Genetic Analysis and Fine Mapping of QTL for the Erect Leaf in Mutant mths29 Induced through Fast Neutron in Wheat
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. RNA Extraction and Quality Determination
2.3. Bulked Segregant RNA-seq (BSR) of F2
2.4. Resequencing Analysis
2.5. DNA Extraction and Determination of DNA Quality
2.6. Development of Molecular Markers for Fine Mapping
2.7. Transcriptome Assembly of BC3F3
2.8. Reverse Transcription and Quantitative Real-Time PCR Analyses
3. Results
3.1. Phenotypic Analysis of Wheat Erect Leaf Mutant mths29
3.2. Gene Mapping by BSR-seq Assay
3.3. Fine Mapping of mths29 Erect Leaf QTL
3.4. Candidate Genes Analysis
3.5. The Change in Cells Related to Lamina Joint Development for Transcriptome
3.6. Transcription Factors Family and Kinases Regulating Lamina Joint Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, H.; Yang, Y.; Shao, X.; Shi, T.; Meng, T.; Lu, Y.; Tao, Y.; Li, X.; Ding, E.; Chen, Y.; et al. Higher leaf area through leaf width and lower leaf angle were the primary morphological traits for yield advantage of japonica/indica hybrids. J. Integr. Agric. 2020, 19, 483–494. [Google Scholar] [CrossRef]
- Richards, R.A.; Cavanagh, C.R.; Riffkin, P. Selection for erect canopy architecture can increase yield and biomass of spring wheat. Field Crops Res. 2019, 244, 107649–107658. [Google Scholar] [CrossRef]
- Hoshikawa, Y.; Ichii, S. Structures and functions of steroid hormone response elements. Nihon Rinsho 1989, 47, 2324–2329. [Google Scholar] [PubMed]
- Strable, J.; Nelissen, H. The dynamics of maize leaf development: Patterned to grow while growing a pattern. Curr. Opin. Plant Biol. 2021, 63, 102038–102049. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, A.W.; Cande, W.Z.; Freeling, M. Division and differentiation during normal and liguleless1 maize leaf development. Development 1990, 110, 985–1000. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Wu, L.; Ku, L.; Wang, H.; Zeng, H.; Su, H.; Wei, L.; Dou, D.; Liu, H.; Cao, Y.; et al. ZmILI1 regulates leaf angle by directly affecting liguleless1 expression in maize. J. Plant Biotechnol. 2020, 18, 881–883. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.; Freeling, M. The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex. Plant J. 1999, 19, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Jesus, P.; Liu, T. Knox homologs shoot meristemless (STM) and KNAT6 are epistatic to CLAVATA3 (CLV3) during shoot meristem development in Arabidopsis thaliana. Mol. Biol. Rep. 2021, 48, 6291–6302. [Google Scholar]
- Furumizu, C.; Alvarez, J.P.; Sakakibara, K.; Bowman, J.L. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genet. 2015, 11, 1004980–1005004. [Google Scholar] [CrossRef]
- Muehlbauer, G.J.; Fowler, J.E.; Freeling, M. Sectors expressing the homeobox gene liguleless3 implicate a timedependent mechanism for cell fate acquisition along the proximal-distal axis of the maize leaf. Development 1997, 124, 5097–5106. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Zhuang, Z.; Ji, X.; Bian, J.; Xian, J.; Wang, Y.; Peng, Y. Phenotypic Investigation and RNA-seq of KN1 Involved in Leaf Angle Formation in Maize (Zea mays L.). Int. J. Mol. Sci. 2024, 25, 3180. [Google Scholar] [CrossRef]
- Foster, T.; Yamaguchi, J.; Wong, B.C.; Veit, B.; Hake, S. Gnarley1 Is a Dominant Mutation in the knox4 Homeobox Gene Affecting Cell Shape and Identity. Plant Cell 1999, 11, 1239–1252. [Google Scholar] [CrossRef] [PubMed]
- Becraft, P.W.; Bongard-Pierce, D.K.; Sylvester, A.W.; Poethig, R.S.; Freeling, M. The liguleless1 gene acts tissue specifically in maize leaf development. Dev. Biol. 1990, 141, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.A.; Harper, L.C.; Krueger, R.W.; Dellaporta, S.L.; Freeling, M. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev. 1997, 11, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Wu, X.; Zhao, H. Molecular and functional dissection of LIGULELESS1 (LG1) in plants. Front. Plant Sci. 2023, 14, 1190004–1190017. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.; Waters, C.A.; Freeling, M. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes Dev. 1998, 12, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, C.; Chen, Z.; Sun, S.; Wang, X. Oryza sativa LIGULELESS2 determine lamina joint positioning and differentiation by inhibiting auxin signaling. New Phytol. 2021, 229, 1832–1839. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xia, J.; Hong, J.; Zhang, C.; Wei, H.; Ying, W.; Sun, C.; Sun, L.; Mao, Y.; Gao, Y.; et al. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature 2022, 609, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Cao, J.; Yu, K.; Liu, X.; Gao, Y.; Chen, Q.; Zhang, W.; Peng, H.; Du, J.; Xin, M.; et al. Wheat TaSPL8 Modulates Leaf Angle Through Auxin and Brassinosteroid Signaling. Plant Physiol. 2019, 181, 179–194. [Google Scholar] [CrossRef]
