on hormonal concentrations in young soccer players. J. Cell. Physiol. 2019, 234, 20685–20693. [Google Scholar] [CrossRef] [PubMed]
- Crewther, B.T.; Kilduff, L.P.; Cook, C.J.; Cunningham, D.J.; Bunce, P.; Bracken, R.M.; Gaviglio, C.M. Relationships between salivary free testosterone and the expression of force and power in elite athletes. J Sport. Med Phys Fit. 2012, 52, 221–227. [Google Scholar]
- Fyfe, J.J.; Bartlett, J.D.; Hanson, E.D.; Stepto, N.K.; Bishop, D.J. Endurance Training Intensity Does Not Mediate Interference to Maximal Lower-Body Strength Gain during Short-Term Concurrent Training. Front. Physiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, V.; Zagatto, A.; Kalva-Filho, C.; Mendes, O.; Gobatto, C.; Campos, E.; Papoti, M. Running-based Anaerobic Sprint Test as a Procedure to Evaluate Anaerobic Power. Int. J. Sports Med. 2015, 36, 1156–1162. [Google Scholar] [CrossRef] [Green Version]
- Rago, V.; Brito, J.; Figueiredo, P.; Ermidis, G.; Barreira, D.; Rebelo, A. The Arrowhead Agility Test: Reliability, Minimum Detectable Change, and Practical Applications in Soccer Players. J. Strength Cond. Res. 2020, 34, 483–494. [Google Scholar] [CrossRef]
- Krustrup, P.; Mohr, M.; Amstrup, T.; Rysgaard, T.; Johansen, J.; Steensberg, A.; Pedersen, P.K.; Bangsbo, J. The Yo-Yo Intermittent Recovery Test: Physiological Response, Reliability, and Validity. Med. Sci. Sport. Exerc. 2003, 35, 697–705. [Google Scholar] [CrossRef]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-Yo Intermittent Recovery Test. Sport. Med. 2008, 38, 37–51. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, MI, USA, 1988; Volume 2. [Google Scholar]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar]
- Zagdsuren, B.; Sobrero, G.; Inman, C.; Arnett, S.; Schafer, M.; Lyons, S.; Maples, J.; Crandall, J.; Callahan, Z. CrossFit vs. circuit-training: Effects of a ten-week training program on aerobic, anaerobic, and flexibility indicators. Med. Sci. Sport. Exerc. 2015, 47, 801. [Google Scholar] [CrossRef]
- Heinrich, K.M.; Spencer, V.; Fehl, N.; Poston, W.S.C. Mission essential fitness: Comparison of functional circuit training to traditional army physical training for active duty military. Mil. Med. Int. J. AMSUS 2012, 177, 1125–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weston, M. Difficulties in Determining the Dose-Response Nature of Competitive Soccer Matches. J. Athl. Enhanc. 2013, 2, 2012–2014. [Google Scholar] [CrossRef] [Green Version]
- McRae, G.; Payne, A.; Zelt, J.G.E.; Scribbans, T.D.; Jung, M.E.; Little, J.P.; Gurd, B.J. Extremely low volume, whole-body aerobic–resistance training improves aerobic fitness and muscular endurance in females. Appl. Physiol. Nutr. Metab. 2012, 37, 1124–1131. [Google Scholar] [CrossRef]
- Nughes, E.; Rago, V.; Aquino, R.; Ermidis, G.; Randers, M.B.; Ardigò, L.P. Anthropometric and Functional Profile of Selected vs. Non-Selected 13-to-17-Year-Old Soccer Players. Sports 2020, 8, 111. [Google Scholar] [CrossRef]
- Aquino, R.; Alves, I.S.; Padilha, M.B.; Casanova, F.; Puggina, E.F.; Maia, J. Multivariate Profiles of Selected Versus non-Selected Elite Youth Brazilian Soccer Players. J. Hum. Kinet. 2017, 60, 113–121. [Google Scholar] [CrossRef] [Green Version]
