Aromatic Plants and Their Associated Arbuscular Mycorrhizal Fungi Outcompete Tuber melanosporum in Compatibility Assays with Truffle-Oaks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup, Plant Material, and AM Inoculum Production
2.2. Experimental Design and Management
2.3. Plants Growth and Physiological Parameters
2.4. Quantification of Mycorrhizas
2.5. Molecular Analyses of Soil Samples
2.6. Statistical Analyses
3. Results
3.1. Truffle-Oaks and MAPs Development
3.2. Quantification of Tuber melanosporum
3.3. AMF Quantification in MAPs and Truffle-Oaks
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AM | Arbuscular mycorrhizal |
AMF | Arbuscular mycorrhizal fungi |
ECM | Ectomycorrhizal |
LMA | Leaf mass per area |
MAPs | Medicinal and aromatic plants |
References
- Reyna, S.; Garcia-Barreda, S. Black Truffle Cultivation: A Global Reality. For. Syst. 2014, 23, 317–328. [Google Scholar] [CrossRef]
- Iotti, M.; Zambonelli, A.; Murat, C. (Eds.) True Truffle (Tuber spp.) in the World; Soil Biology Series; Springer International Publishing: Cham, Switzerland, 2016; Volume 47, ISBN 978-3-319-31434-1. [Google Scholar]
- Murat, C. Forty Years of Inoculating Seedlings with Truffle Fungi: Past and Future Perspectives. Mycorrhiza 2015, 25, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Blondel, J. The ‘Design’ of Mediterranean Landscapes: A Millennial Story of Humans and Ecological Systems during the Historic Period. Hum. Ecol. 2006, 34, 713–729. [Google Scholar] [CrossRef]
- Rosa-Schleich, J.; Loos, J.; Mußhoff, O.; Tscharntke, T. Ecological-Economic Trade-Offs of Diversified Farming Systems—A Review. Ecol. Econ. 2019, 160, 251–263. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving Intercropping: A Synthesis of Research in Agronomy, Plant Physiology and Ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Stomph, T.; Dordas, C.; Baranger, A.; de Rijk, J.; Dong, B.; Evers, J.; Gu, C.; Li, L.; Simon, J.; Jensen, E.S.; et al. Designing Intercrops for High Yield, Yield Stability and Efficient Use of Resources: Are There Principles? Adv. Agron. 2020, 160, 1–50. [Google Scholar]
- Costanzo, A.; Bàrberi, P. Functional Agrobiodiversity and Agroecosystem Services in Sustainable Wheat Production. A Review. Agron. Sustain. Dev. 2014, 34, 327–348. [Google Scholar] [CrossRef]
- Tripathi, P.; Shah, S.; Kashyap, S.D.; Tripathi, A. Fruit Yield and Quality Characteristics of High Density Prunus persica (L.) Batsch Plantation Intercropped with Medicinal and Aromatic Plants in the Indian Western Himalayas. Agrofor. Syst. 2019, 93, 1717–1728. [Google Scholar] [CrossRef]
- Chen, X.; Song, B.; Yao, Y.; Wu, H.; Hu, J.; Zhao, L. Aromatic Plants Play an Important Role in Promoting Soil Biological Activity Related to Nitrogen Cycling in an Orchard Ecosystem. Sci. Total Environ. 2014, 472, 939–946. [Google Scholar] [CrossRef]
- Geoffroy, A.; Richard, F.; Sanguin, H. Impact of Intercropping Cultures on Truffle Production and Soil Microbial Communities in Mediterranean Oak Orchards. In Proceedings of the Booklet of Sfécologie 2018, International Conference on Ecological Sciences; Société Française d’Écologie et d’Évolution, Rennes, France, 22–25 October 2018. [Google Scholar]