- Dresvyannikova, A.E.; Watanabe, N.; Muterko, A.F.; Krasnikov, A.A.; Goncharov, N.P.; Dobrovolskaya, O.B. Characterization of a dominant mutation for the liguleless trait: Aegilops tauschii liguleless (Lgt). BMC Plant Biol. 2019, 19, 55–66. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, Y.; Fu, L.; Zhou, S.; Chen, J.; Zhao, X.; Zhang, D.; Ouyang, S.; Wang, Z.; Li, D.; et al. QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica 2016, 208, 337–351. [Google Scholar] [CrossRef]
- Liu, K.; Xu, H.; Liu, G.; Guan, P.; Zhou, X.; Peng, H.; Yao, Y.; Ni, Z.; Sun, Q.; Du, J. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2018, 131, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Gallegos, J.E.; Hayrynen, S.; Adames, N.R.; Peccoud, J. Challenges and opportunities for strain verification by whole-genome sequencing. Sci. Rep. 2020, 10, 5873–5882. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Li, H.H.; Zhang, L.Y.; Wang, J.K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef]
- Li, W.J.; Guo, H.J.; Wang, Y.B.; Xie, Y.D.; Zhao, L.S.; Gu, J.Y.; Zhao, S.R.; Zhao, B.C.; Wang, G.J.; Liu, L.X. Identification of novel alleles induced by EMS-mutagenesis in key genes of kernel hardness and starch biosynthesis in wheat by TILLING. Genes Genom. 2017, 39, 387–395. [Google Scholar] [CrossRef]
- Zhang, J.; Xiong, H.; Guo, H.; Li, Y.; Xie, X.; Xie, Y.; Zhao, L.; Gu, J.; Zhao, S.; Ding, Y.; et al. Identification of the Q Gene Playing a Role in Spike Morphology Variation in Wheat Mutants and Its Regulatory Network. Front. Plant Sci. 2021, 12, 807731–8077446. [Google Scholar] [CrossRef]
- Wang, C.J.; Zhang, L.L.; Xie, Y.D.; Irshad, A.; Guo, H.J.; Gu, J.Y.; Zhao, L.S.; Xiong, H.C.; Zhao, S.R.; Wang, C.S.; et al. Agronomic trait analysis and genetic mapping of a new wheat semidwarf gene. Int. J. Mol. Sci. 2023, 24, 583. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolskaya, O.; Martinek, P.; Voylokov, A.V.; Korzun, V.; Röder, M.S.; Börner, A. Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale). Theor. Appl. Genet. 2009, 119, 867–874. [Google Scholar] [CrossRef]
- Harper, L.; Freeling, M. Interactions of liguleless1 and liguleless2 function during ligule induction in maize. Genetics 1996, 144, 1871–1882. [Google Scholar] [CrossRef]
- Okagaki, R.J.; Haaning, A.; Bilgic, H.; Heinen, S.; Druka, A.; Bayer, M.; Waugh, R.; Muehlbauer, G.J. ELIGULUM-A Regulates Lateral Branch and Leaf Development in Barley. Plant Physiol. 2018, 176, 2750–2760. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Liu, Y.; Liu, C.; Shi, Q.; Huang, Y.; Han, F. Centromere Satellite Repeats Have Undergone Rapid Changes in Polyploid Wheat Subgenomes. Plant Cell 2019, 31, 2035–2051. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, P.; Graeff, M.; Marhava, P.; Hardtke, C.S. Conditional effects of the epigenetic regulator JUMONJI 14 in Arabidopsis root growth. Development 2019, 146, 183905–183913. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, V.L.; Dolde, U.; Sun, B.; Blaakmeer, A.; Straub, D.; Eguen, T.; Botterweg-Paredes, E.; Hong, S.; Graeff, M.; Li, M.; et al. A microProtein repressor complex in the shoot meristem controls the transition to flowering. Plant Physiol. 2021, 187, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Stermer, D.; Tanny, J.C. Decoding histone ubiquitylation. Front. Cell Dev. Biol. 2022, 10, 968398–968417. [Google Scholar] [CrossRef] [PubMed]
