Effects of Different Degrees of Xanthium spinosum Invasion on the Invasibility of Plant Communities in the Yili Grassland of Northwest China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Determination of Functional Traits for X. spinosum
2.4. Determination of the Correlation Index for X. spinosum
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gioria, M.; Hulme, P.E.; Richardson, D.M.; Pyšek, P. Why Are Invasive Plants Successful? Annu. Rev. Plant Biol. 2023, 74, 635–670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.J.; Liu, Y.J.; Brunel, C.; Kleunen, M.V. Evidence for Elton’s diversity-invasibility hypothesis from belowground. Ecology 2020, 101, e03187. [Google Scholar] [CrossRef] [PubMed]
- Cavieres, L.A. Facilitation and the invasibility of plant communities. J. Ecol. 2021, 109, 2019–2028. [Google Scholar] [CrossRef]
- Hui, C.; Pyšek, P.; Richardson, D.M. Disentangling the relationships among abundance, invasiveness and invasibility in trait space. NPJ Biodiverse 2023, 2, 13. [Google Scholar] [CrossRef]
- Xie, H.; Knapp, L.S.P.; Yu, M.; Wang, G.G. Solidago canadensis invasion destabilizes the understory plant community and soil properties of coastal shelterbelt forests of subtropical China. Plant Soil. 2023, 484, 65–77. [Google Scholar] [CrossRef]
- Yang, L.; Callaway, R.M.; Atwater, D.Z. Ecotypic diversity of a dominant grassland species resists exotic invasion. Biol. Invasions 2017, 19, 1483–1493. [Google Scholar] [CrossRef]
- Beaury, E.M.; Finn, J.T.; Corbin, J.D.; Barr, V.; Bradley, B.A. Biotic resistance to invasion is ubiquitous across ecosystems of the United States. Ecol. Lett. 2020, 23, 476–482. [Google Scholar] [CrossRef]
- Tao, Y.Y.; Shang, T.C.; Yan, J.J.; Hu, Y.X.; Zhao, Y.; Liu, Y. Effects of sand burial depth on Xanthium spinosum seed germination and seedling growth. BMC Plant Biol. 2022, 22, 43. [Google Scholar] [CrossRef]
- Baldi, S.; Bradesi, P.; Muselli, A. Guaianolide Derivatives from the Invasive Xanthium spionsum L.: Evaluation of Their Allelopathic Potential. Molecules 2022, 27, 7297. [Google Scholar] [CrossRef]
- Carboni, M.; Livingstone, S.W.; Isaac, M.E.; Cadotte, M.W. Invasion drives plant diversity loss through competition and ecosystem modification. J. Ecol. 2021, 109, 3587–3601. [Google Scholar] [CrossRef]
- McGrannachan, C.M.; McGeoch, M.A. Multispecies plant invasion increases function but reduces variability across an understorey metacommunity. Biol. Invasions 2019, 21, 1115–1129. [Google Scholar] [CrossRef]
- Wang, C.Y.; Cheng, H.Y.; Wang, S.; Weri, M.; Du, D.L. Plant community and the influence of plant taxonomic diversity on community stability and invasibility: A case study based on Solidago canadensis L. Sci. Total Environ. 2021, 768, 144518. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.K.; Xue, Y.G. The invasive inhabit diversity of Eupatorium adenophorum and Eupatorium odoratum in Guangxi. Ecol. Environ. Sci. 2011, 212, 1549–1561. [Google Scholar]
- Wang, X.F.; Wang, T.; Wang, G.Q.; Yin, A.G.; Yang, X.R.; Yue, M.F. Effects of Bidens alba invasion on structure and species diversity of plant community. J. Biosaf. 2023, 32, 384–392. [Google Scholar]
- Zhang, M.L.; Tan, X.; Dong, Z.; Zheng, J.; Yuan, Z.X.; Li, C.X. Effects of Alternanthera philoxeroides invasion on plant diversity in the riparian zones of downtown Chongqing in the Three Gorges Reservoir area. Acta Prataculturae Sin. 2022, 31, 13–25. [Google Scholar]
- Wilson, S.D.; Pinno, B.D. Environmentally-contingent behaviour of invasive plants as drivers or passengers. Oikos 2013, 122, 129–135. [Google Scholar] [CrossRef]