- López-Segovia, M.; Dellal, A.; Chamari, K.; González-Badillo, J.J. Importance of Muscle Power Variables in Repeated and Single Sprint Performance in Soccer Players. J. Hum. Kinet. 2014, 40, 201–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampinini, E.; Bishop, D.; Marcora, S.M.; Ferrari Bravo, D.; Sassi, R.; Impellizzeri, F.M. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int. J. Sports Med. 2007, 28, 228–235. [Google Scholar] [CrossRef]
- Rebelo, A.; Brito, J.; Seabra, A.; Oliveira, J.; Krustrup, P. Physical match performance of youth football players in relation to physical capacity. Eur. J. Sport Sci. 2014, 14, S148–S156. [Google Scholar] [CrossRef]
- Šimonek, J.; Horička, P.; Hianik, J. Differences in pre-planned agility and reactive agility performance in sport games. Acta Gymnica 2016, 46, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, E.; Gonzaga, A.D.S.; Cardoso, F.D.S.L.; Teoldo, I. Anticipation in Soccer: A Systematic Review. Hum. Mov. 2015, 16, 95–101. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-Sprint Ability—Part I: Factors contributing to fatigue. Sport. Med. 2011, 41, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Lima, R.; Camões, M.; Leão, C.; Matos, S.; Pereira, J.; Bezerra, P.; Clemente, F.M. Physical fitness changes among amateur soccer players: Effects of the pre-season period. Biomed. Hum. Kinet. 2021, 13, 63–72. [Google Scholar] [CrossRef]
- Meckel, Y.; Doron, O.; Eliakim, E.; Eliakim, A. Seasonal Variations in Physical Fitness and Performance Indices of Elite Soccer Players. Sports 2018, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvidson, E.; Dahlman, A.S.; Börjesson, M.; Gullstrand, L.; Jonsdottir, I.H. The effects of exercise training on hypothalamic-pituitary-adrenal axis reactivity and autonomic response to acute stress—A randomized controlled study. Trials 2020, 21, 888. [Google Scholar] [CrossRef]
- Spiers, J.G.; Chen, H.-J.C.; Sernia, C.; Lavidis, N.A. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front. Neurosci. 2015, 8, 456. [Google Scholar] [CrossRef] [Green Version]
- Finaud, J.; Lac, G.; Filaire, E. Oxidative Stress. Sport. Med. 2006, 36, 327–358. [Google Scholar] [CrossRef]
- Murawska-Ciałowicz, E.; de Assis, G.G.; Clemente, F.M.; Feito, Y.; Stastny, P.; Zuwała-Jagiełło, J.; Bibrowicz, B.; Wolański, P. Effect of four different forms of high intensity training on BDNF response to Wingate and Graded Exercise Test. Sci. Rep. 2021, 11, 8599. [Google Scholar] [CrossRef]
- Anderson, G.; Berk, M.; Dean, O.; Moylan, S.; Maes, M. Role of Immune-Inflammatory and Oxidative and Nitrosative Stress Pathways in the Etiology of Depression: Therapeutic Implications. CNS Drugs 2014, 28, 1–10. [Google Scholar] [CrossRef]
- Kawamura, T.; Muraoka, I. Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants 2018, 7, 119. [Google Scholar] [CrossRef] [Green Version]
- Rimmele, U.; Zellweger, B.C.; Marti, B.; Seiler, R.; Mohiyeddini, C.; Ehlert, U.; Heinrichs, M. Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men. Psychoneuroendocrinology 2007, 32, 627–635. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A. Hormonal Responses and Adaptations to Resistance Exercise and Training. Sport. Med. 2005, 35, 339–361. [Google Scholar] [CrossRef] [PubMed]
