Phytochemistry and Evaluation of the Anti-Inflammatory Activity of the Hydroethanolic Extract of Virola elongata (Benth.) Warb. Stem Bark
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Drugs, Reagents, and Kits
2.3. Extract Preparation
2.4. Gel Preparation
2.5. Animals
2.6. Cell Line
2.7. Phytochemical Analysis
Direct Flow Infusion Coupled with Electrospray Ionization–Tandem Mass Spectrometry (DFI-ESI-IT-MSn) and Ultra High Performance Liquid Chromatography Coupled to Photodiode Array and Electrospray Ionization Mass Detectors (UHPLC-PDA-ESI-MSn) Analysis
2.8. In Vivo Assays
2.8.1. Lipopolysaccharide-Induced Peritonitis
Total and Differential Leukocyte Count
In Vivo Cytokine Assay
2.8.2. Croton-Oil-Induced Topical Dermatitis
2.9. In Vitro Assays
2.9.1. Cell Viability Assay
2.9.2. Indirect Determination of Nitric Oxide Production
2.9.3. In Vitro Cytokine Assay
2.10. Data Analysis
3. Results
3.1. Phytochemical Analysis of HEVe
3.2. In Vivo Anti-Inflammatory Activity
3.2.1. Effect of HEVe on LPS-Induced Peritonitis
Effect of HEVe on Total and Differential Leukocyte Counts
Effect of HEVe on Cytokine Production
3.2.2. Effect of HEVe on Topical Inflammation
3.3. In Vitro Anti-Inflammatory Activity
3.3.1. Effect of HEVe on Cell Viability
3.3.2. Effect of HEVe on Nitric Oxide Production
3.3.3. Effect of HEVe on the Production of Cytokines
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pezone, A.; Olivieri, F.; Napoli, M.V.; Procopio, A.; Avvedimento, E.V.; Gabrielli, A. Inflammation and DNA damage: Cause, effect or both. Nat. Rev. Rheumatol. 2023, 19, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Zigterman, B.G.R.; Dubois, L. Ontsteking en infectie: De cellulaire en biochemische processen [Inflammation and infection: Cellular and biochemical processes]. Ned. Tijdschr. Tandheelkd. 2022, 129, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Farber, D.L.; Netea, M.G.; Radbruch, A.; Rajewsky, K.; Zinkernagel, R.M. Immunological Memory: Lessons from the past and a Look to the Future. Nat. Rev. Immunol. 2016, 16, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.W.; Downey, G.P. Basic biology and critical care medicine—Inflammation. In Clinical Critical Care Medicine, 1st ed.; Albert, R.K., Slutsky, A.S., Ranieri, V.M., Torres, A., Takala, J., Eds.; Elsevier Inc.: Grand Rapids, MI, USA, 2006; Volume 1, pp. 1–12. [Google Scholar]
- Bengmark, S. Acute and “Chronic” Phase Reaction-a Mother of Disease. Clin. Nutr. 2004, 23, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.T. Evidence for nutritional benefits in prolonging wellness. Am. J. Clin. Nutr. 2006, 83, 410S–414S. [Google Scholar] [CrossRef]
- Yeung, Y.T.; Aziz, F.; Guerrero-Castilla, A.; Arguelles, S. Signaling Pathways in Inflammation and Anti-inflammatory Therapies. Curr. Pharm. Des. 2018, 24, 1449–1484. [Google Scholar] [CrossRef]
- Gregori, D.; Giacovelli, G.; Minto, C.; Barbetta, B.; Gualtieri, F.; Azzolina, D.; Vaghi, P.; Rovati, L.C. Association of Pharmacological Treatments with Long-term Pain Control in Patients with Knee Osteoarthritis: A Systematic Review and Meta-analysis. JAMA 2018, 320, 2564–2579. [Google Scholar] [CrossRef]
- Lyseng-Williamson, K.A. Anakinra in Still’s disease: A profile of its use. Drugs Ther. Perspect. 2018, 34, 543–553. [Google Scholar] [CrossRef]
- Abbasi, M.; Mousavi, M.J.; Jamalzehi, S.; Alimohammadi, R.; Bezvan, M.H.; Mohammadi, H.; Aslani, S. Strategies toward rheumatoid arthritis therapy; the old and the new. J. Cell Physiol. 2019, 234, 10018–10031. [Google Scholar] [CrossRef]
- Young, A.; Marsh, S. Steroid use in critical care. EJA Educ. 2018, 18, 129–134. [Google Scholar] [CrossRef]
- Thompson, C.; Davies, R.; Choy, E. Anti cytokine therapy in chronic inflammatory arthritis. Cytokine 2016, 86, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yin, J.; Chen, J.; Ma, J.; Si, H.; Xia, D. Inhibition of inflammation by berberine: Molecular mechanism and network pharmacology analysis. Phytomedicine 2024, 128, 155258. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.M. Virola in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available online: https://floradobrasil.jbrj.gov.br/FB23963 (accessed on 30 March 2023).
