Previous Issue
Volume 13, September
 
 

Biology, Volume 13, Issue 10 (October 2024) – 90 articles

Cover Story (view full-size image): Inner ear disorders such as sensorineural hearing loss, Meniere's disease and vestibular neuritis have a strong impact on the quality of life. Even though they are frequently occurring diseases, the pathophysiology of these disorders is not entirely understood, and current therapeutics have limited efficacy. The recent scientific literature suggests that pericytes—wall vascular cells specialized in maintaining microvasculature integrity and function—play an important role in labyrinth pathophysiological processes. Relevant new insights into the pathophysiology of inner ear disorders can be provided by our comprehensive analysis and, ultimately, may facilitate the development of novel diagnostic tests and treatments that could enhance the quality of life. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 2954 KiB  
Article
The Impact of Eucalyptus and Pine Plantations on the Taxonomic and Functional Diversity of Dung Beetles (Coleoptera: Scarabaeidae) in the Southern Region of Ecuador
by Karen Sanmartín-Vivar, Jessica Guachizaca-Macas and Diego Marín-Armijos
Biology 2024, 13(10), 841; https://doi.org/10.3390/biology13100841 (registering DOI) - 19 Oct 2024
Abstract
This study sheds light on the complex relationship between land use, biodiversity, and the functional traits of dung beetles in Ecuador. The results indicate that the richness and abundance of dung beetles vary across different land uses and regions, with forests generally having [...] Read more.
This study sheds light on the complex relationship between land use, biodiversity, and the functional traits of dung beetles in Ecuador. The results indicate that the richness and abundance of dung beetles vary across different land uses and regions, with forests generally having a positive impact, while eucalyptus and pine plantations have a negative effect in certain areas. Specific indicator species, such as Homocopris buckleyi for forest areas and Onthophagus curvicornis for eucalyptus plantations, were identified. This study also found that functional diversity analysis, based on morphological traits, revealed that certain traits, such as biomass, pronotum width, head width, and elytra length, were significant contributors to differences in dung beetle communities across various land uses and regions. This study highlights the potential conservation value of certain modified habitats and emphasizes the importance of considering both taxonomic and functional diversity when assessing the impact of land use on the ecosystem services provided by dung beetles. It underscores the potential value of plantations as refuges for dung beetle communities and the need for long-term assessments to better understand biodiversity changes over time. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

13 pages, 7150 KiB  
Article
Changes in the Cyto- and Fibroarchitectonics of the Cerebellar Cortex in Rats Subjected to Extreme Physical Activity
by Evgenii Balakin, Ksenia Yurku, Viacheslav Kuropatkin, Alexander Izotov, Valeriya Nakhod and Vasiliy Pustovoyt
Biology 2024, 13(10), 840; https://doi.org/10.3390/biology13100840 (registering DOI) - 19 Oct 2024
Abstract
Physical overexertion surpassing the functional capacity of the nervous system causes the hyperactivation of the neural structures of the cerebellum. In turn, it causes the depletion of intracellular resources and progressive structural changes in cerebellar cells and fibers. These degenerative changes may lead [...] Read more.
Physical overexertion surpassing the functional capacity of the nervous system causes the hyperactivation of the neural structures of the cerebellum. In turn, it causes the depletion of intracellular resources and progressive structural changes in cerebellar cells and fibers. These degenerative changes may lead to cerebellar dysfunction, including the worsening of coordination, balance, and motor functions. In order to maintain the health and functioning of the cerebellum and the nervous system in general, one needs to avoid physical overexertion and have enough time to recover. Three major types of Purkinje cells were identified in control group animals. After the forced swimming test, animals had significant morphological changes in pyriform cells, granule cells, internuncial neurons, and neuroglial cells. In particular, the extreme degeneration of granule cells was manifested via their fusion into conglomerates. These changes demonstrate that neurodegeneration in the cerebellum takes place in response to physical overexertion. Full article
(This article belongs to the Special Issue Animal Models of Neurodegenerative Diseases)
Show Figures

Figure 1

26 pages, 1565 KiB  
Review
Research Progress on Viruses of Passiflora edulis
by Wenhua Wu, Funing Ma, Xiaoyan Zhang, Yuxin Tan, Te Han, Jing Ding, Juyou Wu, Wenting Xing, Bin Wu, Dongmei Huang, Shaoling Zhang, Yi Xu and Shun Song
Biology 2024, 13(10), 839; https://doi.org/10.3390/biology13100839 (registering DOI) - 19 Oct 2024
Abstract
Passiflora edulis, also known as passion fruit, is celebrated for its rich nutritional content, distinctive flavour, and significant medicinal benefits. At present, viral diseases pose a major challenge to the passion fruit industry, affecting both the production and quality of the fruit. [...] Read more.
Passiflora edulis, also known as passion fruit, is celebrated for its rich nutritional content, distinctive flavour, and significant medicinal benefits. At present, viral diseases pose a major challenge to the passion fruit industry, affecting both the production and quality of the fruit. These diseases impede the sustainable and healthy growth of the passion fruit sector. In recent years, with the expansion of P. edulis cultivation areas, virus mutations, and advances in virus detection technology, an increasing number of virus species infecting P. edulis have been discovered. To date, more than 40 different virus species have been identified; however, there are different strains within the same virus. This poses a challenge for the control and prevention of P. edulis virus disease. Therefore, this review discusses the different types of viruses and their characteristics, modes of transmission, and effects on the growth of the passion fruit plant, as well as the mechanisms of virus generation and preventive measures, with the hope that these discussions will provide a comprehensive understanding of and countermeasures for viruses in passion fruit. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants)
14 pages, 1411 KiB  
Article
A Comprehensive Assessment of Nutritional Value, Antioxidant Potential, and Genetic Diversity in Metapenaeus ensis from Three Different Populations
by Yundong Li, Juan Chen, Song Jiang, Qibin Yang, Lishi Yang, Jianhua Huang, Jianzhi Shi, Yan Zhang, Zhibin Lu and Falin Zhou
Biology 2024, 13(10), 838; https://doi.org/10.3390/biology13100838 (registering DOI) - 19 Oct 2024
Viewed by 84
Abstract
Due to its high tolerance to salinity and temperature, as well as its strong adaptability, Metapenaeus ensis holds an important position in the Chinese aquaculture industry. However, studies on the evaluation of its germplasm resources remain insufficient. This research conducted an in-depth comparative [...] Read more.
Due to its high tolerance to salinity and temperature, as well as its strong adaptability, Metapenaeus ensis holds an important position in the Chinese aquaculture industry. However, studies on the evaluation of its germplasm resources remain insufficient. This research conducted an in-depth comparative evaluation of M. ensis from three representative farming regions in China: Sanya, Zhuhai, and Raoping. The nutritional analysis of muscle tissue showed no statistically significant differences in crude ash, moisture, and crude protein content among the populations (p > 0.05). However, significant differences were observed in crude fat and total sugar content (p < 0.05). The MeSY and MeRP populations had higher crude fat content than the MeZH population (p < 0.05), while the MeZH population exhibited the highest total sugar content. In terms of amino acid composition, the MeSY population had relatively higher total essential amino acid content and proportion, as well as higher total amino acid content, both of which were statistically significant (p < 0.05). A fatty acid composition analysis further highlighted the advantages of the MeRP population in several key fatty acids (p < 0.05). Physiological and biochemical analyses showed no significant differences among the three populations in total antioxidant capacity, superoxide dismutase activity, or catalase activity (p > 0.05). A genetic diversity analysis indicated that M. ensis has relatively low diversity, with the MeSY population showing higher SNP density and nucleotide diversity. A genetic differentiation analysis revealed significant genetic differentiation between the MeSY and MeZH populations, while differentiation between the MeZH and MeRP populations was relatively smaller. This comprehensive assessment of nutritional components, amino acids, fatty acids, antioxidant capacity, and genetic diversity highlights the advantages of germplasm resources from different regions. These findings provide valuable insights for future research on the genetic characteristics and breeding potential of M. ensis. Full article
(This article belongs to the Special Issue Aquatic Economic Animal Breeding and Healthy Farming)
Show Figures