- Si, C.C.; Liu, X.Y.; Wang, C.Y. Different degrees of plant invasion significantly affect the richness of the soil fungal community. PLoS ONE 2013, 8, e85490. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Zheng, X.; Zhao, Y.; Liu, Y.; Zhou, S.; Wei, C.; Hu, Y.; Shao, H. Phytotoxic Compounds Isolated from Leaves of the Invasive Weed Xanthium spinosum. Molecules 2018, 23, 2840. [Google Scholar] [CrossRef]
- Gu, W.; Ma, M. Study on reproductive biology characteristics of invasive plant Xanthium spinosum L. J. Shihezi Univ. (Nat. Sci.) 2019, 37, 332–338. [Google Scholar]
- Octavia, G.; Simona, C.; Remus, M.; Dana, M.; Vlase, A.-M.; Nadăș, G.C.; Filip, G.A.; Vlase, L.; Crișan, G. Influences of Different Extraction Techniques and Their Respective Parameters on the Phytochemical Profile and Biological Activities of Xanthium spinosum L. Extr. Plants. 2022, 12, 96. [Google Scholar]
- Song, Z.Z.; Liu, T.Y.; Tan, D.Y.; Zhou, G.L. Influence of Two Invasive Plants on Local Plant Biodiversity in Xinjiang. Xinjiang Agric. Sci. 2012, 49, 2120–2126. [Google Scholar]
- Long, L.D.; Miao, S.Y.; Tao, W.Q. Analysis on the characteristics and the present status of three lists of alien invasive plant species published in China. Ecol. Sci. 2015, 34, 31–36. [Google Scholar]
- Xiao, H.G.; Wang, C.Y.; Liu, J.; Wang, L.; Du, D.L. Insights into the differences in leaf functional traits of heterophyllous Syringa oblata under different light intensities. J. For. Res. 2015, 26, 613–621. [Google Scholar] [CrossRef]
- Shannon, C.E. Mathematical Theory of Communications. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Margalef, R. Diversidad de especies en las comunidades naturales. Publ. Del Inst. De Biol. Apl. 1951, 9, 5–27. [Google Scholar]
- Wang, S.; Cheng, H.Y.; Wei, M.; Wu, B.D.; Wang, C.Y. Litter decomposition process dramatically declines the allelopathy of Solidago canadensis L. on the seed germination and seedling growth of Lactuca sativa L. Int. J. Phytoremediat. 2020, 22, 1295–1303. [Google Scholar] [CrossRef]
- Murugan, R.; Beggi, F.; Prabakaran, N.; Maqsood, S.; Joergensen, R.G. Changes in plant community and soil ecological indicators in response to Prosopis juliflora and Acacia mearnsii invasion and removal in two biodiversity hotspots in Southern India. Soil Ecol. Lett. 2020, 2, 61–72. [Google Scholar] [CrossRef]
- Wu, H.; Carrillo, J.; Ding, J.Q. Species diversity and environmental determinants of aquatic and terrestrial communities invaded by Alternanthera philoxerroides. Sci. Total Environ. 2017, 581–582, 666–675. [Google Scholar] [CrossRef]
- Wang, C.Y.; Jiang, K.; Liu, J.; Zhou, J.W.; Wu, B.D. Moderate and heavy Solidago canadenis L. invasion are associated with decreased taxonomic diversity but increased functional diversity of plant communities in East China. Ecol. Eng. 2018, 112, 55–64. [Google Scholar] [CrossRef]
- Bernard-Verdier, M.; Hulme, P.E. Alien and native plant species play different roles in plant community structure. J. Ecol. 2015, 103, 143–152. [Google Scholar] [CrossRef]
- Fenesi, A.; Geréd, J.; Meiners, S.J.; Tóthmérész, B.; Török, P.; Ruprecht, E. Does disturbance enhance the competitive effect of the invasive Solidago canadensis on the performance of two native grasses? Biol. Invasions 2015, 17, 3303–3315. [Google Scholar] [CrossRef]
- Wang, C.Y.; Cheng, H.Y.; Wu, B.D.; Jiang, K.; Wang, S.; Wei, M.; Du, D.L. The functional diversity of native ecosystems increases during the major invasion by the invasive alien species, Conyza canadensis. Ecol. Eng. 2021, 159, 106093. [Google Scholar] [CrossRef]