- Virola elongata (Benth.) Warb. in GBIF Secretariat (2023). GBIF Backbone Taxonomy. Checklist Dataset. Available online: https://doi.org/10.15468/39omei (accessed on 19 September 2024).
- MacRae, W.D.; Towers, G.H. An ethnopharmacological examination of Virola elongata bark: A South American arrow poison. J. Ethnopharmacol. 1984, 12, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Agurell, S.; Holmstedt, B.; Lindgren, J.E.; Schultes, R.E. Alkaloids in certain species of Virola and other South American plants of ethnopharmacologic interest. Acta Chem. Scand. 1969, 23, 903–916. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.V.; Bieski, I.G.C.; Balogun, S.O.; Martins, D.T.O. Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. J. Ethnopharmacol. 2017, 205, 69–102. [Google Scholar] [CrossRef] [PubMed]
- Almeida, G.V.B.; Arunachalam, K.; Balogun, S.O.; Pavan, E.; Ascêncio, S.D.; Soares, I.M.; Zanatta, A.C.; Vilegas, W.; Macho, A.; Martins, D.T.O. Chemical characterization and evaluation of gastric antiulcer properties of the hydroethanolic extract of the stem bark of Virola elongata (Benth.) Warb. J. Ethnopharmacol. 2019, 231, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.S.; Almeida, G.V.B.; Arunachalam, K.; Colodel, E.M.; Olaya, C.E.B.; Martins, D.T.O. Evaluation of the toxicity of the hydroethanolic extract of the stem bark of Virola elongata (Benth.) Warb. in vitro and in vivo models. J. Ethnopharmacol. 2024, 319 Pt 1, 117171. [Google Scholar] [CrossRef] [PubMed]
- Reflora. Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available online: http://floradobrasil.jbrj.gov.br/. (accessed on 26 February 2024).
- WFO. World Flora Online. Available online: https://about.worldfloraonline.org/ (accessed on 26 February 2024).