- Codella, R.; Luzi, L.; Terruzzi, I. Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig. Liver Dis. 2018, 50, 331–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manninen, A.H. Hyperinsulinaemia, hyperaminoacidaemia and post-exercise muscle anabolism: The search for the optimal recovery drink. Br. J. Sports Med. 2006, 40, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Azizbeigi, K.; Stannard, S.R.; Atashak, S.; Mosalman Haghighi, M. Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained males. J. Exerc. Sci. Fit. 2014, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Haydar, B.; Ahmaidi, S. Repeated sprints with directional changes: Do angles matter? J. Sports Sci. 2012, 30, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Silva-Junior, C.J.d.; Palma, A.; Costa, P.; Pereira-Junior, P.P.; Barroso, R.d.C.L.; Abrantes-Junior, R.C.; Barbosa, M.A.M. Relationship between the sprint and vertical jumps’ power in young soccer players. Motricidade 2011, 7, 5–13. [Google Scholar]
- Cardoso de Araujo, M.; Baumgart, C.; Freiwald, J.; Hoppe, M.W. Nonlinear sprint performance differentiates professional from young soccer players. J. Sports Med. Phys. Fitness 2018, 58, 1204–1210. [Google Scholar] [CrossRef]
Days | 1st Week | 2nd Week | 3rd Week | 4th Week | 5th Week | 6th Week | 7th Week | 8th Week | 9th Week | 10th Week |
---|---|---|---|---|---|---|---|---|---|---|
Sunday | Resting day | Resting day | Resting day | Resting day | Resting day | Resting day | Resting day | Resting day | Resting day | Resting day |
Monday | Test | HIRT Training | HIRT Training | HIRT Training | HIRT Training | HIRT Training | HIRT Training | HIRT Training | HIRT Training | Test |
Tuesday | Resting day | Tac/Tec Training | Tac/Tec Training | Tac/Tec Training | Tac/Tec Training | Tac/Tec Training | Tac/Tec Training | Tac/Tec Training | Tac/Tec Training | Resting day |
Wednesday | Test | HIRT Training | HIRT Training | HIRT Training | HIRT Training | HIRT Training | HIRT Training | HIRT Training | HIRT Training | Test |
Thursday | Resting day | Resting day | Resting day | Resting day | Resting day | Resting day | Resting day | Resting day | Resting day | Resting day |
Friday | Test | HIRT Training | HIRT Training | HIRT Training | HIRT Training | HIRT Training | HIRT Training | HIRT Training | HIRT Training | Test |
Saturday | Resting day | Tac/Tec Training | Tac/Tec Training | Match day | Tac/Tec Training | Tac/Tec Training | Match day | Tac/Tec Training | Tac/Tec Training | Resting day |
Outcomes | HIRT Group | Control Group | Total |
---|---|---|---|
Participants (n) | 9 | 9 | 18 |
Age (years) | 20.3 ± 0.6 | 20.4 ± 0.7 | 20.4 ± 0.7 |
Experience (years) | 6.0 ± 2.5 | 5.3 ± 2.1 | 5.6 ± 2.3 |
Stature (cm) | 173.0 ± 6.1 | 175.0 ± 6.1 | 174.0 ± 6.0 |
Body mass (kg) | 69.7 ± 6.5 | 68.6 ± 6.5 | 69.1 ± 6.4 |
Body mass index (kg/m2) | 23.2 ± 1.4 | 22.4 ± 1.7 | 22.8 ± 1.6 |
Defenders (n) | 4 | 3 | 8 |
Midfielders (n) | 3 | 4 | 8 |
Attackers (n) | 2 | 2 | 4 |
Adherence (%) | 100 | 100 | 100 |
n | Name | Set | Rep | Rest | Rest between Move | |
---|---|---|---|---|---|---|
1 | Bodyweight double-leg squat | 2 | 3 | 12 | 1 min | 1 min |
2 | Bodyweight alternating lunge | 2nd to 5th week | 2nd to 5th week | 12 | 1 min | 1 min |
3 | Alternating split jump | 12 | 1 min | 1 min | ||
4 | Squat jump | 12 | 1 min | 1 min | ||
5 | Agility ladder split step | 10s | 1 min | 1 min | ||
6 | agility ladder lateral rotational jump | 10 | 1 min | 1 min | ||
7 | Bodyweight push-up | 12 | 1 min | 1 min | ||
8 | MB single-arm push-off | 12 | 1 min | 1 min | ||
9 | MB crossover push-up | 12 | 1 min | 1 min | ||
10 | MB overhead slam | 12 | 1 min | 1 min |
Outcome | HIRT Baseline (Mean ± SD) | Control Baseline (Mean ± SD) | HIRT vs. Control (Baseline) | p-Value and d (Effect Size) | HIRT Post-Intervention (Mean ± SD) | Control Post-Intervention (Mean ± SD) | HIRT vs. Control (Post-Intervention) | p-Value and d (Effect Size) |