- Dong, L.J.; Yu, H.W.; He, W.M. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness? Sci. Rep. 2015, 5, 16804. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Wu, B.D.; Jiang, K.; Zhou, J.W.; Liu, J.; Lv, Y.N. Canada goldenrod invasion cause significant shifts in the taxonomic diversity and community stability of plant communities in heterogeneous landscapes in urban ecosystems in East China. Ecol. Eng. 2019, 127, 504–509. [Google Scholar] [CrossRef]
- Petruzzella, A.; Manschot, J.; van Leeuwen, C.H.A.; Grutters, B.M.C.; Bakker, E.S. Mechanisms of invasion resistance of aquatic plant communities. Front. Plant Sci. 2018, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Olonova, M.V.; Zhang, Y. Alien invasive species in Siberia: Current status and problem. J. Arid Land. 2013, 5, 428–433. [Google Scholar] [CrossRef]
- Langmaier, M.; Lapin, K. A Systematic Review of the Impact of Invasive Alien Plants on Forest Regeneration in European Temperate Forests. Front. Plant Sci. 2020, 11, 524969. [Google Scholar] [CrossRef]
- Beshai, R.A.; Truong, D.A.; Henry, A.K.; Sorte, C.J.B. Biotic resistance or invasional meltdown? Diversity reduces invasibility but not exotic dominance in southern California epibenthic communities. Biol. Invasions 2023, 25, 533–549. [Google Scholar] [CrossRef]
- Driscoll, D.A. Disturbance maintains native and exotic plant species richness in invaded grassy woodlands. J. Veg. Sci. 2017, 28, 573–584. [Google Scholar] [CrossRef]
- Bart, D.; Davenport, T.; Carpenter, Q. Stress and land-use legacies alter the relationship between invasive and native plant richness. J. Veg. Sci. 2015, 26, 80–88. [Google Scholar] [CrossRef]
- Hejda, M.; Stajerova, K.; Pysek, P. Dominance has a biogeographical component: Do plants tend to exert stronger impacts in their invaded rather than native range. J. Biogeogr. 2017, 44, 18–27. [Google Scholar] [CrossRef]
Community Stability Index | Community Invasibility Index | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | P’ | P | P’ | |||||||||
S | H’ | D | J | F | S | H’ | D | J | F | |||
S | −0.819 | - | 0.761 | 0.737 | 0.515 | 0.786 | −0.323 | - | 0.299 | 0.290 | 0.204 | 0.309 |
H | 2.264 | 2.106 | - | 2.218 | 1.947 | 1.947 | −0.569 | 0.527 | - | 0.559 | 0.491 | 0.491 |
D | −0.350 | 0.315 | 0.343 | - | 0.304 | 0.280 | −0.575 | 0.516 | 0.565 | - | 0.501 | 0.463 |
J | 0.176 | 0.110 | 0.151 | 0.153 | - | 0.098 | 0.184 | 0.116 | 0.159 | 0.160 | - | 0.103 |
F | −0.848 | 0.814 | 0.729 | 0.678 | 0.474 | - | 0.344 | 0.330 | 0.297 | 0.277 | 0.192 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; He, J.; Aishan, T.; Sui, X.; Zhou, Y.; Yimingniyazi, A. Effects of Different Degrees of Xanthium spinosum Invasion on the Invasibility of Plant Communities in the Yili Grassland of Northwest China. Biology 2024, 13, 14. https://doi.org/10.3390/biology13010014
Xiao Y, He J, Aishan T, Sui X, Zhou Y, Yimingniyazi A. Effects of Different Degrees of Xanthium spinosum Invasion on the Invasibility of Plant Communities in the Yili Grassland of Northwest China. Biology. 2024; 13(1):14. https://doi.org/10.3390/biology13010014
Chicago/Turabian StyleXiao, Yongkang, Jianxiao He, Tayierjiang Aishan, Xiaoqing Sui, Yifan Zhou, and Amanula Yimingniyazi. 2024. "Effects of Different Degrees of Xanthium spinosum Invasion on the Invasibility of Plant Communities in the Yili Grassland of Northwest China" Biology 13, no. 1: 14. https://doi.org/10.3390/biology13010014
APA StyleXiao, Y., He, J., Aishan, T., Sui, X., Zhou, Y., & Yimingniyazi, A. (2024). Effects of Different Degrees of Xanthium spinosum Invasion on the Invasibility of Plant Communities in the Yili Grassland of Northwest China. Biology, 13(1), 14. https://doi.org/10.3390/biology13010014