Utilizing Olive Fly Ecology Towards Sustainable Pest Management
Simple Summary
Abstract
1. Introduction
2. Biogeographic Patterns and General Biology
3. Host Plants and Interactions
4. Environmental Factors
5. Management Strategies
6. Technological Advances
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heppner, J.B.; Heppner, J.B.; Tzanakakis, M.E.; Tzanakakis, M.E.; Tzanakakis, M.E.; Lawrence, P.O.; Capinera, J.L.; Nagoshi, R.; Gerlach, G.; Smith, H.; et al. Olive Fruit Fly, Bactrocera oleae (Rossi) (=Dacus oleae) (Diptera: Tephritidae). In Encyclopedia of Entomology; Capinera, J.L., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 2666–2669. ISBN 978-1-4020-6242-1. [Google Scholar]
- Daane, K.M.; Johnson, M.W. Olive Fruit Fly: Managing an Ancient Pest in Modern Times. Annu. Revis. Entomol. 2010, 55, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Ponti, L.; Cossu, Q.A.; Gutierrez, A.P. Climate Warming Effects on the Olea europaea—Bactrocera oleae System in Mediterranean Islands: Sardinia as an Example. Glob. Change Biol. 2009, 15, 2874–2884. [Google Scholar] [CrossRef]
- Van Asch, B.; Pereira-Castro, I.; Rei, F.T.; Da Costa, L.T. Marked Genetic Differentiation between Western Iberian and Italic Populations of the Olive Fly: Southern France as an Intermediate Area. PLoS ONE 2015, 10, e0126702. [Google Scholar] [CrossRef]
- Ordano, M.; Engelhard, I.; Rempoulakis, P.; Nemny-Lavy, E.; Blum, M.; Yasin, S.; Lensky, I.M.; Papadopoulos, N.T.; Nestel, D. Olive Fruit Fly (Bactrocera oleae) Population Dynamics in the Eastern Mediterranean: Influence of Exogenous Uncertainty on a Monophagous Frugivorous Insect. PLoS ONE 2015, 10, e0127798. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Baptista, P.; Pereira, J.A. A Review of Bactrocera oleae (Rossi) Impact in Olive Products: From the Tree to the Table. Trends Food Sci. Technol. 2015, 44, 226–242. [Google Scholar] [CrossRef]
- Ponti, L.; Gutierrez, A.P.; Ruti, P.M.; Dell’Aquila, A. Fine-Scale Ecological and Economic Assessment of Climate Change on Olive in the Mediterranean Basin Reveals Winners and Losers. Proc. Natl. Acad. Sci. USA 2014, 111, 5598–5603. [Google Scholar] [CrossRef]
- Nestel, D.; Rempoulakis, P.; Yanovski, L.; Miranda, M.A.; Papadopoulos, N.T. The Evolution of Alternative Control Control Strategies in a Traditional Crop: Economy and Policy as Drivers of Olive Fly. In Advances in Insect Control and Resistance Management; Horowitz, A.R., Ishaaya, I., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 47–76. ISBN 978-3-319-31798-4. [Google Scholar]
- Quesada-Moraga, E.; Santiago-Álvarez, C.; Cubero-González, S.; Casado-Mármol, G.; Ariza-Fernández, A.; Yousef, M. Field Evaluation of the Susceptibility of Mill and Table Olive Varieties to Egg-laying of Olive Fly. J. Appl. Entomol. 2018, 142, 765–774. [Google Scholar] [CrossRef]
- Apostolaki, A.; Livadaras, I.; Saridaki, A.; Chrysargyris, A.; Savakis, C.; Bourtzis, K. Transinfection of the Olive Fruit Fly Bactrocera oleae with Wolbachia: Towards a Symbiont-Based Population Control Strategy: Transinfection of Bactrocera Oleae with Wolbachia. J. Appl. Entomol. 2011, 135, 546–553. [Google Scholar] [CrossRef]