---|---|---|---|---|---|---|
YYIRT1 (m) | 1951.1 ± 97.5 | 1937.8 ± 98.2 | p = 0.776; d = 0.136 | 2195.6 ± 152.9 | 2053.3 ± 98.0 | p = 0.032 *; d = 1.108 |
VO2max (mL/kg/min) | 52.80 ± 0.80 | 52.68 ± 0.82 | p = 0.753; d = 0.151 | 54.84 ± 1.28 | 53.64 ± 0.82 | p = 0.031 *; d = 1.114 |
10 m ST (s) | 2.05 ± 0.07 | 2.05 ± 0.04 | p = 0.873; d = 0.077 | 1.97 ± 0.06 | 2.02 ± 0.04 | p = 0.041 *; d = 1.049 |
20 m ST (s) | 3.34 ± 0.15 | 3.37 ± 0.07 | p = 0.594; d = 0.256 | 3.24 ± 0.12 | 3.34 ± 0.05 | p = 0.040 *; d = 1.053 |
30 m ST (s) | 4.15 ± 0.12 | 4.12 ± 0.09 | p = 0.605; d = 0.249 | 3.91 ± 0.16 | 4.15 ± 0.29 | p = 0.044 *; d = 1.028 |
RAST (s) | 4.48 ± 0.11 | 4.48 ± 0.10 | p = 0.920; d = 0.048 | 4.31 ± 0.07 | 4.43 ± 0.10 | p = 0.013 *; d = 1.311 |
COD (s) | 15.98 ± 0.31 | 16.09 ± 0.35 | p = 0.753; d = 0.335 | 15.62 ± 0.28 | 15.99 ± 0.33 | p = 0.031 *; d = 1.175 |
Cortisol (mcg/dL) | 307.3 ± 65.8 | 327.7 ± 71.1 | p = 0.536; d = 0.298 | 250.0 ± 42.4 | 312.1 ± 66.4 | p = 0.031 *; d = 1.115 |
GH (ng/mL) | 4.68 ± 0.76 | 4.83 ± 0.72 | p = 0.673; d = 0.202 | 5.55 ± 1.03 | 5.20 ± 0.86 | p = 0.439; d = 0.374 |
Testosterone (ng/dL) | 5.68 ± 0.80 | 5.00 ± 0.85 | p = 0.099; d = 0.826 | 6.45 ± 0.97 | 5.22 ± 0.79 | p = 0.009 *; d = 1.395 |
T:C ratio (x103) | 1.95 ± 0.58 | 1.58 ± 0.37 | p = 0.126; d = 0.760 | 2.67 ± 0.70 | 1.73 ± 0.36 | p = 0.004; d = 1.693 |
MDA (nmol/mL) | 0.21 ± 0.06 | 0.17 ± 0.04 | p = 0.106; d = 0.807 | 0.19 ± 0.07 | 0.17 ± 0.03 | p = 0.353; d = 0.451 |
SOD (ng/mg Hb) | 10.91 ± 1.89 | 9.02 ± 3.29 | p = 0.155; d = 0.704 | 12.22 ± 1.68 | 9.31 ± 3.39 | p = 0.035 *; d = 1.086 |
GSH (μM) | 0.11 ± 0.04 | 0.12 ± 0.04 | p = 0.575; d = 0.270 | 0.13 ± 0.03 | 0.13 ± 0.03 | p = 0.935; d = 0.039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.F.; Aghidemand, M.H.; Kharatzadeh, M.; Ahmadi, V.K.; Oliveira, R.; Clemente, F.M.; Badicu, G.; Murawska-Ciałowicz, E. Effects of High-Intensity Resistance Training on Physical Fitness, Hormonal and Antioxidant Factors: A Randomized Controlled Study Conducted on Young Adult Male Soccer Players. Biology 2022, 11, 909. https://doi.org/10.3390/biology11060909
Silva AF, Aghidemand MH, Kharatzadeh M, Ahmadi VK, Oliveira R, Clemente FM, Badicu G, Murawska-Ciałowicz E. Effects of High-Intensity Resistance Training on Physical Fitness, Hormonal and Antioxidant Factors: A Randomized Controlled Study Conducted on Young Adult Male Soccer Players. Biology. 2022; 11(6):909. https://doi.org/10.3390/biology11060909
Chicago/Turabian StyleSilva, Ana Filipa, Mohammad Hosein Aghidemand, Masoud Kharatzadeh, Vahab Khan Ahmadi, Rafael Oliveira, Filipe Manuel Clemente, Georgian Badicu, and Eugenia Murawska-Ciałowicz. 2022. "Effects of High-Intensity Resistance Training on Physical Fitness, Hormonal and Antioxidant Factors: A Randomized Controlled Study Conducted on Young Adult Male Soccer Players" Biology 11, no. 6: 909. https://doi.org/10.3390/biology11060909
APA StyleSilva, A. F., Aghidemand, M. H., Kharatzadeh, M., Ahmadi, V. K., Oliveira, R., Clemente, F. M., Badicu, G., & Murawska-Ciałowicz, E. (2022). Effects of High-Intensity Resistance Training on Physical Fitness, Hormonal and Antioxidant Factors: A Randomized Controlled Study Conducted on Young Adult Male Soccer Players. Biology, 11(6), 909. https://doi.org/10.3390/biology11060909