Vegetation Succession for 12 Years in a Pond Created Restoratively
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Creation Practice
2.3. Vegetation Survey
3. Results
3.1. Changes in Vegetation Cover
3.2. Changes in Species Composition
3.3. Changes in Species Diversity
3.4. Percentage of Exotic Plant Species
4. Discussion
4.1. Spatial Distribution of Vegetation in the Created Najeoer Pond
4.2. Creation Effects Based on Species Composition and Species Diversity
4.3. Evaluation of Effectiveness Based on the Exotic Species Ratio
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimm, N.B.; Chapin, F.S., III; Bierwagen, B.; Gonzalez, P.; Groffman, P.M.; Luo, Y.; Melton, F.; Nadelhoffer, K.; Pairis, A.; Raymond, P.A.; et al. The Impacts of Climate Change on Ecosystem Structure and Function. Front. Ecol. Environ. 2013, 11, 474–482. [Google Scholar] [CrossRef]
- He, X.; Liang, J.; Zeng, G.; Yuan, Y.; Li, X. The Effects of Interaction between Climate Change and Land-Use/Cover Change on Biodiversity-Related Ecosystem Services. Glob. Chall. 2019, 3, 1800095. [Google Scholar] [CrossRef] [PubMed]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.W.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C.; et al. Climate Change Effects on Biodiversity, Ecosystems, Ecosystem Services, and Natural Resource Management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef] [PubMed]
- Shivanna, K.R. Climate Change and Its Impact on Biodiversity and Human Welfare. Proc. Indian Natl. Sci. Acad. 2022, 88, 160–171. [Google Scholar] [CrossRef]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J. International Principles and Standards for the Practice of Ecological Restoration. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef]
- Adla, K.; Dejan, K.; Neira, D.; Dragana, Š. Chapter 9—Degradation of Ecosystems and Loss of Ecosystem Services. In One Health; Prata, J.C., Ribeiro, A.I., Rocha-Santos, T., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 281–327. ISBN 978-0-12-822794-7. [Google Scholar]
- Jenny, J.-P.; Anneville, O.; Arnaud, F.; Baulaz, Y.; Bouffard, D.; Domaizon, I.; Bocaniov, S.A.; Chèvre, N.; Dittrich, M.; Dorioz, J.-M.; et al. Scientists’ Warning to Humanity: Rapid Degradation of the World’s Large Lakes. J. Great Lakes Res. 2020, 46, 686–702. [Google Scholar] [CrossRef]
- Nilsson, C.; Aradottir, A.L.; Hagen, D.; Halldórsson, G.; Høegh, K.; Mitchell, R.J.; Raulund-Rasmussen, K.; Svavarsdóttir, K.; Tolvanen, A.; Wilson, S.D. Evaluating the Process of Ecological Restoration. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef]
- Peng, J.; Xu, D.; Xu, Z.; Tang, H.; Jiang, H.; Dong, J.; Liu, Y. Ten Key Issues for Ecological Restoration of Territorial Space. Natl. Sci. Rev. 2024, 11, nwae176. [Google Scholar] [CrossRef]
- Wei, X.; Song, W.; Shao, Y.; Cai, X. Progress of Ecological Restoration Research Based on Bibliometric Analysis. Int. J. Environ. Res Public Health 2022, 20, 520. [Google Scholar] [CrossRef]
- Lee, H.; An, J.H.; Shin, H.C.; Lee, C.S. Assessment of Restoration Effects and Invasive Potential Based on Vegetation Dynamics of Pitch Pine (Pinus rigida Mill.) Plantation in Korea. Forests 2020, 11, 568. [Google Scholar] [CrossRef]