- Rondoni, G.; Mattioli, E.; Giannuzzi, V.A.; Chierici, E.; Betti, A.; Natale, G.; Petacchi, R.; Famiani, F.; Natale, A.; Conti, E. Evaluation of the Effect of Agroclimatic Variables on the Probability and Timing of Olive Fruit Fly Attack. Front. Plant Sci. 2024, 15, 1401669. [Google Scholar] [CrossRef]
- Grasso, F.; Coppola, M.; Carbone, F.; Baldoni, L.; Alagna, F.; Perrotta, G.; Pérez-Pulido, A.J.; Garonna, A.; Facella, P.; Daddiego, L.; et al. The Transcriptional Response to the Olive Fruit Fly (Bactrocera oleae) Reveals Extended Differences between Tolerant and Susceptible Olive (Olea europaea L.) Varieties. PLoS ONE 2017, 12, e0183050. [Google Scholar] [CrossRef] [PubMed]
- Pascual, S.; Cobos, G.; Seris, E.; González-Núñez, M. Effects of Processed Kaolin on Pests and Non-Target Arthropods in a Spanish Olive Grove. J. Pest Sci. 2010, 83, 121–133. [Google Scholar] [CrossRef]
- Van Asch, B.; Pereira-Castro, I.; Rei, F.; Da Costa, L.T. Mitochondrial Haplotypes Reveal Olive Fly (Bactrocera oleae) Population Substructure in the Mediterranean. Genetica 2012, 140, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Burrack, H.J.; Bingham, R.; Price, R.; Connell, J.H.; Phillips, P.A.; Wunderlich, L.; Vossen, P.M.; O’Connell, N.V.; Ferguson, L.; Zalom, F.G. Understanding the Seasonal and Reproductive Biology of Olive Fruit Fly Is Critical to Its Management. Calif. Agric. 2011, 65, 14–20. [Google Scholar] [CrossRef]
- Gerofotis, C.D.; Ioannou, C.S.; Papadopoulos, N.T. Aromatized to Find Mates: α-Pinene Aroma Boosts the Mating Success of Adult Olive Fruit Flies. PLoS ONE 2013, 8, e81336. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Bonsignori, G.; Stefanini, C.; Canale, A. Courtship and Mating Behaviour in the Fruit Fly Parasitoid Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae): The Role of Wing Fanning. J. Pest Sci. 2012, 85, 55–63. [Google Scholar] [CrossRef]
- Kapatos, E.T.; Fletcher, B.S. The Phenology of the Olive Fly, Dacus oleae (Gmel.) (Diptera, Tephritidae), in Corfu. Z. Für Angew. Entomol. 1984, 97, 360–370. [Google Scholar] [CrossRef]
- Mavragani-Tsipidou, P. Genetic and Cytogenetic Analysis of the Olive Fruit Fly Bactrocera oleae (Diptera: Tephritidae). Genetica 2002, 116, 45–57. [Google Scholar] [CrossRef]
- Powell, C.; Caleca, V.; Rhode, C.; Teixeira Da Costa, L.; Van Asch, B. New Mitochondrial Gene Rearrangement in Psyttalia concolor, P. humilis and P. lounsburyi (Hymenoptera: Braconidae), Three Parasitoid Species of Economic Interest. Insects 2020, 11, 854. [Google Scholar] [CrossRef]
- Yaakop, S.; Ibrahim, N.J.; Shariff, S.; Md Zain, B.M. Molecular Clock Analysis on Five Bactrocera Species Flies (Diptera: Tephritidae) Based on Combination of COI and NADH Sequences. Orient. Insects 2015, 49, 150–164. [Google Scholar] [CrossRef]
- Trombik, J.; Ward, S.F.; Norrbom, A.L.; Liebhold, A.M. Global Drivers of Historical True Fruit Fly (Diptera: Tephritidae) Invasions. J. Pest Sci. 2023, 96, 345–357. [Google Scholar] [CrossRef]