Figure 1

14 pages, 3179 KiB  
Article
Population Genetic Investigation of Hypophthalmichthys nobilis in the Yangtze River Basin Based on RAD Sequencing Data
by Weitao Li, Jiongying Yu, Yanfu Que, Xingkun Hu, Ezhou Wang, Xiaolin Liao and Bin Zhu
Biology 2024, 13(10), 837; https://doi.org/10.3390/biology13100837 (registering DOI) - 18 Oct 2024
Viewed by 146
Abstract
The Bighead carp (Hypophthalmichthys nobilis), a primary freshwater aquaculture species in China, faces challenges due to over-exploitation and environmental changes. We leveraged RAD-seq to perform a comprehensive population genetic analysis on 14 H. nobilis populations sampled from the Yangtze River [...] Read more.
The Bighead carp (Hypophthalmichthys nobilis), a primary freshwater aquaculture species in China, faces challenges due to over-exploitation and environmental changes. We leveraged RAD-seq to perform a comprehensive population genetic analysis on 14 H. nobilis populations sampled from the Yangtze River (13 populations) and the Marseilles Reach of the Illinois River (one population). Analysis of genetic diversity showed that different parameters demonstrated varied inferences, and notably, Zhongxian (ZX2), Wanhzou (WZ2), Yangzhou hatchery (YZYZ), Yangzhou (YZ), and Taihu (TH) populations showed apparent heterozygote deficiency. Linkage disequilibrium (LD) analysis exhibited a trend of higher linkage disequilibrium in populations from the upper reaches of the Yangtze River, followed by those from the middle reaches and then those from the lower reaches. Additionally, the reconstructed polygenetic tree and PCA plot clustered all populations into 2 major subgroups, while the results of structure analysis indicated 4 ancestors. The pairwise FST values ranged from 0 to 0.5530. Among these, high FST values (0.1931–0.5530) were only observed between populations WZ2, YZ, YZYZ, and the remaining 11 populations. Furthermore, genetic bottlenecks were observed in all populations 20–30 thousand years ago. Overall, the research offers insights essential for genetic management practices for sustainable aquaculture and biodiversity conservation of bighead carp. Full article
(This article belongs to the Section Genetics and Genomics)
19 pages, 4408 KiB  
Article
Effects of Increasing Oral Deoxynivalenol Gavage on Growth Performance, Blood Biochemistry, Metabolism, Histology, and Microbiome in Rats
by Jin-Young Jeong, Junsik Kim, Minji Kim, Seong-Hoon Shim, Cheolju Park, Sungju Jung and Hyunjung Jung
Biology 2024, 13(10), 836; https://doi.org/10.3390/biology13100836 (registering DOI) - 18 Oct 2024
Viewed by 145
Abstract
Mycotoxin-contaminated feed or food can affect physiological responses and cause illnesses in humans and animals. In this study, we evaluated the effects of deoxynivalenol (DON) toxicity on the growth performance, blood biochemistry, histology, microbiome, and metabolism of rats fed with different toxin concentrations. [...] Read more.
Mycotoxin-contaminated feed or food can affect physiological responses and cause illnesses in humans and animals. In this study, we evaluated the effects of deoxynivalenol (DON) toxicity on the growth performance, blood biochemistry, histology, microbiome, and metabolism of rats fed with different toxin concentrations. After 1 week of acclimatization, seven-week-old male rats received 0.9% saline as a control, 0.02 mg/kg DON as T1, and 0.2 mg/kg DON as T2 via oral gavage for 4 weeks. The final body weight of the T2 group was significantly lower than that of the control and T1; however, the average daily gain, feed intake, and feed conversion ratio did not differ. Fibrosis and apoptosis were observed in various tissues as DON concentration increased. Creatinine and alkaline phosphatase levels were significantly lower in the DON-treated group than in the control. Firmicutes and Desulfobacterota phyla dominated the cecum, whereas those in the feces were Proteobacteria and Bacteroidetes. Metabolomic profiling showed phenylalanine, tyrosine, and tryptophan biosynthesis as the most prominent pathways. Overall, our results suggest that low-dose and short-term DON exposure can trigger several adverse effects in rats. Dietary toxicants in rats may explain the physiological effects associated with the metabolism commonly reported in animals. Full article
(This article belongs to the Special Issue Gut Microbiome in Health and Disease (2nd Edition))
Show Figures

Figure 1

27 pages, 4914 KiB  
Systematic Review
Effects of Acute Hypoxic Exposure in Simulated Altitude in Healthy Adults on Cognitive Performance: A Systematic Review and Meta-Analysis
by María Ramírez-delaCruz, Alfredo Bravo-Sánchez, Jorge Sánchez-Infante, Pablo Abián and Javier Abián-Vicén
Biology 2024, 13(10), 835; https://doi.org/10.3390/biology13100835 - 17 Oct 2024
Viewed by 298
Abstract
The neurocognitive response following hypoxia has received special interest. However, it is necessary to understand the impact of acute hypoxic exposure induced by simulated altitude on cognitive performance. This study aimed to determine the effects of acute hypoxic exposure in simulated altitude in [...] Read more.
The neurocognitive response following hypoxia has received special interest. However, it is necessary to understand the impact of acute hypoxic exposure induced by simulated altitude on cognitive performance. This study aimed to determine the effects of acute hypoxic exposure in simulated altitude in healthy adults on reaction time, response accuracy, memory, and attention. Five electronic databases were searched. The inclusion criteria were: (1) Experimental studies involving a hypoxia intervention induced by a hypoxic air generator to determine the effects on cognitive performance; and (2) Conducted in adults (males and/or females; aged 18–50 years) without pathologies or health/mental problems. Four meta-analyses were performed: (1) reaction time, (2) response accuracy, (3) memory, and (4) attention. Finally, 37 studies were included in the meta-analysis. Hypoxia exposure induced detrimental effects on reaction time (standard mean difference (SMD) −0.23; 95% confidence interval (CI) −0.38–−0.07; p = 0.004), response accuracy (SMD −0.20; 95% CI −0.38–−0.03; p = 0.02), and memory (SMD −0.93; 95% CI: −1.68–−0.17; p = 0.02). Nevertheless, attention was not affected during hypoxia exposure (SMD −0.06; 95% CI: −0.23–0.11; p = 0.47). Acute exposure to hypoxia in controlled lab conditions appears to be detrimental to cognitive performance, specifically in reaction time, response accuracy, and memory. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