- An, J.H.; Lim, B.S.; Seol, J.; Kim, A.R.; Lim, C.H.; Moon, J.S.; Lee, C.S. Evaluation on the Restoration Effects in the River Restoration Projects Practiced in South Korea. Water 2022, 14, 2739. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Anderson, S.; Lave, R.; Pagano, L.; Merenlender, A.; Bernhardt, E.S. Two Decades of River Restoration in California: What Can We Learn? Restor. Ecol. 2007, 15, 516–523. [Google Scholar] [CrossRef]
- Palmer, M.; Allan, J.D.; Meyer, J.; Bernhardt, E.S. River Restoration in the Twenty-First Century: Data and Experiential Knowledge to Inform Future Efforts. Restor. Ecol. 2007, 15, 472–481. [Google Scholar] [CrossRef]
- Tischew, S.; Baasch, A.; Conrad, M.K.; Kirmer, A. Evaluating Restoration Success of Frequently Implemented Compensation Measures: Results and Demands for Control Procedures. Restor. Ecol. 2010, 18, 467–480. [Google Scholar] [CrossRef]
- McDonald, T.; Gann, G.; Jonson, J.; Dixon, K. International Standards for the Practice of Ecological Restoration–Including Principles and Key Concepts; Society for Ecological Restoration: Washington, DC, USA, 2016. [Google Scholar]
- Aronson, J.; Floret, C.; Le Floc’h, E.; Ovalle, C.; Pontanier, R. Restoration and Rehabilitation of Degraded Ecosystems in Arid and Semi-arid Lands. I. A View from the South. Restor. Ecol. 1993, 1, 8–17. [Google Scholar] [CrossRef]
- Berger, J.J. Ecological Restoration and Nonindigenous Plant Species: A Review. Restor. Ecol. 1993, 1, 74–82. [Google Scholar] [CrossRef]
- SERI Primer: Society for Ecological Restoration International. Science & Policy Working Group the SER International Primer on Ecological Restoration. Soc. Ecol. Restor. Int. 2004. Available online: http://www.ser-rrc.org/resource/the-ser-international-primer-on/ (accessed on 20 August 2024).
- Bradshaw, A. Ecological Principles and Land Reclamation Practice. Landsc. Plan. 1984, 11, 35–48. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Norton, D.A. Towards a Conceptual Framework for Restoration Ecology. Restor. Ecol. 1996, 4, 93–110. [Google Scholar] [CrossRef]
- Atkinson, J.; Brudvig, L.A.; Mallen-Cooper, M.; Nakagawa, S.; Moles, A.T.; Bonser, S.P. Terrestrial Ecosystem Restoration Increases Biodiversity and Reduces Its Variability, but Not to Reference Levels: A Global Meta-Analysis. Ecol. Lett. 2022, 25, 1725–1737. [Google Scholar] [CrossRef]
- Gunn, J.; Keller, W.; Negusanti, J.; Potvin, R.; Beckett, P.; Winterhalder, K. Ecosystem Recovery after Emission Reductions: Sudbury, Canada. Water Air Soil Pollut. 1995, 85, 1783–1788. [Google Scholar] [CrossRef]
- Temperton, V.M.; Hobbs, R.J.; Nuttle, T.; Halle, S. Assembly Rules and Restoration Ecology: Bridging the Gap between Theory and Practice; Island Press: Covelo, CA, USA, 2004; Volume 5, 464p. [Google Scholar]
- Mutillod, C.; Buisson, É.; Mahy, G.; Jaunatre, R.; Bullock, J.M.; Tatin, L.; Dutoit, T. Ecological Restoration and Rewilding: Two Approaches with Complementary Goals? Biol. Rev. 2024, 99, 820–836. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.M. Ecological Restoration Should Be Redefined for the Twenty-First Century. Restor. Ecol. 2017, 25, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.; Beheshti, K. Lessons Learned from over Thirty Years of Eelgrass Restoration on the US West Coast. Ecosphere 2023, 14, e4642. [Google Scholar] [CrossRef]