- Corrado, G.; Alagna, F.; Rocco, M.; Renzone, G.; Varricchio, P.; Coppola, V.; Coppola, M.; Garonna, A.; Baldoni, L.; Scaloni, A.; et al. Molecular Interactions between the Olive and the Fruit Fly Bactrocera oleae. BMC Plant Biol. 2012, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.; Pascual, S.; Rescia, A.J. Spatial Structure of Olive Groves and Scrublands Affects Bactrocera oleae Abundance: A Multi-Scale Analysis. Basic Appl. Ecol. 2016, 17, 696–705. [Google Scholar] [CrossRef]
- Kapatos, E.T.; Fletcher, B.S. Mortality Factors and Life-budgets for Immature Stages of the Olive Fly, Dacus oleae (Gmel.) (Diptera, Tephritidae), in Corfu. J. Appl. Entomol. 1986, 102, 326–342. [Google Scholar] [CrossRef]
- Yokoyama, V.Y. Olive Fruit Fly (Diptera: Tephritidae) in California: Longevity, Oviposition, and Development in Canning Olives in the Laboratory and Greenhouse. J. Econ. Entomol. 2012, 105, 186–195. [Google Scholar] [CrossRef]
- Dimou, I.; Koutsikopoulos, C.; Economopoulos, A.P.; Lykakis, J. Depth of Pupation of the Wild Olive Fruit Fly, Bactrocera (Dacus) oleae (Gmel.) (Dipt., Tephritidae), as Affected by Soil Abiotic Factors. J. Appl. Entomol. 2003, 127, 12–17. [Google Scholar] [CrossRef]
- Al-Zaghal, K.; Mustafa, T. Studies on the Pupation of the Olive Fruit Fly Dacus oleae Gmel. (Diptera, Tephritidae) in Jordan. J. Appl. Entomol. 1987, 103, 452–456. [Google Scholar] [CrossRef]
- Wang, X.-G.; Johnson, M.W.; Daane, K.M.; Nadel, H. High Summer Temperatures Affect the Survival and Reproduction of Olive Fruit Fly (Diptera: Tephritidae). Environ. Entomol. 2009, 38, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Stavrianakis, G.; Sentas, E.; Tscheulin, T.; Kizos, T. Does Biodiversity Affect Olive Fly Populations? Evidence from Different Understorey Treatments. Discov. Conserv. 2024, 1, 3. [Google Scholar] [CrossRef]
- Ortega, M.; Moreno, N.; Fernández, C.E.; Pascual, S. Olive Landscape Affects Bactrocera oleae Abundance, Movement and Infestation. Agronomy 2021, 12, 4. [Google Scholar] [CrossRef]
- Helvaci, M.; Kahramanoğlu, İ. Impacts of the Olive Fruit Fly on the ‘Cyprus Local’ and ‘Gemlik’ Olive Cultivars. Proc. Appl. Bot. Genet. Breed. 2022, 183, 169–176. [Google Scholar] [CrossRef]
- Perovic, T.; Hrncic, S. Population Dynamics of Pre-Imaginal Stages of Olive Fruit Fly Bactrocera oleae Gmel. (Diptera, Tephritidae) in the Region of Bar (Montenegro). Pestic. Fitomed. 2013, 28, 23–29. [Google Scholar] [CrossRef]
- Ant, T.; Koukidou, M.; Rempoulakis, P.; Gong, H.-F.; Economopoulos, A.; Vontas, J.; Alphey, L. Control of the Olive Fruit Fly Using Genetics-Enhanced Sterile Insect Technique. BMC Biol. 2012, 10, 51. [Google Scholar] [CrossRef]
- Yokoyama, V.Y. Olive Fruit Fly (Diptera: Tephritidae) in California Table Olives, USA: Invasion, Distribution, and Management Implications. J. Integr. Pest Manag. 2015, 6. [Google Scholar] [CrossRef]
- De Alfonso, I.; Vacas, S.; Primo, J. Role of α-Copaene in the Susceptibility of Olive Fruits to Bactrocera oleae (Rossi). J. Agric. Food Chem. 2014, 62, 11976–11979. [Google Scholar] [CrossRef] [PubMed]
- Nobre, T. Olive Fruit Fly and Its Obligate Symbiont Candidatus Erwinia dacicola: Two New Symbiont Haplotypes in the Mediterranean Basin. PLoS ONE 2021, 16, e0256284. [Google Scholar] [CrossRef]