17 pages, 7239 KiB  
Article
Post-Hatching Development of Posture and Behavior in the Barn Owl (Tyto alba): From a General Behavioral Pattern of Vertebrates to the Typical Owl Behavior
by David Eilam and Zohar Hagbi
Biology 2024, 13(10), 834; https://doi.org/10.3390/biology13100834 - 17 Oct 2024
Viewed by 277
Abstract
Hatching captive barn owl chicks underwent four developmental phases. In the first 10 days (phase 1), behavior consisted of lateral movements that gradually changed to forward progression and peaked a few days before and after eye-opening. This behavior resembled a general developmental pattern [...] Read more.
Hatching captive barn owl chicks underwent four developmental phases. In the first 10 days (phase 1), behavior consisted of lateral movements that gradually changed to forward progression and peaked a few days before and after eye-opening. This behavior resembled a general developmental pattern that characterizes other vertebrates. Chicks also underwent a postural change, from head bent underneath the ventrum to resting on the rear end of the trunk with the head lifted in the air. Then, once their eyes were opened, chicks became more stationary and preoccupied with visual exploration, manifested in lateral head movements and peering episodes (phase 2, until day 20). The latter behavior, which is also typical of mature owls when not on the wing, characterized the chicks’ behavior after post-hatching day 20 (phase 3), when their flight and contour feathers grew, along with shedding the down plumage and standing tall. Development culminated in active flight, first observed by days 50–60 (phase 4). Altogether, during post-hatching development, barn owl chicks gradually shifted from egg posture to the adult upright body posture. At the same time, their behavior consisted of speciation from the general developmental pattern to the typical stationary barn owl behavior, and, finally, flight was incorporated. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

2 pages, 182 KiB  
Correction
Correction: Patias et al. Effect of Liposomal Protium heptaphyllum (Alb.) March Extract in the Treatment of Obesity Induced by High-Calorie Diet. Biology 2024, 13, 535
by Naiéle Sartori Patias, Eveline Aparecida Isquierdo Fonseca de Queiroz, Stela Regina Ferrarini, Gisele Facholi Bomfim, Danilo Henrique Aguiar, Adilson Paulo Sinhorin, Alexandre Aymberé Bello, Geovana Vicentini Fazolo da Silva, Larissa Cavalheiro and Valéria Dornelles Gindri Sinhorin
Biology 2024, 13(10), 833; https://doi.org/10.3390/biology13100833 - 17 Oct 2024
Viewed by 129
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Obesity)
22 pages, 3581 KiB  
Article
Immunopeptidomics of Salmonella enterica Serovar Typhimurium-Infected Pig Macrophages Genotyped for Class II Molecules
by Carmen Celis-Giraldo, Carlos F. Suárez, William Agudelo, Nieves Ibarrola, Rosa Degano, Jaime Díaz, Raúl Manzano-Román and Manuel A. Patarroyo
Biology 2024, 13(10), 832; https://doi.org/10.3390/biology13100832 - 16 Oct 2024
Viewed by 553
Abstract
Salmonellosis is a zoonotic infection that has a major impact on human health; consuming contaminated pork products is the main source of such infection. Vaccination responses to classic vaccines have been unsatisfactory; that is why peptide subunit-based vaccines represent an excellent alternative. Immunopeptidomics [...] Read more.
Salmonellosis is a zoonotic infection that has a major impact on human health; consuming contaminated pork products is the main source of such infection. Vaccination responses to classic vaccines have been unsatisfactory; that is why peptide subunit-based vaccines represent an excellent alternative. Immunopeptidomics was used in this study as a novel approach for identifying antigens coupled to major histocompatibility complex class II molecules. Three homozygous individuals having three different haplotypes (Lr-0.23, Lr-0.12, and Lr-0.21) were thus selected as donors; peripheral blood macrophages were then obtained and stimulated with Salmonella typhimurium (MOI 1:40). Although similarities were observed regarding peptide length distribution, elution patterns varied between individuals; in total, 1990 unique peptides were identified as follows: 372 for Pig 1 (Lr-0.23), 438 for Pig 2 (Lr.0.12) and 1180 for Pig 3 (Lr.0.21). Thirty-one S. typhimurium unique peptides were identified; most of the identified peptides belonged to outer membrane protein A and chaperonin GroEL. Notably, 87% of the identified bacterial peptides were predicted in silico to be elution ligands. These results encourage further in vivo studies to assess the immunogenicity of the identified peptides, as well as their usefulness as possible protective vaccine candidates. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Graphical abstract

32 pages, 5551 KiB  
Review
Unveiling the Interplay—Vitamin D and ACE-2 Molecular Interactions in Mitigating Complications and Deaths from SARS-CoV-2
by Sunil J. Wimalawansa
Biology 2024, 13(10), 831; https://doi.org/10.3390/biology13100831 - 16 Oct 2024
Viewed by 621
Abstract
The interaction of the SARS-CoV-2 spike protein with membrane-bound angiotensin-converting enzyme-2 (ACE-2) receptors in epithelial cells facilitates viral entry into human cells. Despite this, ACE-2 exerts significant protective effects against coronaviruses by neutralizing viruses in circulation and mitigating inflammation. While SARS-CoV-2 reduces ACE-2 [...] Read more.
The interaction of the SARS-CoV-2 spike protein with membrane-bound angiotensin-converting enzyme-2 (ACE-2) receptors in epithelial cells facilitates viral entry into human cells. Despite this, ACE-2 exerts significant protective effects against coronaviruses by neutralizing viruses in circulation and mitigating inflammation. While SARS-CoV-2 reduces ACE-2 expression, vitamin D increases it, counteracting the virus’s harmful effects. Vitamin D’s beneficial actions are mediated through complex molecular mechanisms involving innate and adaptive immune systems. Meanwhile, vitamin D status [25(OH)D concentration] is inversely correlated with severity, complications, and mortality rates from COVID-19. This study explores mechanisms through which vitamin D inhibits SARS-CoV-2 replication, including the suppression of transcription enzymes, reduced inflammation and oxidative stress, and increased expression of neutralizing antibodies and antimicrobial peptides. Both hypovitaminosis D and SARS-CoV-2 elevate renin levels, the rate-limiting step in the renin-angiotensin-aldosterone system (RAS); it increases ACE-1 but reduces ACE-2 expression. This imbalance leads to elevated levels of the pro-inflammatory, pro-coagulatory, and vasoconstricting peptide angiotensin-II (Ang-II), leading to widespread inflammation. It also causes increased membrane permeability, allowing fluid and viruses to infiltrate soft tissues, lungs, and the vascular system. In contrast, sufficient vitamin D levels suppress renin expression, reducing RAS activity, lowering ACE-1, and increasing ACE-2 levels. ACE-2 cleaves Ang-II to generate Ang(1–7), a vasodilatory, anti-inflammatory, and anti-thrombotic peptide that mitigates oxidative stress and counteracts the harmful effects of SARS-CoV-2. Excess ACE-2 molecules spill into the bloodstream as soluble receptors, neutralizing and facilitating the destruction of the virus. These combined mechanisms reduce viral replication, load, and spread. Hence, vitamin D facilitates rapid recovery and minimizes transmission to others. Overall, vitamin D enhances the immune response and counteracts the pathological effects of SARS-CoV-2. Additionally, data suggests that widely used anti-hypertensive agents—angiotensin receptor blockers and ACE inhibitors—may lessen the adverse impacts of SARS-CoV-2, although they are less potent than vitamin D. Full article
(This article belongs to the Special Issue SARS-CoV-2 and Immunology)
Show Figures

