Regional Changes in Brain Biomolecular Markers in a Collagen-Induced Arthritis Rat Model
Abstract
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Biomolecular Marker Gene Expression
2.3. Mass Spectrometry Imaging Neurotransmitter Analysis
2.4. Data Analysis
3. Results
3.1. CIA-Induced Neuroinflammation
3.2. Neuroinflammation-Induced Apoptosis
3.3. Neuroinflammation-Induced Decreases in Neurotropic Factor Expression
3.4. Neuroinflammation-Induced Monoamine Dysregulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Abbreviations
References
- Myers, L.K.; Rosloniec, E.F.; Cremer, M.A.; Kang, A.H. Collagen-induced arthritis, an animal model of autoimmunity. Life Sci. 1997, 61, 1861–1878. [Google Scholar] [CrossRef]
- Choudhary, N.; Bhatt, L.K.; Prabhavalkar, K.S. Experimental animal models for rheumatoid arthritis. Immunopharmacol. Immunotoxicol. 2018, 40, 193–200. [Google Scholar] [CrossRef]
- Figus, F.A.; Piga, M.; Azzolin, I.; McConnell, R.; Iagnocco, A. Rheumatoid arthritis: Extra-articular manifestations and comorbidities. Autoimmun. Rev. 2021, 20, 102776. [Google Scholar] [CrossRef]
- Mokotedi, L.; Millen, A.M.; Mogane, C.; Gomes, M.; Woodiwiss, A.J.; Norton, G.R.; Michel, F.S. Associations of inflammatory markers and vascular cell adhesion molecule-1 with endothelial dysfunction in collagen-induced arthritis. Eur. J. Pharmacol. 2019, 865, 172786. [Google Scholar] [CrossRef]
- Mokotedi, L.; Michel, F.S.; Mogane, C.; Gomes, M.; Woodiwiss, A.J.; Norton, G.R.; Millen, A.M. Associations of inflammatory markers with impaired left ventricular diastolic and systolic function in collagen-induced arthritis. PLoS ONE 2020, 15, e0230657. [Google Scholar] [CrossRef]
- Manilall, A.; Mokotedi, L.; Gunter, S.; Le Roux, R.; Fourie, S.; Flanagan, C.A.; Millen, A.M. Inflammation-induced left ventricular fibrosis is partially mediated by tumor necrosis factor-α. Physiol. Rep. 2021, 9, e15062. [Google Scholar] [CrossRef]
- Le Roux, R.; Mokotedi, L.; Fourie, S.; Manilall, A.; Gunter, S.; Millen, A.M. TNF-α inhibitors reduce inflammation-induced concentric remodelling, but not diastolic dysfunction in collagen-induced arthritis. Clin. Exp. Rheumatol. 2021, 40, 24–32. [Google Scholar] [CrossRef]
- Manilall, A.; Mokotedi, L.; Gunter, S.; Le Roux, R.; Fourie, S.; Flanagan, C.A.; Millen, A.M. Increased protein phosphatase 5 expression in inflammation-induced left ventricular dysfunction in rats. BMC Cardiovasc. Disord. 2022, 22, 539. [Google Scholar] [CrossRef]
- Gunter, S.; Michel, F.S.; Fourie, S.S.; Singh, M.; le Roux, R.; Manilall, A.; Mokotedi, L.P.; Millen, A.M. The effect of TNF-α inhibitor treatment on microRNAs and endothelial function in collagen induced arthritis. PLoS ONE 2022, 17, e0264558. [Google Scholar] [CrossRef]
- Manilall, A.; Mokotedi, L.; Gunter, S.; Le Roux, R.; Fourie, S.; Flanagan, C.A.; Millen, A.M. Tumor necrosis factor-α mediates inflammation-induced early-stage left ventricular systolic dysfunction. J. Cardiovasc. Pharmacol. 2023, 81, 411–422. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Y.; Zhang, J.; Li, X. Baricitinib improves pulmonary fibrosis in mice with rheumatoid arthritis-associated interstitial lung disease by inhibiting the Jak2/Stat3 signaling pathway. Adv. Rheumatol. 2023, 63, 45. [Google Scholar] [CrossRef]
- Denga, T.M.; Gunter, S.; Fourie, S.; Manilall, A.; Millen, A.M.; Mokotedi, L. Interleukin-6 Blockers Improve Inflammation-Induced Lipid Metabolism Impairments but Induce Liver Fibrosis in Collagen-Induced Arthritis. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 548–557. [Google Scholar] [CrossRef]
- Matsushita, T.; Otani, K.; Oto, Y.; Takahashi, Y.; Kurosaka, D.; Kato, F. Sustained microglial activation in the area postrema of collagen-induced arthritis mice. Arthritis Res. Ther. 2021, 23, 273. [Google Scholar] [CrossRef]
- Lai, P.H.; Wang, T.H.; Zhang, N.Y.; Wu, K.C.; Yao, C.C.J.; Lin, C.J. Changes of blood-brain-barrier function and transfer of amyloid beta in rats with collagen-induced arthritis. J. Neuroinflamm. 2021, 18, 35. [Google Scholar] [CrossRef]
- Wu, P.; Li, W.; Lv, R.; Cheng, X.; Lian, F.; Cai, W.; Hu, Y.; Zeng, Y.; Ke, B.; Chen, Y.; et al. Hyperactive lateral habenula mediates the comorbidity between rheumatoid arthritis and depression-like behaviors. Brain Behav. Immun. 2024, 117, 412–427. [Google Scholar] [CrossRef]