- Pavlidi, N.; Gioti, A.; Wybouw, N.; Dermauw, W.; Ben-Yosef, M.; Yuval, B.; Jurkevich, E.; Kampouraki, A.; Van Leeuwen, T.; Vontas, J. Transcriptomic Responses of the Olive Fruit Fly Bactrocera oleae and Its Symbiont Candidatus Erwinia dacicola to Olive Feeding. Sci. Rep. 2017, 7, 42633. [Google Scholar] [CrossRef] [PubMed]
- Vitanović, E.; Aldrich, J.R.; Boundy-Mills, K.; Čagalj, M.; Ebeler, S.E.; Burrack, H.; Zalom, F.G. Olive Fruit Fly, Bactrocera oleae (Diptera: Tephritidae), Attraction to Volatile Compounds Produced by Host and Insect-Associated Yeast Strains. J. Econ. Entomol. 2020, 113, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Kokkari, A.I.; Pliakou, O.D.; Floros, G.D.; Kouloussis, N.A.; Koveos, D.S. Effect of Fruit Volatiles and Light Intensity on the Reproduction of Bactrocera (Dacus) oleae. J. Appl. Entomol. 2017, 141, 841–847. [Google Scholar] [CrossRef]
- Ben-Yosef, M.; Pasternak, Z.; Jurkevitch, E.; Yuval, B. Symbiotic Bacteria Enable Olive Flies (Bactrocera oleae) to Exploit Intractable Sources of Nitrogen. J. Evol. Biol. 2014, 27, 2695–2705. [Google Scholar] [CrossRef]
- Estes, A.M.; Hearn, D.J.; Agrawal, S.; Pierson, E.A.; Dunning Hotopp, J.C. Comparative Genomics of the Erwinia and Enterobacter Olive Fly Endosymbionts. Sci. Rep. 2018, 8, 15936. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, A.; Rallo, P.; Peres, A.M.; Pereira, J.A.; Morales-Sillero, A. Developing Predictive Models under Controlled Conditions for the Selection of New Genotypes That Are Less Susceptible to Bactrocera oleae (Rossi) in Table Olive (Olea europaea L.) Breeding Programs. Agronomy 2023, 13, 3050. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Cunha, S.C.; Baptista, P.; Pereira, J.A. Identification of Leaf Volatiles from Olive (Olea europaea) and Their Possible Role in the Ovipositional Preferences of Olive Fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). Phytochemistry 2016, 121, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Vitanović, E.; Lopez, J.M.; Aldrich, J.R.; Jukić Špika, M.; Boundy-Mills, K.; Zalom, F.G. Yeasts Associated with the Olive Fruit Fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) Lead to New Attractants. Agronomy 2020, 10, 1501. [Google Scholar] [CrossRef]
- Nardi, F.; Carapelli, A.; Boore, J.L.; Roderick, G.K.; Dallai, R.; Frati, F. Domestication of Olive Fly through a Multi-Regional Host Shift to Cultivated Olives: Comparative Dating Using Complete Mitochondrial Genomes. Mol. Phylogenet. Evol. 2010, 57, 678–686. [Google Scholar] [CrossRef]
- Mkize, N.; Hoelmer, K.A.; Villet, M.H. A Survey of Fruit-Feeding Insects and Their Parasitoids Occurring on Wild Olives, Olea europaea Ssp. cuspidata, in the Eastern Cape of South Africa. Biocontrol Sci. Technol. 2008, 18, 991–1004. [Google Scholar] [CrossRef]
- Tsiropoulos, G.J. Reproduction and Survival of the Adult Dacus oleae Feeding on Pollens and Honeydews. Environ. Entomol. 1977, 6, 390–392. [Google Scholar] [CrossRef]
- Sacchetti, P.; Ghiardi, B.; Granchietti, A.; Stefanini, F.M.; Belcari, A. Development of Probiotic Diets for the Olive Fly: Evaluation of Their Effects on Fly Longevity and Fecundity: Effects of Probiotic Diets on the Olive Fly. Ann. Appl. Biol. 2014, 164, 138–150. [Google Scholar] [CrossRef]