- Orlandi, L.; Vilela, F.C.; Santa-Cecília, F.V.; Dias, D.F.; Alves-da-Silva, G.; Giusti-Paiva, A. Anti-inflammatory and antinociceptive effects of the stem bark of Byrsonima intermedia A. Juss. J. Ethnopharmacol. 2011, 137, 1469–1476. [Google Scholar] [CrossRef]
- Souza, M.C.; Siani, A.C.; Ramos, M.F.S.; Menezes-de-Lima, O.J.; Henriques, M.G.M. Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Die Pharm.-Int. J. Pharm. Sci. 2003, 58, 582–586. [Google Scholar]
- Tubaro, A.; Dri, P.; Delbello, G.; Zilli, C.; Della Loggia, R. The Croton Oil Ear Test Revisited. Agents Actions 1985, 17, 347–349. [Google Scholar] [CrossRef]
- Nakayama, G.R.; Caton, M.C.; Nova, M.P.; Parandoosh, Z. Assessment of the Alamar Blue assay for cellular growth and viability in vitro. J. Immunol. Methods 1997, 204, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Suffness, M.; Pezzuto, J.M. Assays related to cancer drug discovery. Methods Plant Biochem. Assays Bioact. 1990, 6, 71–133. [Google Scholar]
- Park, E.J.; Cheenpracha, S.; Chang, L.C.; Kondratyuk, T.P.; Pezzuto, J.M. Inhibition of Lipopolysaccharide-Induced Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression by 4-[(2′-O-acetyl-α-LRhamnosyloxy)Benzyl]Isothiocyanate from Moringa oleifera. Nutr Cancer 2011, 63, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Moss, R.; Mao, Q.; Taylor, D.; Saucier, C. Investigation of monomeric and oligomeric wine stilbenoids in red wines by ultra-high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 1815–1827. [Google Scholar] [CrossRef] [PubMed]
- Acquavia, M.A.; Pascale, R.; Pappalardo, I.; Santarsiero, A.; Martelli, G.; Bianco, G. Characterization of Quercetin Derivatives in Crossing Combination of Habanero White and Capsicum annuum Peppers and of Anti-Inflammatory and Cytotoxic Activity. Separations 2021, 8, 90. [Google Scholar] [CrossRef]
- Prasain, J.K.; Barnes, S. Uptake and Metabolism of Dietary Proanthocyanidins. In Polyphenols in Human Health and Disease; Academic Press: Cambridge, MA, USA, 2014; pp. 553–560. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Y.X.; Janakiraman, N.; Chapman, R.A.; Gautam, S.C. Immunomodulatory activity of resveratrol: Suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochem. Pharmacol. 2001, 62, 1299–1308. [Google Scholar] [CrossRef]
- Jang, S.A.; Park, D.W.; Kwon, J.E.; Song, H.S.; Park, B.; Jeon, H.; Sohn, E.H.; Koo, H.J.; Kang, S.C. Quinic acid inhibits vascular inflammation in TNF-α-stimulated vascular smooth muscle cells. Biomed. Pharmacother. 2017, 96, 563–571. [Google Scholar] [CrossRef]
- Jang, W.Y.; Kim, M.Y.; Cho, J.Y. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int. J. Mol. Sci. 2022, 23, 15482. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Lima, J.L.F.C.; Mira, L.; Corvo, M.L. Molecular mechanisms of antiinflammatory activity mediated by flavonoids. Curr. Med. Chem. 2008, 15, 1586–1605. [Google Scholar] [CrossRef]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef]
- Srisook, K.; Mankhong, S.; Chiranthanut, N.; Kongsamak, K.; Kitwiwat, N.T.; Tongjurai, P.; Aramsangtienchai, P. Anti-inflammatory effect of trans-4-methoxycinnamaldehyde from Etlingerapavieana in LPS-stimulated macrophages mediated through inactivation of NF-κB and JNK/c-Jun signaling pathways and in rat models of acute inflammation. Toxicol. Appl. Pharmacol. 2019, 371, 3–11. [Google Scholar] [CrossRef]