Graphical abstract

17 pages, 336 KiB  
Review
Using the Constrained Disorder Principle to Navigate Uncertainties in Biology and Medicine: Refining Fuzzy Algorithms
by Yaron Ilan
Biology 2024, 13(10), 830; https://doi.org/10.3390/biology13100830 - 16 Oct 2024
Viewed by 268
Abstract
Uncertainty in biology refers to situations in which information is imperfect or unknown. Variability, on the other hand, is measured by the frequency distribution of observed data. Biological variability adds to the uncertainty. The Constrained Disorder Principle (CDP) defines all systems in the [...] Read more.
Uncertainty in biology refers to situations in which information is imperfect or unknown. Variability, on the other hand, is measured by the frequency distribution of observed data. Biological variability adds to the uncertainty. The Constrained Disorder Principle (CDP) defines all systems in the universe by their inherent variability. According to the CDP, systems exhibit a degree of variability necessary for their proper function, allowing them to adapt to changes in their environments. Per the CDP, while variability differs from uncertainty, it can be viewed as a regulated mechanism for efficient functionality rather than uncertainty. This paper explores the various aspects of un-certainties in biology. It focuses on using CDP-based platforms for refining fuzzy algorithms to address some of the challenges associated with biological and medical uncertainties. Developing a fuzzy decision tree that considers the natural variability of systems can help minimize uncertainty. This method can reveal previously unidentified classes, reduce the number of unknowns, improve the accuracy of modeling results, and generate algorithm outputs that are more biologically and clinically relevant. Full article
(This article belongs to the Section Theoretical Biology and Biomathematics)
13 pages, 860 KiB  
Article
Measurement of New Biomarkers of Immunity and Welfare in Colostrum and Milk of Pigs: Analytical Validation and Changes During Lactation
by María Botía, Damián Escribano, Eva Mainau, Alberto Muñoz-Prieto and José J. Cerón
Biology 2024, 13(10), 829; https://doi.org/10.3390/biology13100829 - 16 Oct 2024
Viewed by 327
Abstract
Colostrum is a mammary secretion released from the time of farrowing to 36 h post-farrowing. After this time and during all the rest of lactation, the mammary secretion is considered milk. The objectives of this study were: (1) to perform an analytical validation [...] Read more.
Colostrum is a mammary secretion released from the time of farrowing to 36 h post-farrowing. After this time and during all the rest of lactation, the mammary secretion is considered milk. The objectives of this study were: (1) to perform an analytical validation in the colostrum and milk of sows of assays for four analytes related to immunity: total ADA (tADA) and its isoenzymes (ADA1 and ADA2), myeloperoxidase (Mpx), calprotectin, and calgranulin, and two analytes related to welfare: cortisol and alpha-amylase. (2) To evaluate the changes in these analytes during lactation (3) To assess the correlations between these new analytes, as well as with IgG and IgA. In the analytical validation, all the assays were precise and accurate. When changes during lactation were evaluated, the concentration of tADA and ADA2 was found to be higher in colostrum than in milk (p < 0.02), while the activity of Mpx was observed to be higher in mature milk than in colostrum (p < 0.03). Furthermore, cortisol and alpha-amylase activity were found to be higher in colostrum compared to mature milk (p < 0.04 and p < 0.0001, respectively). Regarding the relation between analytes, alpha-amylase showed a significant correlation with both IgG and IgA and calprotectin was correlated with calgranulin and Mpx. Further studies should be performed to elucidate the possible practical application of the analytes evaluated in this study as biomarkers of colostrum and milk in sows. Full article
Show Figures

Figure 1

18 pages, 5323 KiB  
Article
Silica Accumulation in Potato (Solanum tuberosum L.) Plants and Implications for Potato Yield Performance—Results from Field Experiments in Northeast Germany
by Daniel Puppe, Jacqueline Busse, Mathias Stein, Danuta Kaczorek, Christian Buhtz and Jörg Schaller
Biology 2024, 13(10), 828; https://doi.org/10.3390/biology13100828 - 16 Oct 2024
Viewed by 285
Abstract
The potato is the most important non-cereal food crop, and thus improving potato growth and yield is the focus of agricultural researchers and practitioners worldwide. Several studies reported beneficial effects of silicon (Si) fertilization on potato performance, although plant species from the family [...] Read more.
The potato is the most important non-cereal food crop, and thus improving potato growth and yield is the focus of agricultural researchers and practitioners worldwide. Several studies reported beneficial effects of silicon (Si) fertilization on potato performance, although plant species from the family Solanaceae are generally considered to be non-Si-accumulating. We used results from two field experiments in the temperate zone to gain insight into silica accumulation in potato plants, as well as corresponding long-term potato yield performance. We found relatively low Si contents in potato leaves and roots (up to 0.08% and 0.3% in the dry mass, respectively) and negligible Si contents in potato tuber skin and tuber flesh for plants grown in soils with different concentrations of plant-available Si (field experiment 1). Moreover, potato yield was not correlated to plant-available Si concentrations in soils in the long term (1965–2015, field experiment 2). Based on our results, we ascribe the beneficial effects of Si fertilization on potato growth and yield performance reported in previous studies mainly to antifungal/osmotic effects of foliar-applied Si fertilizers and to changes in physicochemical soil properties (e.g., enhanced phosphorus availability and water-holding capacity) caused by soil-applied Si fertilizers. Full article
Show Figures

Figure 1

15 pages, 5526 KiB  
Article
Extracellular Vesicles Contribute to Oxidized LDL-Induced Stromal Cell Proliferation in Benign Prostatic Hyperplasia
by Franco F. Roldán Gallardo, Daniel E. Martínez Piñerez, Kevin F. Reinarz Torrado, Gabriela A. Berg, Jael D. Herzfeld, Vanina G. Da Ros, Manuel López Seoane, Cristina A. Maldonado and Amado A. Quintar
Biology 2024, 13(10), 827; https://doi.org/10.3390/biology13100827 - 16 Oct 2024
Viewed by 274
Abstract
Background: Clinical and experimental evidence has linked Benign Prostatic Hyperplasia (BPH) with dyslipidemic and hypercholesterolemic conditions, though the underlying cellular mechanisms remain unclear. This study investigates the impact of dyslipidemia, specifically oxidized LDL (OxLDL), on prostatic stromal cell proliferation and the release of [...] Read more.
Background: Clinical and experimental evidence has linked Benign Prostatic Hyperplasia (BPH) with dyslipidemic and hypercholesterolemic conditions, though the underlying cellular mechanisms remain unclear. This study investigates the impact of dyslipidemia, specifically oxidized LDL (OxLDL), on prostatic stromal cell proliferation and the release of extracellular vesicles (EVs). Methods: Mice were fed a high-fat diet, and human prostatic stromal cells (HPSCs) were treated with OxLDL. Proliferation assays and EV characterization were performed to assess the role of EVs in BPH progression. Results: Pro-atherogenic conditions significantly increased cell proliferation in both murine prostatic cells and HPSCs. Treatment with metformin effectively inhibited OxLDL-induced proliferation. Additionally, OxLDL stimulated the production and release of pro-proliferative EVs by HPSCs, which further promoted cellular proliferation. Conclusions: The findings suggest that dyslipidemia drives prostatic stromal cell proliferation and EV secretion, contributing to BPH progression. Metformin demonstrates potential as a therapeutic agent to mitigate these effects, offering insight into novel strategies for BPH management. This study highlights the complex interaction between dyslipidemia, cell proliferation, and extracellular communication in the context of BPH pathogenesis. Full article
(This article belongs to the Collection Extracellular Vesicles: From Biomarkers to Therapeutic Tools)
Show Figures