- Nobre, T. Symbiosis in Sustainable Agriculture: Can Olive Fruit Fly Bacterial Microbiome Be Useful in Pest Management? Microorganisms 2019, 7, 238. [Google Scholar] [CrossRef] [PubMed]
- Navrozidis, E.I.; Tzanakakis, M.E. Tomato Fruits as an Alternative Host for a Laboratory Strain of the Olive Fruit fly Bactrocera oleae. Phytoparasitica 2005, 33, 225–236. [Google Scholar] [CrossRef]
- Ben-Yosef, M.; Pasternak, Z.; Jurkevitch, E.; Yuval, B. Symbiotic Bacteria Enable Olive Fly Larvae to Overcome Host Defences. R. Soc. Open Sci. 2015, 2, 150170. [Google Scholar] [CrossRef] [PubMed]
- Scarpati, M.L.; Scalzo, R.L.; Vita, G. Olea Europaea Volatiles Attractive and Repellent to the Olive Fruit Fly (Dacus oleae, Gmelin). J. Chem. Ecol. 1993, 19, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Dabbaghi, O.; Tekaya, M.; Flamini, G.; Zouari, I.; El-Gharbi, S.; M’barki, N.; Laabidi, F.; Cheheb, H.; Attia, F.; Aïachi Mezghani, M.; et al. Modification of Phenolic Compounds and Volatile Profiles of Chemlali Variety Olive Oil in Response to Foliar Biofertilization. J. Am. Oil Chem. Soc. 2019, 96, 585–593. [Google Scholar] [CrossRef]
- Alagna, F.; Kallenbach, M.; Pompa, A.; De Marchis, F.; Rao, R.; Baldwin, I.T.; Bonaventure, G.; Baldoni, L. Olive Fruits Infested with Olive Fly Larvae Respond with an Ethylene Burst and the Emission of Specific Volatiles. J. Integr. Plant Biol. 2016, 58, 413–425. [Google Scholar] [CrossRef]
- Tsoumani, K.T.; Belavilas-Trovas, A.; Gregoriou, M.-E.; Mathiopoulos, K.D. Anosmic Flies: What Orco Silencing Does to Olive Fruit Flies. BMC Genom. Data 2020, 21, 140. [Google Scholar] [CrossRef]
- Dinis, A.M.; Pereira, J.A.; Pimenta, M.C.; Oliveira, J.; Benhadi-Marín, J.; Santos, S.A.P. Suppression of Bactrocera oleae (Diptera: Tephritidae) Pupae by Soil Arthropods in the Olive Grove. J. Appl. Entomol. 2016, 140, 677–687. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ruano-Rosa, D.; Cacciola, S.O.; Li Destri Nicosia, M.G.; Schena, L. Impact of Bactrocera oleae on the Fungal Microbiota of Ripe Olive Drupes. PLoS ONE 2018, 13, e0199403. [Google Scholar] [CrossRef]
- Matallanas, B.; Lantero, E.; M’Saad, M.; Callejas, C.; Ochando, M.D. Genetic Polymorphism at the Cytochrome Oxidase I Gene in Mediterranean Populations of Batrocera oleae (Diptera: Tephritidae). J. Appl. Entomol. 2013, 137, 624–630. [Google Scholar] [CrossRef]
- Latinović, J.; Mazzaglia, A.; Latinović, N.; Ivanović, M.; Gleason, M.L. Resistance of Olive Cultivars to Botryosphaeria dothidea, Causal Agent of Olive Fruit Rot in Montenegro. Crop Prot. 2013, 48, 35–40. [Google Scholar] [CrossRef]
- Iannotta, N.; Belfiore, T.; Noce, M.E.; Scalercio, S.; Vizzarri, V. Correlation Between Bactrocera oleae Infestation And Camarosporium dalmaticum Infection In An Olive Area Of Southern Italy. Acta Hortic. 2012, 309–316. [Google Scholar] [CrossRef]
- Iannotta, N.; Noce, M.E.; Ripa, V.; Scalercio, S.; Vizzarri, V. Assessment of Susceptibility of Olive Cultivars to the Bactrocera oleae (Gmelin, 1790) and Camarosporium dalmaticum (Thüm.) Zachos & Tzav.-Klon. Attacks in Calabria (Southern Italy). J. Environ. Sci. Health Part B 2007, 42, 789–793. [Google Scholar] [CrossRef]