- Perry, V.H.; Cunningham, C.; Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nat. Rev. Immunol. 2007, 7, 161–167. [Google Scholar] [CrossRef]
- Pryce, C.R.; Fontana, A. Depression in autoimmune diseases. Curr. Top. Behav. Neurosci. 2017, 31, 139–154. [Google Scholar]
- Nerurkar, L.; Siebert, S.; McInnes, I.B.; Cavanagh, J. Rheumatoid arthritis and depression: An inflammatory perspective. Lancet Psychiatry 2019, 6, 164–173. [Google Scholar] [CrossRef]
- Brock, J.; Basu, N.; Schlachetzki, J.C.M.; Schett, G.; McInnes, I.B.; Cavanagh, J. Immune mechanisms of depression in rheumatoid arthritis. Nat. Rev. Rheumatol. 2023, 19, 790–804. [Google Scholar] [CrossRef]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef]
- Sharma, A.; Goel, A. Inflammatory cytokines in rheumatoid arthritis: Diagnostic challenges, pathogenic mechanisms and their role in depression and management. Curr. Top. Med. Chem. 2023, 23, 2535–2551. [Google Scholar] [CrossRef]
- Mlyniec, K. Zinc in the glutamatergic theory of depression. Curr. Neuropharmacol. 2015, 13, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Li, C.T. Overview of treatment-resistant depression. Prog. Brain Res. 2023, 278, 1–23. [Google Scholar]
- Pedard, M.; Demougeot, C.; Prati, C.; Marie, C. Brain-derived neurotrophic factor in adjuvant-induced arthritis in rats. Relationship with inflammation and endothelial dysfunction. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 82, 249–254. [Google Scholar] [CrossRef]
- Lopes, F.; Vicentini, F.A.; Cluny, N.L.; Mathews, A.J.; Lee, B.H.; Almishri, W.A.; Griffin, L.; Gonçalves, W.; Pinho, V.; McKay, D.M.; et al. Brain TNF drives post-inflammation depression-like behavior and persistent pain in experimental arthritis. Brain Behav. Immun. 2020, 89, 224–232. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, T.; Chang, X.; Zhou, R.; Luo, F.; Liu, J.; Zhang, K.; Wang, Y.; Yang, Y.; Long, H.; et al. Salidroside ameliorates arthritis-induced brain cognition deficits by regulating Rho/ROCK/NF-κB pathway. Neuropharmacology 2016, 103, 134–142. [Google Scholar] [CrossRef]
- Chavan, S.S.; Pavlov, V.A.; Tracey, K.J. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 2017, 46, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Wiener, C.D.; Moreira, F.P.; Portela, L.V.; Strogulski, N.R.; Lara, D.R.; da Silva, R.A.; de Mattos Souza, L.D.; Jansen, K.; Oses, J.P. Interleukin-6 and Interleukin-10 in mood disorders: A population-based study. Psychiatry Res. 2018, 273, 685–689. [Google Scholar] [CrossRef]
- Nishioku, T.; Yamauchi, A.; Takata, F.; Watanabe, T.; Furusho, K.; Shuto, H.; Dohgu, S.; Kataoka, Y. Disruption of the blood-brain barrier in collagen-induced arthritic mice. Neurosci. Lett. 2010, 482, 208–211. [Google Scholar] [CrossRef]
- Müller, N.; Schwarz, M.J. The immune-mediated alteration of serotonin and glutamate: Towards an integrated view of depression. Mol. Psychiatry 2007, 12, 988–1000. [Google Scholar] [CrossRef]
- Suliman, S.; Hemmings, S.M.; Seedat, S. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: Systematic review and meta-regression analysis. Front. Integr. Neurosci. 2013, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Felger, J.C.; Lotrich, F.E. Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience 2013, 246, 199–229. [Google Scholar] [CrossRef] [PubMed]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef] [PubMed]
- Murínová, J.; Hlaváčová, N.; Chmelová, M.; Riečanský, I. The evidence for altered BDNF expression in the brain of rats reared or housed in social isolation: A systematic review. Front. Behav. Neurosci. 2017, 11, 101. [Google Scholar] [CrossRef]