- Palmer, M.A.; Filoso, S. Environmental Markets: The Power of Regulation Response. Science 2009, 326, 1061–1062. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Likens, G.E.; Franklin, J.F. Rapid Responses to Facilitate Ecological Discoveries from Major Disturbances. Front. Ecol. Environ. 2010, 8, 527–532. [Google Scholar] [CrossRef]
- Suding, K. Toward an Era of Restoration in Ecology: Successes, Failures, and Opportunities Ahead. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 465–487. [Google Scholar] [CrossRef]
- Evangelista de Oliveira, R.; Lex Engel, V.; Loiola, P.; Moraes, L.; de Souza Vismara, E. Top 10 Indicators for Evaluating Restoration Trajectories in the Brazilian Atlantic Forest. Ecol. Indic. 2021, 127, 107652. [Google Scholar] [CrossRef]
- Cuenca-Cambronero, M.; Blicharska, M.; Perrin, J.-A.; Davidson, T.A.; Oertli, B.; Lago, M.; Beklioglu, M.; Meerhoff, M.; Arim, M.; Teixeira, J. Challenges and Opportunities in the Use of Ponds and Pondscapes as Nature-Based Solutions. Hydrobiologia 2023, 850, 3257–3271. [Google Scholar] [CrossRef]
- Goodwin, C.N.; Hawkins, C.P.; Kershner, J.L. Riparian Restoration in the Western United States: Oveview and Perspecive. Restor. Ecol. 1997, 5, 4–14. [Google Scholar] [CrossRef]
- McCarty, T. Pond Ecology. Available online: https://extension.psu.edu/pond-ecology (accessed on 12 June 2024).
- NRCS (Natural Resources Conservation Services); WHC (Wildlife Habitat Council). Farm Pond Ecosystems; NRCS and WHC: Washington, DC, USA, 2006; 12p. [Google Scholar]
- Reddy, M.T.; Sivaraj, N.; Kamala, V.; Pandravada, S.R.; Sunil, N.; Dikshit, N. Classification, Characterization and Comparison of Aquatic Ecosystems in the Landscape of Adilabad District, Telangana, Deccan Region, India. Open Access Libr. J. 2018, 5, 1–49. [Google Scholar] [CrossRef]
- Naiman, R.J.; Decamps, H. The Ecology of Interfaces: Littoral Zones. Annu. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef]
- Fitch, L. Littoral Areas: A User’s Guide to Health; Cows and Fish Program: Lethbridge, AB, Canada, 2003; ISBN 0-7785-2305-5. [Google Scholar]
- Ranalli, A.; Macalady, D. The Importance of the Riparian Zone and In-Stream Processes in Nitrate Attenuation in Undisturbed and Agricultural Watersheds—A Review of the Scientific Literature. J. Hydrol. 2010, 389, 406–415. [Google Scholar] [CrossRef]
- Graziano, M.P.; Deguire, A.K.; Surasinghe, T.D. Riparian Buffers as a Critical Landscape Feature: Insights for Riverscape Conservation and Policy Renovations. Diversity 2022, 14, 172. [Google Scholar] [CrossRef]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pyšek, P.; Hobbs, R.J. Riparian Vegetation: Degradation, Alien Plant Invasions, and Restoration Prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- de Souza Queiroz, C.; da Silva, F.R.; de Cerqueira Rossa-Feres, D. The Relationship between Pond Habitat Depth and Functional Tadpole Diversity in an Agricultural Landscape. R. Soc. Open Sci. 2015, 2, 150165. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, H.; Shan, H.; Cao, Y.; Tan, L.; Zhu, T.; Cai, Q.; Ni, L.; Zhang, X.; Chou, Q.; et al. Water Depth Modulates the Species Richness–Biomass Relationship in Submerged Macrophytes. Front. Environ. Sci. 2023, 11, 1115119. [Google Scholar] [CrossRef]