Figure 1

13 pages, 1125 KiB  
Article
Empowering Communities through Citizen Science: Dengue Prevention in Córdoba
by Elizabet L. Estallo, Magali Isabel Madelon, Elisabet M. Benítez, Doriam Camacho-Rodríguez, Mía E. Martín, Anna M. Stewart-Ibarra and Francisco F. Ludueña-Almeida
Biology 2024, 13(10), 826; https://doi.org/10.3390/biology13100826 - 15 Oct 2024
Viewed by 523
Abstract
Traditional mosquito vector control methods have proved ineffective in controlling the spread of dengue fever. This study aimed to assess the effectiveness of community engagement through student-led science in promoting dengue prevention and socioecological factors in the temperate urban city of Córdoba, Argentina. [...] Read more.
Traditional mosquito vector control methods have proved ineffective in controlling the spread of dengue fever. This study aimed to assess the effectiveness of community engagement through student-led science in promoting dengue prevention and socioecological factors in the temperate urban city of Córdoba, Argentina. It assesses community perceptions, knowledge, attitudes, and preventive practices regarding dengue fever and its vector. Results showed a significant increase in knowledge about the vector and the disease and respondents’ adoption of good preventive practices. Student-led science was identified as a valuable tool for reaching households and leading to behavior changes at home. Furthermore, the findings highlighted the need for school programs to address vector biology and vector-borne disease prevention all year round. This study provides invaluable insights into the effectiveness of community engagement through student-led science to promote dengue prevention and socioecological factors. The findings suggest that this approach could be used to control the spread in other regions affected by the disease. Full article
Show Figures

Figure 1

15 pages, 1595 KiB  
Article
Effect of Dietary Digestible Protein Levels on Muscle Growth and Oxidative Stress in Amazonian Pintado (Pseudoplatystoma reticulatum × Leiarius marmoratus)
by Stephane Vasconcelos Leandro, Daniel Rabello Ituassú, Valéria Dornelles Gindri Sinhorin, Danilo Henrique Aguiar, Paula Sueli Andrade Moreira, Ana Julia Lopes Braga Ferneda, Soraia Andressa Dall’Agnol Marques, Adilson Paulo Sinhorin, Anderson Corassa, Ana Paula Silva Ton, Leonardo Willian de Freitas and Maicon Sbardella
Biology 2024, 13(10), 825; https://doi.org/10.3390/biology13100825 - 15 Oct 2024
Viewed by 358
Abstract
This study aimed to evaluate the effects of dietary digestible protein levels on the growth dynamics and oxidative stress status of white muscle fibers in Amazonian Pintado (Pseudoplatystoma reticulatum × Leiarius marmoratus). Four hundred and fifty-five juveniles of Amazonian Pintado were [...] Read more.
This study aimed to evaluate the effects of dietary digestible protein levels on the growth dynamics and oxidative stress status of white muscle fibers in Amazonian Pintado (Pseudoplatystoma reticulatum × Leiarius marmoratus). Four hundred and fifty-five juveniles of Amazonian Pintado were fed diets containing varying digestible protein levels (225, 250, 275, 300, 325, 350, or 375 g kg−1) for 75 days. At the end of the experiment, the fish were fasted for 24 h, anesthetized, and euthanized to obtain muscle samples. The linear and quadratic effects of dietary digestible protein levels on white muscle fiber diameter, metabolite concentrations, and oxidative stress were assessed. The results revealed that increasing dietary digestible protein levels linearly raised the concentrations of free amino acids and total proteins in muscle tissue but also led to elevated levels of TBARS, indicating increased oxidative stress. Notably, the average area of muscle fibers with a cell area greater than 1133 µm2 decreased, reflecting restricted muscle hypertrophy, whereas glycogen and glucose levels also declined. These findings suggest that although high dietary digestible protein enhances protein and free amino acid concentrations in muscle tissue, it may compromise muscle hypertrophy and increase oxidative damage in Amazonian Pintado, underscoring the complexity of optimizing diet formulation. Full article
(This article belongs to the Special Issue Aquatic Animal Nutrition and Feed)
Show Figures

Figure 1

16 pages, 2720 KiB  
Article
Effects of New Btk-Based Formulations BLB1 and Lip on Aquatic Non-Target Organisms
by Sayda Dhaouadi, Rim El Jeni, Hazar Kraiem, Gul Ayyildiz, Cansu Filik-Iscen, Zeynep Yurtkuran-Ceterez and Balkiss Bouhaouala-Zahar
Biology 2024, 13(10), 824; https://doi.org/10.3390/biology13100824 - 14 Oct 2024
Viewed by 340
Abstract
Integrated pest management based on the use of biopesticides is largely applied. Experimental bioassays are critical to assess biopesticide biosafety at the ecotoxicological level. In this study, we investigated the effects of the new Bacillus thuringiensis subsp. kurstaki (Btk)-formulated-based biopesticides BLB1 [...] Read more.
Integrated pest management based on the use of biopesticides is largely applied. Experimental bioassays are critical to assess biopesticide biosafety at the ecotoxicological level. In this study, we investigated the effects of the new Bacillus thuringiensis subsp. kurstaki (Btk)-formulated-based biopesticides BLB1 and Lip, efficiently tested in field assays (IPM-4-CITRUS EC project no. 734921) on two aquatic non-target organisms, precisely the water flea Daphnia magna and the bioluminescent bacteria Aliivibrio fischeri. Acute toxicity studies, carried out in a comparative manner with Delfin® as the reference bioproduct and the lactose-based Blank formulation, show that no significant toxicity was observed up to 1 g/L. Our results indicated that BLB1- and Lip-formulated new bioproducts are far less toxic than the Delfin® reference bioproduct. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

13 pages, 739 KiB  
Article
Effects of Pirimiphos-Methyl on Non-Target Invertebrates
by Liudmyla Faly and Viktor Brygadyrenko
Biology 2024, 13(10), 823; https://doi.org/10.3390/biology13100823 - 14 Oct 2024
Viewed by 272
Abstract
The effects of pirimiphos-methyl have previously been assessed on blood-sucking insect species, pollinating insects, and target crop pest species. The sensitivity of non-target zoophagous and saprophage species to this insecticide remains largely unstudied. In laboratory conditions, we assessed the susceptibility of 43 species [...] Read more.
The effects of pirimiphos-methyl have previously been assessed on blood-sucking insect species, pollinating insects, and target crop pest species. The sensitivity of non-target zoophagous and saprophage species to this insecticide remains largely unstudied. In laboratory conditions, we assessed the susceptibility of 43 species of invertebrates to pirimiphos-methyl. The most tolerant species to this insecticide were Pyrrhocoris apterus (LC50 measured over 60 mg/m2), Cylindroiulus truncorum, Pterostichus niger, Harpalus rufipes, Lithobius forficatus, and Carabus hortensis (LC50 ranged from 25 to 50 mg/m2). Average tolerance to pirimiphos-methyl was displayed by Ophonus rufibarbis, Teuchestes fossor, Silpha carinata, Badister sodalis, Rugilus rufipes, Phosphuga atrata, Porcellio laevis, Pterostichus oblongopunctatus, Aphodius foetens, Lasius fuliginosus, Oxypselaphus obscurus, Platydracus fulvipes, Myrmica ruginodis, Xantholinus tricolor, and Megaphyllum sp. (LC50 for those species ranged from 12 to 24 mg/m2). Higher sensitivity to this insecticide was seen for Amara nitida, Leistus ferrugineus, Harpalus xanthopus winkleri, Philonthus nitidus, Pterostichus melanarius, Harpalus latus, Limodromus assimilis, Philonthus decorus, Tachinus signatus, Ponera coarctata, Carabus convexus, Philonthus coprophilus, Philonthus laevicollis, Platydracus latebricola, Labia minor, and Carabus granulatus (LC50 for those species ranged from 6 to 12 mg/m2). The greatest sensitivity to pirimiphos-methyl was observed in Hister fenestus, Drusilla canaliculata, Bisnius fimetarius, Oxytelus sculptus, Lasius niger, and Lasius flavus (LC50 ranged from 0.4 to 6 mg/m2). We found a relationship between the parameters of bodies of invertebrates (the average body length and dry body mass) and sensitivity to pirimiphos-methyl. With an increase in body sizes of invertebrates, the tolerance to the insecticide increased (per each mm of body length, LC50 increased by 0.82 mg/m2 on average). We identified no relationship between the trophic specialization and sensitivity to the insecticide. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