- Zanusso-Junior, G.; Melo, J.O.; Romero, A.L.; Dantas, J.A.; Caparroz-Assef, S.M.; Bersani-Amado, C.A.; Cuman, R.K.N. Evaluation of the anti-inflammatory activity of coriander (Coriandrum sativum L.) in rodents. Rev. Bras. Plantas Med. 2010, 13, 17–23. [Google Scholar] [CrossRef]
- Sreeja, P.S.; Arunachalam, K.; Martins, D.T.O.; Lima, J.C.D.S.; Balogun, S.O.; Pavan, E.; Saikumar, S.; Dhivya, S.; Kasipandi, M.; Parimelazhagan, T. Sphenodesme involucrata var. paniculata (C.B. Clarke) Munir.: Chemical characterization, anti-nociceptive and anti-inflammatory activities of methanol extract of leaves. J. Ethnopharmacol. 2018, 225, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef]
- Sônego, F.; Castanheira, F.V.; Ferreira, R.G.; Kanashiro, A.; Leite, C.A.; Nascimento, D.C.; Colón, D.F.; Borges, V.F.; Alves-Filho, J.C.; Cunha, F.Q. Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious. Front Immunol. 2016, 7, 155. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Cervera, A.; Soehnlein, O.; Kenne, E. Neutrophils in chronic inflammatory diseases. Cell Mol. Immunol. 2022, 19, 177–191. [Google Scholar] [CrossRef]
- Leiro, J.; García, D.; Arranz, J.A.; Delgado, R.; Sanmartín, M.L.; Orallo, F. An Anacardiaceae preparation reduces the expression of inflammation-related genes in murine macrophages. Int. Immunopharmacol. 2004, 4, 991–1003. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, J.; Wang, L.; Ding, G.; Luo, P.; Lu, Y.; Pan, W.; Wang, M. Chloroquine protects mice from challenge with CpG ODN and LPS by decreasing proinflammatory cytokine release. Int. Immunopharmacol. 2004, 4, 223–234. [Google Scholar] [CrossRef]
- Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, 2004433. [Google Scholar] [CrossRef]
- Boshtam, M.; Asgary, S.; Kouhpayeh, S.; Shariati, L.; Khanahmad, H. Aptamers Against Pro- and Anti-Inflammatory Cytokines: A Review. Inflammation 2017, 40, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Xing, C.; Xiao, Y.; Shen, X.; Zhang, Z.; He, C.; Shi, J.B.; Liu, M.; Liu, X. Discovery and Anti-Inflammatory Activity Evaluation of a Novel CDK8 Inhibitor through Upregulation of IL-10 for the Treatment of Inflammatory Bowel Disease In Vivo. J. Med. Chem. 2022, 65, 7334–7362. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.L.; Luft, C.; Lunardelli, A.; Amaral, R.H.; Melo, D.A.S.; Donadio, M.V.F.; Nunes, F.B.; De Azambuja, M.S.; Santana, J.C.; Moraes, C.M.B.; et al. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil. An. Acad. Bras. Ciênc. 2015, 87 (Suppl. S2), 1397–1408. [Google Scholar] [CrossRef]
- Barbosa, A.G.R.; Oliveira, C.D.M.; Lacerda-Neto, L.J.; Vidal, C.S.; Saraiva, R.A.; Costa, J.G.M.; Coutinho, H.D.M.; Galvao, H.B.F.; Menezes, I.R.A. Evaluation of chemical composition and antiedematogenic activity of the essential oil of Hyptis martiusii Benth. Saudi J. Biol. Sci. 2017, 24, 355–361. [Google Scholar] [CrossRef]
- Dunster, J.L. The Macrophage and Its Role in Inflammation and Tissue Repair: Mathematical and Systems Biology Approaches. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 87–99. [Google Scholar] [CrossRef]
- Peace, C.G.; O’neill, L.A. The role of itaconate in host defense and inflammation. J. Clin. Investig. 2022, 132, e148548. [Google Scholar] [CrossRef] [PubMed]
- Proudfoot, A.E.; Power, C.A.; Schwarz, M.K. Anti-chemokine small molecule drugs: A promising future? Expert Opin. Investig. Drugs 2010, 19, 345–355. [Google Scholar] [CrossRef]
- Iwaszko, M.; Biały, S.; Bogunia-Kubik, K. Significance of interleukin (IL)-4 and IL-13 in inflammatory arthritis. Cells 2021, 10, 3000. [Google Scholar] [CrossRef]