- Poutoglidou, F.; Pourzitaki, C.; Manthou, M.E.; Saitis, A.; Malliou, F.; Kouvelas, D. Infliximab and tocilizumab reduce anxiety-like behavior, improve cognitive performance and reverse neuropathological alterations in juvenile rats with severe autoimmune arthritis. Int. Immunopharmacol. 2021, 99, 107917. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Shariatgorji, M.; Nilsson, A.; Fridjonsdottir, E.; Vallianatou, T.; Källback, P.; Katan, L.; Sävmarker, J.; Mantas, I.; Zhang, X.; Bezard, E.; et al. Comprehensive mapping of neurotransmitter networks by MALDI–MS imaging. Nat. Methods 2019, 16, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; et al. Neuroinflammation and depression: A review. Eur. J. Neurosci. 2021, 53, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Mendiola, A.S.; Cardona, A.E. The IL-1β phenomena in neuroinflammatory diseases. J. Neural Transm. 2018, 125, 781–795. [Google Scholar] [CrossRef]
- Rossé, T.; Olivier, R.; Monney, L.; Rager, M.; Conus, S.; Fellay, I.; Jansen, B.; Borner, C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 1998, 391, 496–499. [Google Scholar] [CrossRef]
- Vaskivuo, T.E.; Stenbäck, F.; Tapanainen, J.S. Apoptosis and apoptosis-related factors Bcl-2, Bax, tumor necrosis factor-α, and NF-κB in human endometrial hyperplasia and carcinoma. Cancer 2002, 95, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Matin, S.; Dadkhah, M. BDNF/CREB signaling pathway contribution in depression pathogenesis: A survey on the non-pharmacological therapeutic opportunities for gut microbiota dysbiosis. Brain Res. Bull. 2024, 207, 110882. [Google Scholar] [CrossRef] [PubMed]
- Charoenphandhu, N.; Nuntapornsak, A.; Wongdee, K.; Krishnamra, N.; Charoenphandhu, J. Upregulated mRNA levels of SERT, NET, MAOB, and BDNF in various brain regions of ovariectomized rats exposed to chronic aversive stimuli. Mol. Cell. Biochem. 2013, 375, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.A.; Herring, N.R.; Schaefer, T.L.; Hemmerle, A.M.; Dickerson, J.W.; Seroogy, K.B.; Vorhees, C.V.; Williams, M. Neurotoxic (+)-methamphetamine treatment in rats increases brain-derived neurotrophic factor and tropomyosin receptor kinase B expression in multiple brain regions. Neuroscience 2011, 184, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Esvald, E.E.; Tuvikene, J.; Moistus, A.; Rannaste, K.; Kõomägi, S.; Timmusk, T. Differential regulation of the BDNF gene in cortical and hippocampal neurons. J. Neurosci. 2002, 42, 9110–9128. [Google Scholar] [CrossRef]
- Erta, M.; Quintana, A.; Hidalgo, J. Interleukin-6, a major cytokine in the central nervous system. Int. J. Biol. Sci. 2012, 8, 1254. [Google Scholar] [CrossRef] [PubMed]
- Stojakovic, A.; Paz-Filho, G.; Arcos-Burgos, M.; Licinio, J.; Wong, M.L.; Mastronardi, C.A. Role of the IL-1 pathway in dopaminergic neurodegeneration and decreased voluntary movement. Mol. Neurobiol. 2017, 54, 4486–4495. [Google Scholar] [CrossRef]
- Elhwuegi, A.S. Central monoamines and their role in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 435–451. [Google Scholar] [CrossRef]
- Banerjee, R.; Ghosh, A.K.; Ghosh, B.; Bhattacharyya, S.; Mondal, A.C. Decreased mRNA and Protein Expression of BDNF, NGF, and their receptors in the hippocampus from suicide: An analysis in human postmortem brain. Clin. Med. Insights Pathol. 2013, 6, 1–11. [Google Scholar] [CrossRef]
- Schaaf, M.J.; de Jong, J.; de Kloet, E.R.; Vreugdenhil, E. Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Res. 1998, 813, 112–120. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millen, A.M.E.; Maluleke, T.T.; Pienaar, L.; Sallie, F.N.; Veerappan, R.; Andrén, P.E.; Baijnath, S. Regional Changes in Brain Biomolecular Markers in a Collagen-Induced Arthritis Rat Model. Biology 2024, 13, 516. https://doi.org/10.3390/biology13070516
Millen AME, Maluleke TT, Pienaar L, Sallie FN, Veerappan R, Andrén PE, Baijnath S. Regional Changes in Brain Biomolecular Markers in a Collagen-Induced Arthritis Rat Model. Biology. 2024; 13(7):516. https://doi.org/10.3390/biology13070516
Chicago/Turabian StyleMillen, Aletta M. E., Tshiamo T. Maluleke, Leandrie Pienaar, Farhanah N. Sallie, Radhini Veerappan, Per E. Andrén, and Sooraj Baijnath. 2024. "Regional Changes in Brain Biomolecular Markers in a Collagen-Induced Arthritis Rat Model" Biology 13, no. 7: 516. https://doi.org/10.3390/biology13070516
APA StyleMillen, A. M. E., Maluleke, T. T., Pienaar, L., Sallie, F. N., Veerappan, R., Andrén, P. E., & Baijnath, S. (2024). Regional Changes in Brain Biomolecular Markers in a Collagen-Induced Arthritis Rat Model. Biology, 13(7), 516. https://doi.org/10.3390/biology13070516