- Moral, J.; Bouhmidi, K.; Trapero, A. Influence of Fruit Maturity, Cultivar Susceptibility, and Inoculation Method on Infection of Olive Fruit by Colletotrichum acutatum. Plant Dis. 2008, 92, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Moral, J.; Trapero, A. Assessing the Susceptibility of Olive Cultivars to Anthracnose Caused by Colletotrichum acutatum. Plant Dis. 2009, 93, 1028–1036. [Google Scholar] [CrossRef]
- Stattegger, S.R.; Tscheulin, T.; Mescher, M.C.; Kizos, T.; De Moraes, C.M.; Meyer, S. The Presence of Native Aromatic Species in Understorey Plant Communities Predicts Reduced Infestation by Olive Fruit Flies in Olive Orchards on Lesvos Island. J. Appl. Entomol. 2023, 147, 1045–1056. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Ponti, L.; Cossu, Q.A. Effects of Climate Warming on Olive and Olive Fly (Bactrocera oleae (Gmelin)) in California and Italy. Clim. Chang. 2009, 95, 195–217. [Google Scholar] [CrossRef]
- Johnson, M.W.; Wang, X.-G.; Nadel, H.; Opp, S.B.; Lynn-Patterson, K.; Stewart-Leslie, J.; Daane, K.M. High Temperature Affects Olive Fruit Fly Populations in California’s Central Valley. Calif. Agric. 2011, 65, 29–33. [Google Scholar] [CrossRef]
- Broufas, G.D.; Pappas, M.L.; Koveos, D.S. Effect of Relative Humidity on Longevity, Ovarian Maturation, and Egg Production in the Olive Fruit Fly (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2009, 102, 70–75. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Coelho, V.; Arrobas, M.; Gouveia, E.; Raimundo, S.; Correia, C.M.; Bento, A. The Effect of Nitrogen Fertilization on the Incidence of Olive Fruit Fly, Olive Leaf Spot and Olive Anthracnose in Two Olive Cultivars Grown in Rainfed Conditions. Sci. Hortic. 2019, 256, 108658. [Google Scholar] [CrossRef]
- Chafaa, S.; Mimeche, F.; Chenchouni, H. Diversity of Insects Associated with Olive (Oleaceae) Groves across a Dryland Climate Gradient in Algeria. Can. Entomol. 2019, 151, 629–647. [Google Scholar] [CrossRef]
- Gkisakis, V.; Volakakis, N.; Kollaros, D.; Bàrberi, P.; Kabourakis, E.M. Soil Arthropod Community in the Olive Agroecosystem: Determined by Environment and Farming Practices in Different Management Systems and Agroecological Zones. Agric. Ecosyst. Environ. 2016, 218, 178–189. [Google Scholar] [CrossRef]
- Stavrianakis, G.; Sentas, E.; Stattegger, S.R.; Tscheulin, T.; Kizos, T. Effect of Olive Grove’s Understorey Management on Arthropod Diversity. Agroecol. Sustain. Food Syst. 2024, 48, 1115–1138. [Google Scholar] [CrossRef]
- Karamaouna, F.; Jaques, J.A.; Kati, V. Practices to Conserve Pollinators and Natural Enemies in Agro-Ecosystems. Insects 2021, 12, 31. [Google Scholar] [CrossRef]
- De Paz, V.; Tobajas, E.; Rosas-Ramos, N.; Tormos, J.; Asís, J.D.; Baños-Picón, L. Effect of Organic Farming and Agricultural Abandonment on Beneficial Arthropod Communities Associated with Olive Groves in Western Spain: Implications for Bactrocera oleae Management. Insects 2022, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.; Fernández, L.; Ruano, F.; Cotes, B.; Cárdenas, M.; Castro, J. Short Term Response of Ants to the Removal of Ground Cover in Organic Olive Orchards. Eur. J. Entomol. 2011, 108, 417–423. [Google Scholar] [CrossRef]