- Aymé, L.; Arragain, S.; Canonge, M.; Baud, S.; Touati, N.; Bimai, O.; Jagic, F.; Louis-Mondésir, C.; Briozzo, P.; Fontecave, M.; et al. Arabidopsis thaliana DGAT3 is a [2Fe-2S] protein involved in TAG biosynthesis. Sci. Rep. 2018, 8, 17254–17264. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Xu, L.; Du, Z.; Wang, F.; Zhang, R.; Song, X.; Lam, S.; Shui, G.; Li, Y.; Chye, M. RICE ACYL-COA-BINDING PROTEIN6 Affects Acyl-CoA Homeostasis and Growth in Rice. Rice 2020, 13, 75–92. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Zhang, A.; Liu, W.; Yan, Y. Distinct roles of the R3H and RRM domains in poly(A)-specific ribonuclease structural integrity and catalysis. BBA-Proteins Proteom. 2013, 1834, 1089–1098. [Google Scholar] [CrossRef]
- Fan, X.; Gu, J.; Zhao, M.; Zhao, L.; Guo, H.; Xiong, H.; Xie, Y.; Zhao, S.; Ding, Y.; Joe, W.; et al. Transcriptome Analysis of Wheat Erect Leaf Mutant MtHS29. J. Plant Genet. Resour. 2022, 23, 871–880. [Google Scholar]
- Li, S.; Yao, Y.; Ye, W.; Wang, S.; Zhang, C.; Liu, S.; Sun, F.; Xi, Y. Genome-Wide Identification of Wheat KNOX Gene Family and Functional Characterization of TaKNOX14-D in Plants. Int. J. Mol. Sci. 2022, 23, 15918. [Google Scholar] [CrossRef]
- Maksimova, A.I.; Berke, L.; Salgado, M.; Klimova, E.A.; Pawlowski, K.; Romanova, M.A.; Voitsekhovskaja, O.V. What can the phylogeny of class I KNOX genes and their expression patterns in land plants tell us about the evolution of shoot development? Bot. J. Linn. Soc. 2021, 195, 254–280. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Liu, J.; Guo, Z.; Liu, Y.; Li, Y.; Shen, W.; Huang, Y.; Huang, H.; Zhang, Y.; et al. Transcription factors AS1 and AS2 interact with LHP1 to repress KNOX genes in Arabidopsis. J. Integr. Plant Biol. 2016, 58, 959–970. [Google Scholar] [CrossRef] [PubMed]
- Satterlee, J.W.; Evans, L.J.; Conlon, B.R.; Conklin, P.; Martinez-Gomez, J.; Yen, J.R.; Wu, H.; Sylvester, A.W.; Specht, C.D.; Cheng, J.; et al. A Wox3-patterning module organizes planar growth in grass leaves and ligules. Nat. Plants 2023, 9, 720–732. [Google Scholar] [CrossRef] [PubMed]
- Somssich, M.; Je, B.I.; Simon, R.; Jackson, D. CLAVATA-WUSCHEL signaling in the shoot meristem. Development 2016, 143, 3238–3248. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, J.; Kim, S.; Yim, J.; An, G. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Mol. Biol. 2007, 65, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Rossini, L.; Vecchietti, A.; Nicoloso, L.; Stein, N.; Franzago, S.; Salamini, F.; Pozzi, C. Candidate genes for barley mutants involved in plant architecture: An in silico approach. Theor. Appl. Genet. 2006, 112, 1073–1085. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, X.; Zhou, Z.; Peng, L.; Lin, X.; Luo, X.; Song, Y.; Ning, H.; Gan, C.; He, X.; et al. Functional characterization of D-type cyclins involved in cell division in rice. BMC Plant Biol. 2024, 24, 157. [Google Scholar] [CrossRef]
- Zhou, L.; Xiao, L.; Xue, H. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development. Plant Physiol. 2017, 174, 1728–1746. [Google Scholar] [CrossRef]
Phenotype | Actual Value | Expected Value | χ2 a | p-Value (df = 1) b |
---|---|---|---|---|
Erect leaf | 1310 | 1323 | 0.51 | 0.47 |
Normal leaf | 454 | 441 | ||
all | 1764 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Gu, J.; Zhao, M.; Fan, X.; Guo, H.; Xie, Y.; Zhang, J.; Xiong, H.; Zhao, L.; Zhao, S.; et al. Genetic Analysis and Fine Mapping of QTL for the Erect Leaf in Mutant mths29 Induced through Fast Neutron in Wheat. Biology 2024, 13, 430. https://doi.org/10.3390/biology13060430
Yang Z, Gu J, Zhao M, Fan X, Guo H, Xie Y, Zhang J, Xiong H, Zhao L, Zhao S, et al. Genetic Analysis and Fine Mapping of QTL for the Erect Leaf in Mutant mths29 Induced through Fast Neutron in Wheat. Biology. 2024; 13(6):430. https://doi.org/10.3390/biology13060430
Chicago/Turabian StyleYang, Zhixin, Jiayu Gu, Minghui Zhao, Xiaofeng Fan, Huijun Guo, Yongdun Xie, Jinfeng Zhang, Hongchun Xiong, Linshu Zhao, Shirong Zhao, and et al. 2024. "Genetic Analysis and Fine Mapping of QTL for the Erect Leaf in Mutant mths29 Induced through Fast Neutron in Wheat" Biology 13, no. 6: 430. https://doi.org/10.3390/biology13060430
APA StyleYang, Z., Gu, J., Zhao, M., Fan, X., Guo, H., Xie, Y., Zhang, J., Xiong, H., Zhao, L., Zhao, S., Ding, Y., Kong, F., Sui, L., Xu, L., & Liu, L. (2024). Genetic Analysis and Fine Mapping of QTL for the Erect Leaf in Mutant mths29 Induced through Fast Neutron in Wheat. Biology, 13(6), 430. https://doi.org/10.3390/biology13060430