- Martin-Chave, A. Produire de la Truffe en Agroforesterie: Pratiques Traditionnelles et Expérimentations Dans le Sud-Est; SCOP Agroof: Anduze, France, 2019. [Google Scholar]
- Streiblová, E.; Gryndlerová, H.; Gryndler, M. Truffle Brûlé: An Efficient Fungal Life Strategy. FEMS Microbiol. Ecol. 2012, 80, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Das, P.P.; Singh, K.R.; Nagpure, G.; Mansoori, A.; Singh, R.P.; Ghazi, I.A.; Kumar, A.; Singh, J. Plant-Soil-Microbes: A Tripartite Interaction for Nutrient Acquisition and Better Plant Growth for Sustainable Agricultural Practices. Environ. Res. 2022, 214, 113821. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The Rhizosphere Microbiome and Plant Health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Tarraf, W.; Ruta, C.; De Cillis, F.; Tagarelli, A.; Tedone, L.; De Mastro, G. Effects of Mycorrhiza on Growth and Essential Oil Production in Selected Aromatic Plants. Ital. J. Agron. 2015, 10, 160–162. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Ma, Y.; Rocha, I.; Carvalho, M.F.; Vosátka, M.; Freitas, H. Arbuscular Mycorrhizal Fungi Are an Alternative to the Application of Chemical Fertilizer in the Production of the Medicinal and Aromatic Plant Coriandrum sativum L. J. Toxicol. Environ. Health A 2016, 79, 320–328. [Google Scholar] [CrossRef] [PubMed]
- González-Armada, B.; De Miguel, A.M.; Cavero, R.Y. Ectomycorrhizae and Vascular Plants Growing in Brûlés as Indicators of below and above Ground Microecology of Black Truffle Production Areas in Navarra (Northern Spain). Biodivers. Conserv. 2010, 19, 3861–3891. [Google Scholar] [CrossRef]
- Taschen, E.; Sauve, M.; Vincent, B.; Parladé, J.; van Tuinen, D.; Aumeeruddy-Thomas, Y.; Assenat, B.; Selosse, M.-A.; Richard, F. Insight into the Truffle Brûlé: Tripartite Interactions between the Black Truffle (Tuber melanosporum), Holm Oak (Quercus ilex) and Arbuscular Mycorrhizal Plants. Plant Soil 2020, 446, 577–594. [Google Scholar] [CrossRef]
- Chen, Y.L.; Brundrett, M.C.; Dell, B. Effects of Ectomycorrhizas and Vesicular–Arbuscular Mycorrhizas, Alone or in Competition, on Root Colonization and Growth of Eucalyptus globulus and E. urophylla. New Phytol. 2000, 146, 545–555. [Google Scholar] [CrossRef]
- Queralt, M.; Walker, J.K.M.; de Miguel, A.M.; Parladé, J.; Anderson, I.C.; Hortal, S. The Ability of a Host Plant to Associate with Different Symbiotic Partners Affects Ectomycorrhizal Functioning. FEMS Microbiol. Ecol. 2019, 95, fiz069. [Google Scholar] [CrossRef]
- Teste, F.P.; Jones, M.D.; Dickie, I.A. Dual-mycorrhizal Plants: Their Ecology and Relevance. New Phytol. 2020, 225, 1835–1851. [Google Scholar] [CrossRef]
- Netherway, T.; Bengtsson, J.; Krab, E.J.; Bahram, M. Biotic Interactions with Mycorrhizal Systems as Extended Nutrient Acquisition Strategies Shaping Forest Soil Communities and Functions. Basic Appl. Ecol. 2021, 50, 25–42. [Google Scholar] [CrossRef]
- Knoblochová, T.; Kohout, P.; Püschel, D.; Doubková, P.; Frouz, J.; Cajthaml, T.; Kukla, J.; Vosátka, M.; Rydlová, J. Asymmetric Response of Root-Associated Fungal Communities of an Arbuscular Mycorrhizal Grass and an Ectomycorrhizal Tree to Their Coexistence in Primary Succession. Mycorrhiza 2017, 27, 775–789. [Google Scholar] [CrossRef] [PubMed]