12 pages, 16414 KiB  
Article
Diversity and Evolution of NLR Genes in Citrus Species
by Zhiwei Xiong, Wanshan Zhang, Hui Yin, Jiaxing Wan, Zhuozhuo Wu and Yuxia Gao
Biology 2024, 13(10), 822; https://doi.org/10.3390/biology13100822 - 14 Oct 2024
Viewed by 290
Abstract
NLR genes are crucial components of the effector-triggered immunity (ETI) system, responsible for recognizing pathogens and initiating immune responses. Although NLR genes in many plant species have been extensively studied, the diversity of NLR genes in citrus remains largely unknown. Our analysis revealed [...] Read more.
NLR genes are crucial components of the effector-triggered immunity (ETI) system, responsible for recognizing pathogens and initiating immune responses. Although NLR genes in many plant species have been extensively studied, the diversity of NLR genes in citrus remains largely unknown. Our analysis revealed significant variations in the copy numbers of NLR genes among these species. Gene duplication and recombination were identified as the major driving forces behind this diversity. Additionally, horizontal gene transfer (HGT) emerged as the principal mechanism responsible for the increase in NLR gene copy number in A. buxifolia. The citrus NLR genes were classified into four categories: TIR-NBS-LRR (TNL), CC-NBS-LRR (CNL), RPW8-NBS-LRR (RNL), and NL. Our findings indicate that TNL, RNL, and CNL genes originated from NL genes through the acquisition of TIR and RPW8 domains, along with CC motifs, followed by the random loss of corresponding domains. Phylogenetic analysis suggested that citrus NLR genes originated alongside the species and underwent adaptive evolution, potentially playing crucial roles in the global colonization of citrus. This study provides important insights into the diversity of citrus NLR genes and serves as a foundational dataset for future research aimed at breeding disease-resistant citrus varieties. Full article
Show Figures

Figure 1

13 pages, 2180 KiB  
Article
Amphiregulin Upregulation in Visfatin-Stimulated Colorectal Cancer Cells Reduces Sensitivity to 5-Fluororacil Cytotoxicity
by Wen-Shih Huang, Kuen-Lin Wu, Cheng-Nan Chen, Shun-Fu Chang, Ding-Yu Lee and Ko-Chao Lee
Biology 2024, 13(10), 821; https://doi.org/10.3390/biology13100821 - 14 Oct 2024
Viewed by 286
Abstract
Colorectal cancer (CRC) has become a prevalent and deadly malignancy over the years. Drug resistance remains a major challenge in CRC treatment, significantly affecting patient survival rates. Obesity is a key risk factor for CRC development, and accumulating evidence indicates that increased secretion [...] Read more.
Colorectal cancer (CRC) has become a prevalent and deadly malignancy over the years. Drug resistance remains a major challenge in CRC treatment, significantly affecting patient survival rates. Obesity is a key risk factor for CRC development, and accumulating evidence indicates that increased secretion of adipokines, including Visfatin, under obese conditions contributes to the development of resistance in CRC to various therapeutic methods. Amphiregulin (AREG) is a member of the epidermal growth factor (EGF) family, which activates the EGF receptor (EGFR), influencing multiple tumorigenic characteristics of cancers. Abnormal expression levels of AREG in cancer cells have been associated with resistance to anti-EGFR therapy in patients. However, it remains unclear whether this abnormal expression also impacts CRC resistance to other chemotherapeutic drugs. The aim of this study is to examine whether AREG expression levels could be affected in CRC cells under Visfatin stimulation, thereby initiating the development of resistance to 5-fluororacil (5-FU). Through our results, we found that Visfatin indeed increases AREG expression, reducing the sensitivity of HCT-116 CRC cells to 5-FU cytotoxicity. Moreover, AREG upregulation is regulated by STAT3-CREB transcription factors activated by JNK1/2 and p38 signaling. This study highlights the significant role of AREG upregulation in CRC cells in initiating chemotherapeutic resistance to 5-FU under Visfatin stimulation. These findings provide a deeper understanding of drug resistance development in CRC under obese conditions and offer new insights into the correlation between an abnormal increase in AREG levels and the development of 5-FU-resistance in CRC cells, which should be considered in future clinical applications. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

18 pages, 7772 KiB  
Article
Vegetation Succession for 12 Years in a Pond Created Restoratively
by Chang-Seok Lee, Dong-Uk Kim, Bong-Soon Lim, Ji-Eun Seok and Gyung-Soon Kim
Biology 2024, 13(10), 820; https://doi.org/10.3390/biology13100820 - 13 Oct 2024
Viewed by 426
Abstract
The Najeoer Pond was created in a rice paddy as a part of a plan to build the National Institute of Ecology. To induce the establishment of various plants, the maximum depth of the pond was 2.0 m, and diverse depths were created [...] Read more.
The Najeoer Pond was created in a rice paddy as a part of a plan to build the National Institute of Ecology. To induce the establishment of various plants, the maximum depth of the pond was 2.0 m, and diverse depths were created with a gentle slope on the pond bed. When introducing vegetation, littoral and emergent vegetation were first introduced to stabilize the space secured for the creation of the pond, whereas the introduction of other vegetation was allowed to develop naturally. In this pond, floating, emergent, wetland, and littoral plants have been established to various degrees, reflecting the water depth and water table. As a result of stand ordination, based on vegetation data obtained from the created Najeoer Pond and a natural lagoon selected as the reference site, the species’ composition resembled that of the reference site. Diversity, based on vegetation type, community, and species, tended to be higher than that of the reference site. The proportion of exotic species increased due to the disturbance that occurred during the pond creation process but continued to decrease as the vegetation introduced during the creation of the pond became established. Considering these results comprehensively, the restorative treatment served to increase both the biological integrity and ecological stability of the pond and, thus, achieved the creation goal from the viewpoint of the pond structure. Full article
(This article belongs to the Special Issue Feature Papers in 'Conservation Biology and Biodiversity')
Show Figures