- Lee, C.; Ahn, J.; Pee, J.; Lee, S.; Lee, J. Futuristic Direction of River Restoration in Korea under Changing Climate Change. J. Restor. Ecol. 2011, 2, 137–143. [Google Scholar]
- Kim, A.R.; Lim, B.S.; Seol, J.; Lee, C.S. Principle of Restoration Ecology Reflected in the Process Creating the National Institute of Ecology. J. Ecol. Environ. 2021, 45, 1–12. [Google Scholar] [CrossRef]
- Jeong, Y.I.; Hong, B.R.; Kim, Y.C.; Lee, K.S. Distribution, Life History and Growth Characteristics of the Utricularia japonica Makino in the East Coastal Lagoon, Korea. Korean J. Ecol. Environ. 2016, 49, 110–123. [Google Scholar] [CrossRef]
- Küchler, A.; Zonneveld, I. Vegetation Mapping; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar] [CrossRef]
- ESRI. Arcview GIS; Environmental System Research Institute: Redlands, CA, USA, 2005. [Google Scholar]
- Ellenberg, D.; Mueller-Dombois, D. Aims and Methods of Vegetation Ecology; John Willy & Sons: NY, USA, 1974; 547p. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie; Springer: Berlin/Heidelberg, Germany, 1964; 864p. [Google Scholar]
- Hill, M. A FORTRAN Program for Detrended Correspondence Analysis and Reciprocal Averaging; Ecology and Systematics, Cornell University: Ithaca, NY, USA, 1979; 51p. [Google Scholar]
- Kent, M.; Coker, P. Vegetation Description and Data Analysis: A Practical Approach; John Wiley & Sons: New York, NY, USA, 1992; ISBN 0-8493-7756-0. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; John Wiley & Sons: Hoboken, NJ, USA, 2004; 256p. [Google Scholar]
- Naveh, Z. From Biodiversity to Ecodiversity: A Landscape-ecology Approach to Conservation and Restoration. Restor. Ecol. 1994, 2, 180–189. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Chou, J.-Y.; Fang, W.-T. Habitat Selection of Wintering Birds in Farm Ponds in Taoyuan, Taiwan. Animals 2019, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Vest, J.L.; Haukos, D.A.; Niemuth, N.D.; Setash, C.M.; Gammonley, J.H.; Devries, J.H.; Dahlgren, D.K. Waterfowl and Wetland Birds. In Rangeland Wildlife Ecology and Conservation; McNew, L.B., Dahlgren, D.K., Beck, J.L., Eds.; Springer International Publishing: Cham, Germany, 2023; pp. 417–469. ISBN 978-3-031-34037-6. [Google Scholar]
- Xu, F.-L. Application of Ecological and Thermodynamic Indicators for the Assessment of Lack Ecosystem Health. In Handbook of Ecological Indicators for Assessment of Ecosystem Health; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 127–151. [Google Scholar]
- Lake, P.S.; Bond, N.; Reich, P. Linking Ecological Theory with Stream Restoration. Freshw. Biol. 2007, 52, 597–615. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Cramer, V.A. Restoration Ecology: Interventionist Approaches for Restoring and Maintaining Ecosystem Function in the Face of Rapid Environmental Change. Annu. Rev. Environ. Resour. 2008, 33, 39–61. [Google Scholar] [CrossRef]
- Bradshaw, Y.W. Urbanization and Underdevelopment: A Global Study of Modernization, Urban Bias, and Economic Dependency. Am. Sociol. Rev. 1987, 52, 224–239. [Google Scholar] [CrossRef]