- McHugh, T.A.; Gehring, C.A. Below-ground Interactions with Arbuscular Mycorrhizal Shrubs Decrease the Performance of Pinyon Pine and the Abundance of Its Ectomycorrhizas. New Phytol. 2006, 171, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Haskins, K.E.; Gehring, C.A. Interactions with Juniper Alter Pinyon Pine Ectomycorrhizal Fungal Communities. Ecology 2004, 85, 2687–2692. [Google Scholar] [CrossRef]
- Odum, E.P. The Mesocosm. Bioscience 1984, 34, 558–562. [Google Scholar] [CrossRef]
- Camprubí, A.; Calvet, C. Isolation and Screening of Mycorrhizal Fungi from Citrus Nurseries and Orchards and Inoculation Studies. HortScience 1996, 31, 366–369. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal infection in Roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Colinas, C.; Capdevila, J.M.; Oliach, D.; Fischer, C.R.; Bonet, J.A. Mapa de Aptitud Para el Cultivo de la Trufa Negra (Tuber melanosporum Vitt.) en Cataluña; Centre Tecnològic Forestal de Catalunya: Solsona, Spain, 2007. [Google Scholar]
- Koske, R.E.; Gemma, J.N. A Modified Procedure for Staining Roots to Detect VA Mycorrhizas. Mycol. Res. 1989, 92, 486–488. [Google Scholar] [CrossRef]
- Parladé, J.; De la Varga, H.; De Miguel, A.M.; Sáez, R.; Pera, J. Quantification of Extraradical Mycelium of Tuber melanosporum in Soils from Truffle Orchards in Northern Spain. Mycorrhiza 2013, 23, 99–106. [Google Scholar] [CrossRef]
- Parladé, J.; Hortal, S.; Pera, J.; Galipienso, L. Quantitative Detection of Lactarius deliciosus Extraradical Soil Mycelium by Real-Time PCR and Its Application in the Study of Fungal Persistence and Interspecific Competition. J. Biotechnol. 2007, 128, 14–23. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Helgason, T.; Daniell, T.J.; Husband, R.; Fitter, A.H.; Young, J.P.W. Ploughing up the Wood-Wide Web? Nature 1998, 394, 431. [Google Scholar] [CrossRef] [PubMed]
- Hewins, C.R.; Carrino-Kyker, S.R.; Burke, D.J. Seasonal Variation in Mycorrhizal Fungi Colonizing Roots of Allium Tricoccum (Wild Leek) in a Mature Mixed Hardwood Forest. Mycorrhiza 2015, 25, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Bodenhausen, N.; Deslandes-Hérold, G.; Waelchli, J.; Held, A.; van der Heijden, M.G.A.; Schlaeppi, K. Relative QPCR to Quantify Colonization of Plant Roots by Arbuscular Mycorrhizal Fungi. Mycorrhiza 2021, 31, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Gardes, M.; Bruns, T.D. ITS Primers with Enhanced Specificity for Basidiomycetes—Application to the Identification of Mycorrhizae and Rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols; Elsevier: Amsterdam, The Netherlands, 1990; pp. 315–322. [Google Scholar]
- Mello, A.; Napoli, C.; Murat, C.; Morin, E.; Marceddu, G.; Bonfante, P. ITS-1 versus ITS-2 Pyrosequencing: A Comparison of Fungal Populations in Truffle Grounds. Mycologia 2011, 103, 1184–1193. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing 2022; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 1 February 2023).