Figure 1

18 pages, 2508 KiB  
Article
Estrogen Receptor Beta Agonist Influences Presynaptic NMDA Receptor Distribution in the Paraventricular Hypothalamic Nucleus Following Hypertension in a Mouse Model of Perimenopause
by Garrett Sommer, Claudia Rodríguez López, Adi Hirschkorn, Gianna Calimano, Jose Marques-Lopes, Teresa A. Milner and Michael J. Glass
Biology 2024, 13(10), 819; https://doi.org/10.3390/biology13100819 - 12 Oct 2024
Viewed by 369
Abstract
Women become susceptible to hypertension as they transition to menopause (i.e., perimenopause); however, the underlying mechanisms are unclear. Animal studies using an accelerated ovarian failure (AOF) model of peri-menopause (peri-AOF) demonstrate that peri-AOF hypertension is associated with increased postsynaptic NMDA receptor plasticity in [...] Read more.
Women become susceptible to hypertension as they transition to menopause (i.e., perimenopause); however, the underlying mechanisms are unclear. Animal studies using an accelerated ovarian failure (AOF) model of peri-menopause (peri-AOF) demonstrate that peri-AOF hypertension is associated with increased postsynaptic NMDA receptor plasticity in the paraventricular hypothalamic nucleus (PVN), a brain area critical for blood pressure regulation. However, recent evidence indicates that presynaptic NMDA receptors also play a role in neural plasticity. Here, using immuno-electron microscopy, we examine the influence of peri-AOF hypertension on the subcellular distribution of the essential NMDA GluN1 receptor subunit in PVN axon terminals in peri-AOF and in male mice. Hypertension was produced by 14-day slow-pressor angiotensin II (AngII) infusion. The involvement of estrogen signaling was investigated by co-administering an estrogen receptor beta (ERß) agonist. Although AngII induced hypertension in both peri-AOF and male mice, peri-AOF females showed higher cytoplasmic GluN1 levels. In peri-AOF females, activation of ERß blocked hypertension and increased plasmalemmal GluN1 in axon terminals. In contrast, stimulation of ERß did not inhibit hypertension or influence presynaptic GluN1 localization in males. These results indicate that sex-dependent recruitment of presynaptic NMDA receptors in the PVN is influenced by ERß signaling in mice during early ovarian failure. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Figure 1

23 pages, 10070 KiB  
Article
Evaluation of the Anti-Inflammatory/Immunomodulatory Effect of Teucrium montanum L. Extract in Collagen-Induced Arthritis in Rats
by Biljana Bufan, Mirjana Marčetić, Jasmina Djuretić, Ivana Ćuruvija, Veljko Blagojević, Dragana D. Božić, Violeta Milutinović, Radmila Janković, Jelena Sopta, Jelena Kotur-Stevuljević and Nevena Arsenović-Ranin
Biology 2024, 13(10), 818; https://doi.org/10.3390/biology13100818 - 12 Oct 2024
Viewed by 314
Abstract
The anti-inflammatory/immunomodulatory effects of Teucrium montanum L. (TM), a plant distributed in the Mediterranean region, have been insufficiently examined. The effects of the TM ethanol extract were tested in a rat collagen-induced arthritis (CIA) model of rheumatoid arthritis. LC-MS was used for the [...] Read more.
The anti-inflammatory/immunomodulatory effects of Teucrium montanum L. (TM), a plant distributed in the Mediterranean region, have been insufficiently examined. The effects of the TM ethanol extract were tested in a rat collagen-induced arthritis (CIA) model of rheumatoid arthritis. LC-MS was used for the phytochemical analysis of the TM extract. Dark Agouti rats were immunized with bovine type II collagen (CII) in incomplete Freund’s adjuvant for CIA, and treated with 100 or 200 mg/kg of TM extract daily via oral administration. Clinical and histopathological evaluations and a flow cytometric analysis of the phenotypic and functional characteristics of splenocytes and draining lymph node cells were performed. The cytokines in the paw tissue culture supernatants and anti-CII antibodies in serum were determined by ELISA. The TM extract, with the dominant components verbascoside and luteolin 7-O-rutinoside, reduced the arthritic score and ankle joint inflammation in CIA rats, promoted the antioxidant profile in serum, and lowered pro-inflammatory TNF-α, IL-6 and IL-1β production. It suppressed the activation status of CD11b+ cells by lowering CD86, MHCII and TLR-4 expression, and promoted the Th17/T regulatory cell (Tregs) balance towards Tregs. A lower frequency of B cells was accompanied by a lower level of anti-CII antibodies in treated rats. These findings imply the favorable effect of TM extract on the clinical presentation of CIA, suggesting its anti-inflammatory/immunomodulatory action and potential therapeutic effect. Full article
(This article belongs to the Special Issue Animal Models of Arthritis)
Show Figures

Figure 1

14 pages, 688 KiB  
Review
One Hundred Years of Progress and Pitfalls: Maximising Heterosis through Increasing Multi-Locus Nuclear Heterozygosity
by Brendan F. Hallahan
Biology 2024, 13(10), 817; https://doi.org/10.3390/biology13100817 - 12 Oct 2024
Viewed by 469
Abstract
The improvement in quantitative traits (e.g., yield, size) in F1 offspring over parent lines is described as hybrid vigour, or heterosis. There exists a fascinating relationship between parental genetic distance and genome dosage (polyploidy), and heterosis effects. The contribution of nuclear heterozygosity [...] Read more.
The improvement in quantitative traits (e.g., yield, size) in F1 offspring over parent lines is described as hybrid vigour, or heterosis. There exists a fascinating relationship between parental genetic distance and genome dosage (polyploidy), and heterosis effects. The contribution of nuclear heterozygosity to heterosis is not uniform across diploid and polyploid crops, even within same species, thus demonstrating that polyploid crops should be part of any discussion on the mechanisms of heterosis. This review examines the records of correlating heterosis with parental genetic distance and the influence of adding supplementary genomes in wide crosses. Increasing nuclear heterozygosity through parental genetic distance has been shown to be an imperfect predictor for heterosis in a variety of commercial crops such as maize, rice, and pepper. However, increasing the ploidy level raises the maximum number of alleles that can be harboured at any one locus, and studies on crops such as oilseed rape, potato, alfalfa, maize, and rice have demonstrated that heterosis may be maximised upon increasing multi-locus nuclear heterozygosity. The novel heterotic phenotypes observed above the diploid level will contribute to our understanding on the mechanisms of heterosis and aid plant breeders in achieving the righteous goal of producing more food with fewer inputs. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

21 pages, 3703 KiB  
Article
Multi-Omics Profiling Unveils the Complexity and Dynamics of Immune Infiltrates in Intrahepatic Cholangiocarcinoma
by Xuan Li, Yan Wang, Renchu Guan, Nan Sheng and Shuangquan Zhang
Biology 2024, 13(10), 816; https://doi.org/10.3390/biology13100816 - 11 Oct 2024
Viewed by 376
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly heterogeneous malignancy. The reasons behind the global rise in the incidence of ICC remain unclear, and there exists limited knowledge regarding the immune cells within the tumor microenvironment (TME). In this study, a more comprehensive analysis of [...] Read more.
Intrahepatic cholangiocarcinoma (ICC) is a highly heterogeneous malignancy. The reasons behind the global rise in the incidence of ICC remain unclear, and there exists limited knowledge regarding the immune cells within the tumor microenvironment (TME). In this study, a more comprehensive analysis of multi-omics data was performed using machine learning methods. The study found that the immunoactivity of B cells, macrophages, and T cells in the infiltrating immune cells of ICC exhibits a significantly higher level of immunoactivity in comparison to other immune cells. During the immune sensing and response, the effect of antigen-presenting cells (APCs) such as B cells and macrophages on activating NK cells was weakened, while the effect of activating T cells became stronger. Simultaneously, four distinct subpopulations, namely BLp, MacrophagesLp, BHn, and THn, have been identified from the infiltrating immune cells, and their corresponding immune-related marker genes have been identified. The immune sensing and response model of ICC has been revised and constructed based on our current comprehension. This study not only helps to deepen the understanding the heterogeneity of infiltrating immune cells in ICC, but also may provide valuable insights into the diagnosis, evaluation, treatment, and prognosis of ICC. Full article
Show Figures