- Lüderitz, V.; Jüpner, R.; Müller, S.; Feld, C.K. Renaturalization of Streams and Rivers—The Special Importance of Integrated Ecological Methods in Measurement of Success. An Example from Saxony-Anhalt (Germany). Limnologica 2004, 34, 249–263. [Google Scholar] [CrossRef]
- Karr, J.R. Ecological Integrity and Ecological Health Are Not the Same. In Engineering within Ecological Constraints; National Academy Press: Washington, DC, USA, 1996; pp. 97–109. [Google Scholar]
- Lee, C.-S.; Cho, Y.-C.; Shin, H.-C.; Lee, S.-M.; Oh, W.-S.; Park, S.; Seol, E.-S.; Lee, C.-H.; Eom, A.-H.; Cho, H.-J. An Evaluation of the Effects of Rehabilitation Practiced in Coal Mining Spoils in Korea: 2. An Evaluation Based on the Physicochemical Properties of Soil. J. Ecol. Environ. 2008, 31, 23–29. [Google Scholar] [CrossRef]
- White, P.S.; Walker, J.L. Approximating Nature’s Variation: Selecting and Using Reference Information in Restoration Ecology. Restor. Ecol. 1997, 5, 338–349. [Google Scholar] [CrossRef]
- Whittier, T.R.; Stoddard, J.L.; Larsen, D.P.; Herlihy, A.T. Selecting Reference Sites for Stream Biological Assessments: Best Professional Judgment or Objective Criteria. J. N. Am. Benthol. Soc. 2007, 26, 349–360. [Google Scholar] [CrossRef]
- Gilvear, D.; Bryant, R. Analysis of Remotely Sensed Data for Fluvial Geomorphology and River Science. In Tools in Fluvial Geomorphology; Kondolf, G.M., Piegay, H., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 103–132. ISBN 978-0-470-68405-4. [Google Scholar]
- Naess, A. Ecosophy and Gestalt Ontology. Trumpeter 1989, 6. Available online: https://trumpeter.athabascau.ca/index.php/trumpet/article/view/756 (accessed on 20 August 2024).
- Romme, W.H. Fire and Landscape Diversity in Subalpine Forests of Yellowstone National Park. Ecol. Monogr. 1982, 52, 199–221. [Google Scholar] [CrossRef]
- Lim, C.H.; Kim, G.S.; An, J.H.; You, B.H.; Bae, Y.S.; Byun, H.G.; Lee, C.S. Relationship between Biodiversity and Landscape Structure in the Gyungan Stream Basin, Central Korea. Entomol. Res. 2016, 46, 260–271. [Google Scholar] [CrossRef]
- An, J.H.; Lim, C.H.; Jung, S.H.; Kim, A.R.; Lee, C.S. Effects of climate change on biodiversity and measures for them. J. Wetl. Res. 2016, 18, 474–480. [Google Scholar] [CrossRef]
- Meffe, G.; Carroll, R. Principles of Conservation Biology, 2nd ed.; Sinauer Associates, Inc: Sunderland, MA, USA, 1997; 729p. [Google Scholar]
- van der Valk, A.G. Succession in Wetlands: A Gleasonian Appraoch. Ecology 1981, 62, 688–696. [Google Scholar] [CrossRef]
- Oertli, B.; Parris, K.M. Toward Management of Urban Ponds for Freshwater Biodiversity. Ecosphere 2019, 10, e02810. [Google Scholar] [CrossRef]
- Bélanger, L.; Maisonneuve, C.; Rodrigue, J. Avian Use of Dairy Farm Ponds and Landowners’ Perceptions of Their Management for Wildlife Conservation. Birds 2021, 2, 476–491. [Google Scholar] [CrossRef]
- Ahn, C.; Dee, S. Early Development of Plant Community in a Created Mitigation Wetland as Affected by Introduced Hydrologic Design Elements. Ecol. Eng. 2011, 37, 1324–1333. [Google Scholar] [CrossRef]
- Kim, S.H.; Nam, J.M.; Kim, J.G. Establishment Strategy of a Rare Wetland Species Sparganium erectum in Korea. J Ecol. Environ. 2017, 41, 27. [Google Scholar] [CrossRef]