- Guzik, T.J.; Korbut, R.; Adamek-Guzik, T. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 2003, 54, 469–487. [Google Scholar]
- Eroglu, E.; Hallström, S.; Bischof, H.; Opelt, M.; Schmidt, K.; Mayer, B.; Waldeck-Weiermair, M.; Graier, W.F.; Malli, R. Real-time Visualization of Distinct Nitric Oxide Generation of Nitric Oxide Synthase Isoforms in Single Cells. Nitric Oxide 2017, 70, 59–67. [Google Scholar] [CrossRef]
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem. J. 2001, 357, 593–615. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.R.; Braz, D.S.; Gonçalves, T.C.O.; Aires, R.; Côco, L.Z.; Guidoni, M.; Fronza, M.; Endringer, D.C.; Júnior, A.D.S.; Campos-Toimil, M.; et al. Development and Evaluation of Virola oleifera Formulation for Cutaneous Wound Healing. Antioxidants 2022, 11, 1647. [Google Scholar] [CrossRef] [PubMed]
- Nouri, A.; Heibati, F.; Heidarian, E. Gallic acid exerts anti-inflammatory, antioxidative stress, and nephroprotective effects against paraquat-induced renal injury in male rats. Naunyn Schmiedeberg’s Arch. Pharmacol. 2021, 394, 1–9. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Mascarenhas, R.; Harish, H.M.; Gowda, Y.; Lakshmaiah, V.V.; Nagella, P.; Al-Mssallem, M.Q.; Alessa, F.M.; Almaghasla, M.I.; Rezk, A.A. Stilbenes, a Versatile Class of Natural Metabolites for Inflammation-An Overview. Molecules 2023, 28, 3786. [Google Scholar] [CrossRef]
N° | Rt (min) | [M − H]− | MS/MS | Compound (Molecular Formula) | Reference |
---|---|---|---|---|---|
1 | 6.02 | 191 | 173, 127 | Quinic acid (C7H12O6) | [19] |
2 | 9.28 | 277 | 185, 183 | Resveratrol (C14H12O3) | [29] |
3 | 12.98 | 399 | 321, 295, 183 | 3′,4′-dimethoxy-3,4-methylenedioxy-6 7′,8 8′-neolignan (C21H24O6) | [19] |
4 | 29.45 | 447 | 301 | Quercetin (C15H10O7) | [30] |
5 | 30.60 | 577 | 559, 451, 425, 407, 289 | Catechin dimer (C30H24O12) | [31] |
6 | 30.95 | 595 | 577, 505, 475, 415, 355 | Diglycosyl-flavonoid (C-glycoside) (C26H28O16) | [19] |
7 | 40.74 | 865 | Catechin trimer (C45H38O18) | [31] | |
8 | 45.52 | 1153 | 576 | Catechin tetramer (C60H50O24) | [31] |
9 | 53.27 | 1441 | 720 | Catechin pentamer (C75H62O30) | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Serio, B.F.; Muller, J.d.A.I.; Silva, M.J.D.; Figueiredo, F.d.F.; Martins, D.T.d.O. Phytochemistry and Evaluation of the Anti-Inflammatory Activity of the Hydroethanolic Extract of Virola elongata (Benth.) Warb. Stem Bark. Biology 2024, 13, 776. https://doi.org/10.3390/biology13100776
Di Serio BF, Muller JdAI, Silva MJD, Figueiredo FdF, Martins DTdO. Phytochemistry and Evaluation of the Anti-Inflammatory Activity of the Hydroethanolic Extract of Virola elongata (Benth.) Warb. Stem Bark. Biology. 2024; 13(10):776. https://doi.org/10.3390/biology13100776
Chicago/Turabian StyleDi Serio, Bruna Fioravante, Jessica de Araujo Isaias Muller, Marcelo José Dias Silva, Fabiana de Freitas Figueiredo, and Domingos Tabajara de Oliveira Martins. 2024. "Phytochemistry and Evaluation of the Anti-Inflammatory Activity of the Hydroethanolic Extract of Virola elongata (Benth.) Warb. Stem Bark" Biology 13, no. 10: 776. https://doi.org/10.3390/biology13100776
APA StyleDi Serio, B. F., Muller, J. d. A. I., Silva, M. J. D., Figueiredo, F. d. F., & Martins, D. T. d. O. (2024). Phytochemistry and Evaluation of the Anti-Inflammatory Activity of the Hydroethanolic Extract of Virola elongata (Benth.) Warb. Stem Bark. Biology, 13(10), 776. https://doi.org/10.3390/biology13100776