Figure 1

15 pages, 1665 KiB  
Article
Multifunctional Nanoemulsified Clinacanthus nutans Extract: Synergistic Anti-Pathogenic, Anti-Biofilm, Anti-Inflammatory, and Metabolic Modulation Effects against Periodontitis
by Sirintip Pechroj, Thida Kaewkod, Pachara Sattayawat, Angkhana Inta, Sureeporn Suriyaprom, Teerapong Yata, Yingmanee Tragoolpua and Itthayakorn Promputtha
Biology 2024, 13(10), 815; https://doi.org/10.3390/biology13100815 - 11 Oct 2024
Viewed by 434
Abstract
This study investigates the therapeutic potential of Clinacanthus nutans extracts, focusing on the 95% ethanol (95E) extract and its nanoemulsified form, against oral pathogens and their bioactive effects. The findings demonstrate potent antibacterial activity against Streptococcus mutans and Staphylococcus aureus, essential for [...] Read more.
This study investigates the therapeutic potential of Clinacanthus nutans extracts, focusing on the 95% ethanol (95E) extract and its nanoemulsified form, against oral pathogens and their bioactive effects. The findings demonstrate potent antibacterial activity against Streptococcus mutans and Staphylococcus aureus, essential for combating periodontal diseases, and significant anti-biofilm properties crucial for plaque management. Additionally, the extracts exhibit promising inhibitory effects on α-glucosidase enzymes, indicating potential for diabetes management through glucose metabolism regulation. Their anti-inflammatory properties, evidenced by reduced nitric oxide production, underscore their potential for treating oral infections and inflammation. Notably, the nanoemulsified 95E extract shows higher efficiency than the conventional extract, suggesting a multifunctional treatment approach for periodontal issues and metabolic disorders. These results highlight the enhanced efficacy of the nanoemulsified extract, proposing it as an effective treatment modality for periodontal disease in diabetic patients. This research offers valuable insights into the development of innovative drug delivery systems using natural remedies for improved periodontal care in diabetic populations. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Graphical abstract

16 pages, 3910 KiB  
Article
The Altered Proteomic Landscape in Renal Tubular Epithelial Cells under High Oxalate Stimulation
by Sen-Yuan Hong and Bao-Long Qin
Biology 2024, 13(10), 814; https://doi.org/10.3390/biology13100814 - 11 Oct 2024
Viewed by 436
Abstract
Our study aimed to apply a proteomic approach to investigate the molecular mechanisms underlying the effects of oxalate on rat renal tubular epithelial cells. NRK-52E cells were treated with or without oxalate and subjected to quantitative proteomics to identify key proteins and key [...] Read more.
Our study aimed to apply a proteomic approach to investigate the molecular mechanisms underlying the effects of oxalate on rat renal tubular epithelial cells. NRK-52E cells were treated with or without oxalate and subjected to quantitative proteomics to identify key proteins and key pathological changes under high oxalate stimulation. A total of 268 differentially expressed proteins (DEPs) between oxalate-treated and control groups were identified, with 132 up-regulated and 136 down-regulated proteins. Functional enrichment analysis revealed that DEPs are associated with oxidative stress, apoptosis, ferroptosis, pro-inflammatory cytokines, vitamin D, and biomineralization. SPP1, MFGE8, ANKS1A, and NAP1L1 were up-regulated in the oxalate-treated cells and the hyperoxaluric stone-forming rats, while SUB1, RNPS1, and DGLUCY were down-regulated in both cases. This altered proteomic landscape sheds light on the pathological processes involved in oxalate-induced renal damage and identifies potential biomarkers and therapeutic targets to mitigate the effects of hyperoxaluria and reduce the risk of CaOx stone formation. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

19 pages, 499 KiB  
Review
A Systematic Review of Traumatic Brain Injury in Modern Rodent Models: Current Status and Future Prospects
by Evgenii Balakin, Ksenia Yurku, Tatiana Fomina, Tatiana Butkova, Valeriya Nakhod, Alexander Izotov, Anna Kaysheva and Vasiliy Pustovoyt
Biology 2024, 13(10), 813; https://doi.org/10.3390/biology13100813 - 11 Oct 2024
Viewed by 585
Abstract
According to the Centers for Disease Control and Prevention (CDC), the national public health agency of the United States, traumatic brain injury is among the leading causes of mortality and disability worldwide. The consequences of TBI include diffuse brain atrophy, local post-traumatic atrophy, [...] Read more.
According to the Centers for Disease Control and Prevention (CDC), the national public health agency of the United States, traumatic brain injury is among the leading causes of mortality and disability worldwide. The consequences of TBI include diffuse brain atrophy, local post-traumatic atrophy, arachnoiditis, pachymeningitis, meningocerebral cicatrices, cranial nerve lesions, and cranial defects. In 2019, the economic cost of injuries in the USA alone was USD 4.2 trillion, which included USD 327 billion for medical care, USD 69 billion for work loss, and USD 3.8 trillion for the value of statistical life and quality of life losses. More than half of this cost (USD 2.4 trillion) was among working-age adults (25–64 years old). Currently, the development of new diagnostic approaches and the improvement of treatment techniques require further experimental studies focused on modeling TBI of varying severity. Full article
Show Figures

Figure 1

16 pages, 2826 KiB  
Article
Exposure to Gold Induces Autoantibodies against Nuclear Antigens in A.TL Mice
by Sara Puente-Marin and Said Havarinasab
Biology 2024, 13(10), 812; https://doi.org/10.3390/biology13100812 - 11 Oct 2024
Viewed by 324
Abstract
To demonstrate causation or/and assess pathogenic mechanisms of environment-induced autoimmunity, various animal models that mimic the characteristics of the human autoimmune diseases need to be developed. Experimental studies in mice reveal the genetic factors that contribute to autoimmune diseases. Here, the immune response [...] Read more.
To demonstrate causation or/and assess pathogenic mechanisms of environment-induced autoimmunity, various animal models that mimic the characteristics of the human autoimmune diseases need to be developed. Experimental studies in mice reveal the genetic factors that contribute to autoimmune diseases. Here, the immune response of two mouse strains congenic for non-H-2 genes, A.TL (H-2tl) and A.SW (H-2s), was evaluated after 15 weeks’ exposure to gold aurothiomalate (AuTM). AuTM-treated A.TL mice showed anti-nuclear antibodies (ANA) with homogenous and/or fine speckled staining patterns and serum autoantibodies to ds-DNA, chromatin, histones, and ribonucleoproteins (RNP). Female A.TL mice showed a stronger immune response than males, as well as an increase of B cells in their spleen after 15 weeks of gold exposure. A.SW exposed for AuTM showed the induction of anti-nucleolar antibodies (ANoA) with a clumpy staining pattern, as well as an increase in splenic B and T cells. The serum autoantibodies levels in A.SW mice were limited compared to those of A.TL mice. Overall, A.TL presents a stronger immune response after gold exposure than A.SW. The immune response developed in A.TL presents similarities with the clinical manifestations in human autoimmune diseases. Thus, gold-exposed A.TL could constitute a potential experimental mouse model for the study of autoimmunity. Full article
(This article belongs to the Special Issue Animal Models of Autoimmune Diseases)
Show Figures

Figure 1

Previous Issue
Back to TopTop