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny; Chapman and Hall: London, UK; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780429447273. [Google Scholar]
- Abu-Darwish, M.S.; Cabral, C.; Ferreira, I.V.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Al-bdour, T.H.; Salgueiro, L. Essential Oil of Common Sage (Salvia officinalis L.) from Jordan: Assessment of Safety in Mammalian Cells and Its Antifungal and Anti-Inflammatory Potential. BioMed Res. Int. 2013, 2013, 538940. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Evaluation of Bioactive Properties and Phenolic Compounds in Different Extracts Prepared from Salvia officinalis L. Food Chem. 2015, 170, 378–385. [Google Scholar] [CrossRef]
- Lavin, P.; de Saravia, S.G.; Guiamet, P. Scopulariopsis sp. and Fusarium sp. in the Documentary Heritage: Evaluation of Their Biodeterioration Ability and Antifungal Effect of Two Essential Oils. Microb. Ecol. 2016, 71, 628–633. [Google Scholar] [CrossRef]
- Mandras, N.; Nostro, A.; Roana, J.; Scalas, D.; Banche, G.; Ghisetti, V.; Del Re, S.; Fucale, G.; Cuffini, A.M.; Tullio, V. Liquid and Vapour-Phase Antifungal Activities of Essential Oils against Candida albicans and Non-albicans Candida. BMC Complement. Altern. Med. 2016, 16, 330. [Google Scholar] [CrossRef]
- Erland, L.A.; Bitcon, C.R.; Lemke, A.D.; Mahmoud, S.S. Antifungal Screening of Lavender Essential Oils and Essential Oil Constituents on Three Post-Harvest Fungal Pathogens. Nat. Prod. Commun. 2016, 11, 1934578X1601100. [Google Scholar] [CrossRef]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A.; Rotolo, V. Essential Oils as Natural Biocides in Conservation of Cultural Heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, M.; Iotti, M.; Pacioni, G.; Hall, R.I.; Zambonelli, A. Truffles: Biodiversity, Ecological Significances, and Biotechnological Applications. In Industrially Important Fungi for Sustainable Development. Volume 1: Biodiversity and Ecological Perspectives; Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Usmani, Z., Eds.; Springer: Cham, Switzerland, 2021; pp. 107–146. [Google Scholar]
- Domínguez Núñez, J.A.; Serrano, J.S.; Barreal, J.A.R.; de Omeñaca González, J.A.S. The Influence of Mycorrhization with Tuber melanosporum in the Afforestation of a Mediterranean Site with Quercus ilex and Quercus faginea. Ecol. Manag. 2006, 231, 226–233. [Google Scholar] [CrossRef]
- De la Riva, E.G.; Olmo, M.; Poorter, H.; Ubera, J.L.; Villar, R. Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient. PLoS ONE 2016, 11, e0148788. [Google Scholar] [CrossRef]
- Salazar Zarzosa, P.; Diaz Herraiz, A.; Olmo, M.; Ruiz-Benito, P.; Barrón, V.; Bastias, C.C.; de la Riva, E.G.; Villar, R. Linking Functional Traits with Tree Growth and Forest Productivity in Quercus ilex Forests along a Climatic Gradient. Sci. Total Environ. 2021, 786, 147468. [Google Scholar] [CrossRef] [PubMed]
- Dickie, I.A.; Koide, R.T.; Fayish, A.C. Vesicular–Arbuscular Mycorrhizal Infection of Quercus rubra Seedlings. New Phytol. 2001, 151, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Querejeta, J.; Egerton-Warburton, L.M.; Allen, M.F. Topographic Position Modulates the Mycorrhizal Response of Oak Trees to Interannual Rainfall Variability. Ecology 2009, 90, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E.; Johnson, K.A.; Cázares, E. Vesicular Mycorrhizal Colonization of Seedlings of Pinaceae and Betulaceae after Spore Inoculation with Glomus intraradices. Mycorrhiza 1998, 7, 279–285. [Google Scholar] [CrossRef]
- Watson, G.W.; von der Heide-Spravka, K.G.; Howe, V.K. Ecological Significance of Endo-/ectomycorrhizae in the Oak Sub-genus Erythrobalanus. Arboric J. 1990, 14, 107–116. [Google Scholar] [CrossRef]