- An, Y.; Gao, Y.; Tong, S. Emergence and Growth Performance of Bolboschoenus planiculmis Varied in Response to Water Level and Soil Planting Depth: Implications for Wetland Restoration Using Tuber Transplantation. Aquat. Bot. 2018, 148, 10–14. [Google Scholar] [CrossRef]
- Choi, H.; Kim, H.; Nam, B.E.; Bae, Y.J.; Kim, J.G. Effect of Initial Planting on Vegetation Establishment in Different Depth Zones of Constructed Farm Ponds. Restor. Ecol. 2022, 30, e13488. [Google Scholar] [CrossRef]
- Mooney, H.A. Invasive Alien Species: A New Synthesis; Island Press: Washington, DC, USA, 2005; pp. 1–15. [Google Scholar]
- Rawlins, J.K.; Roundy, B.A.; Davis, S.M.; Egget, D. Predicting Germination in Semi-Arid Wildland Seedbeds. I. Thermal Germination Models. Environ. Exp. Bot. 2012, 76, 60–67. [Google Scholar] [CrossRef]
- Lim, B.S.; Seok, J.E.; Lim, C.H.; Kim, G.S.; Shin, H.C.; Lee, C.S. Distribution, Effect, and Control of Exotic Plants in Republic of Korea. Biology 2023, 12, 826. [Google Scholar] [CrossRef] [PubMed]
- Gaiarsa, M.P.; Bascompte, J. Hidden Effects of Habitat Restoration on the Persistence of Pollination Networks. Ecol. Lett. 2022, 25, 2132–2141. [Google Scholar] [CrossRef] [PubMed]
- Correll, D.L. Principles of Planning and Establishment of Buffer Zones. Ecol. Eng. 2005, 24, 433–439. [Google Scholar] [CrossRef]
- Weidlich, E.W.; Flórido, F.G.; Sorrini, T.B.; Brancalion, P.H. Controlling Invasive Plant Species in Ecological Restoration: A Global Review. J. Appl. Ecol. 2020, 57, 1806–1817. [Google Scholar] [CrossRef]
- Meyer, S.E.; Callaham, M.A.; Stewart, J.E.; Warren, S.D. Invasive Species Response to Natural and Anthropogenic Disturbance. In Invasive Species in Forests and Rangelands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector; Springer: Cham, Germany, 2021; pp. 85–110. [Google Scholar]
- Rai, P.K. Environmental Degradation by Invasive Alien Plants in the Anthropocene: Challenges and Prospects for Sustainable Restoration. Anthr. Sci. 2022, 1, 5–28. [Google Scholar] [CrossRef]
- Kim, D.-U.; Lim, B.-S.; Seok, J.-E.; Kim, G.-S.; Moon, J.-S.; Lim, C.-H.; Lee, C.-S. Evaluation of the 20-Year Restoration Process in an Air-Pollution-Damaged Forest near the Ulsan Industrial Complex, Korea. Forests 2023, 14, 1565. [Google Scholar] [CrossRef]
- McNeely, J.A. Cities and Protected Areas: An Oxymoron or a Partnership. Parks 2001, 11, 1–3. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-S.; Kim, D.-U.; Lim, B.-S.; Seok, J.-E.; Kim, G.-S. Vegetation Succession for 12 Years in a Pond Created Restoratively. Biology 2024, 13, 820. https://doi.org/10.3390/biology13100820
Lee C-S, Kim D-U, Lim B-S, Seok J-E, Kim G-S. Vegetation Succession for 12 Years in a Pond Created Restoratively. Biology. 2024; 13(10):820. https://doi.org/10.3390/biology13100820
Chicago/Turabian StyleLee, Chang-Seok, Dong-Uk Kim, Bong-Soon Lim, Ji-Eun Seok, and Gyung-Soon Kim. 2024. "Vegetation Succession for 12 Years in a Pond Created Restoratively" Biology 13, no. 10: 820. https://doi.org/10.3390/biology13100820
APA StyleLee, C. -S., Kim, D. -U., Lim, B. -S., Seok, J. -E., & Kim, G. -S. (2024). Vegetation Succession for 12 Years in a Pond Created Restoratively. Biology, 13(10), 820. https://doi.org/10.3390/biology13100820