- Marulanda, A.; Porcel, R.; Barea, J.M.; Azcón, R. Drought Tolerance and Antioxidant Activities in Lavender Plants Colonized by Native Drought-Tolerant or Drought-Sensitive Glomus Species. Microb. Ecol. 2007, 54, 543–552. [Google Scholar] [CrossRef]
- Prasad, A.; Kumar, S.; Khaliq, A.; Pandey, A. Heavy Metals and Arbuscular Mycorrhizal (AM) Fungi Can Alter the Yield and Chemical Composition of Volatile Oil of Sweet Basil (Ocimum basilicum L.). Biol. Fertil. Soils 2011, 47, 853–861. [Google Scholar] [CrossRef]
- Amanifar, S.; Toghranegar, Z. The Efficiency of Arbuscular Mycorrhiza for Improving Tolerance of Valeriana officinalis L. and Enhancing Valerenic Acid Accumulation under Salinity Stress. Ind. Crops Prod. 2020, 147, 112234. [Google Scholar] [CrossRef]
- Amiri, R.; Nikbakht, A.; Etemadi, N.; Sabzalian, M.R. Nutritional Status, Essential Oil Changes and Water-Use Efficiency of Rose Geranium in Response to Arbuscular Mycorrhizal Fungi and Water Deficiency Stress. Symbiosis 2017, 73, 15–25. [Google Scholar] [CrossRef]
- Israel, A.; Langrand, J.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods 2022, 11, 2591. [Google Scholar] [CrossRef] [PubMed]
- Camprubi, A.; Zárate, I.A.; Adholeya, A.; Lovato, P.E.; Calvet, C. Field Performance and Essential Oil Production of Mycorrhizal Rosemary in Restoration Low-Nutrient Soils. Land Degrad. Dev. 2015, 26, 793–799. [Google Scholar] [CrossRef]
- Crossland, N.O.; La Point, T.W. The Design of Mesocosm Experiments. Environ. Toxicol. Chem. 1992, 11, 1–4. [Google Scholar] [CrossRef]
- Schindler, D.W. Whole-Ecosystem Experiments: Replication Versus Realism: The Need for Ecosystem-Scale Experiments. Ecosystems 1998, 1, 323–334. [Google Scholar] [CrossRef]
- Dong, R.; Gao, S.-S.; Dong, B.-C.; Luo, F.-L.; Gao, J.-Q.; Yu, F.-H. Plasticity in Responses to Dimensional Variations of Soil Space in 19 Grassland Plant Species. Ecol. Indic. 2022, 142, 109300. [Google Scholar] [CrossRef]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples. PLoS ONE 2012, 7, e40863. [Google Scholar] [CrossRef]
- Pérez-Izquierdo, L.; Morin, E.; Maurice, J.P.; Martin, F.; Rincón, A.; Buée, M. A New Promising Phylogenetic Marker to Study the Diversity of Fungal Communities: The Glycoside Hydrolase 63 Gene. Mol. Ecol. Res. 2017, 17, e1–e11. [Google Scholar] [CrossRef]
- Tao, Y.; van Peer, A.F.; Huang, Q.; Shao, Y.; Zhang, L.; Xie, B.; Jiang, Y.; Zhu, J.; Xie, B. Identification of Novel and Robust Internal Control Genes from Volvariella volvacea That Are Suitable for RT-QPCR in Filamentous Fungi. Sci. Rep. 2016, 6, 29236. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barou, V.; Rincón, A.; Calvet, C.; Camprubí, A.; Parladé, J. Aromatic Plants and Their Associated Arbuscular Mycorrhizal Fungi Outcompete Tuber melanosporum in Compatibility Assays with Truffle-Oaks. Biology 2023, 12, 628. https://doi.org/10.3390/biology12040628
Barou V, Rincón A, Calvet C, Camprubí A, Parladé J. Aromatic Plants and Their Associated Arbuscular Mycorrhizal Fungi Outcompete Tuber melanosporum in Compatibility Assays with Truffle-Oaks. Biology. 2023; 12(4):628. https://doi.org/10.3390/biology12040628
Chicago/Turabian StyleBarou, Vasiliki, Ana Rincón, Cinta Calvet, Amelia Camprubí, and Javier Parladé. 2023. "Aromatic Plants and Their Associated Arbuscular Mycorrhizal Fungi Outcompete Tuber melanosporum in Compatibility Assays with Truffle-Oaks" Biology 12, no. 4: 628. https://doi.org/10.3390/biology12040628
APA StyleBarou, V., Rincón, A., Calvet, C., Camprubí, A., & Parladé, J. (2023). Aromatic Plants and Their Associated Arbuscular Mycorrhizal Fungi Outcompete Tuber melanosporum in Compatibility Assays with Truffle-Oaks. Biology, 12(4), 628. https://doi.org/10.3390/biology12040628