- Topuz, H.; Durmusoglu, E. The Effect of Early Harvest on Infestation Rate of Bactrocera oleae (Gmelin) (Diptera: Tephritidae) as Well as Yield, Acidity and Fatty Acid Composition of Olive Oil. J. Plant Dis. Prot. 2008, 115, 186–191. [Google Scholar] [CrossRef]
- Golmohammadie, M.; Ghasemi, S.; Ghasemi, M. Determining the Most Suitable Time to Harvest Olive Fruits Infected with Olive Fruit Fly (Bacterocera oleae) Larvae Based on the Quality and Quantity of Fruit Oil. Agrotech. Ind. Crops 2022. [Google Scholar] [CrossRef]
- Landi, S.; Cutino, I.; Simoni, S.; Simoncini, S.; Benvenuti, C.; Pennacchio, F.; Binazzi, F.; Guidi, S.; Goggioli, D.; Tarchi, F.; et al. Super High-Density Olive Orchard System Affects the Main Olive Crop Pests. Ital. J. Agron. 2024, 19, 100004. [Google Scholar] [CrossRef]
- Marubbi, T.; Cassidy, C.; Miller, E.; Koukidou, M.; Martin-Rendon, E.; Warner, S.; Loni, A.; Beech, C. Exposure to Genetically Engineered Olive Fly (Bactrocera oleae) Has No Negative Impact on Three Non-Target Organisms. Sci. Rep. 2017, 7, 11478. [Google Scholar] [CrossRef]
- Sinno, M.; Bézier, A.; Vinale, F.; Giron, D.; Laudonia, S.; Garonna, A.P.; Pennacchio, F. Symbiosis Disruption in the Olive Fruit Fly, Bactrocera oleae(Rossi), as a Potential Tool for Sustainable Control. Pest Manag. Sci. 2020, 76, 3199–3207. [Google Scholar] [CrossRef] [PubMed]
- Zevgolis, Y.G.; Kamatsos, E.; Akriotis, T.; Dimitrakopoulos, P.G.; Troumbis, A.Y. Estimating Productivity, Detecting Biotic Disturbances, and Assessing the Health State of Traditional Olive Groves, Using Nondestructive Phenotypic Techniques. Sustainability 2021, 14, 391. [Google Scholar] [CrossRef]
- Varikou, K.; Garantonakis, N.; Birouraki, A.; Ioannou, A.; Kapogia, E. Improvement of Bait Sprays for the Control of Bactrocera oleae (Diptera: Tephritidae). Crop Prot. 2016, 81, 1–8. [Google Scholar] [CrossRef]
- Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do Pesticides Promote or Hinder Sustainability in Agriculture? The Challenge of Sustainable Use of Pesticides in Modern Agriculture. Sci. Total Environ. 2021, 795, 148625. [Google Scholar] [CrossRef]
- Daane, K.M.; Johnson, M.W.; Pickett, C.H.; Sime, K.R.; Wang, X.-G.; Nadel, H.; Andrews, J.W., Jr.; Hoelmer, K.A. Biological Controls Investigated to Aid Management of Olive Fruit Fly in California. Calif. Agric. 2011, 65, 21–28. [Google Scholar] [CrossRef]
- El-hajj, A.K.; Nemer, N.; Chhadeh, S.H.; Dandashi, F.; Yosef, H.; Nasrallah, M.; Houssein, M.; Talj, V.; Haris, M.; Moussa, Z. Status, Distribution and Parasitism Rate of Olive Fruit Fly (Bactrocera oleae, Rossi) Natural Enemies in Lebanon. J. Agric. Stud. 2018, 5, 246. [Google Scholar] [CrossRef]
- Martínez-Núñez, C.; Rey, P.J.; Salido, T.; Manzaneda, A.J.; Camacho, F.M.; Isla, J. Ant Community Potential for Pest Control in Olive Groves: Management and Landscape Effects. Agric. Ecosyst. Environ. 2021, 305, 107185. [Google Scholar] [CrossRef]
- Ksentini, I.; Gharsallah, H.; Sahnoun, M.; Schuster, C.; Hamli Amri, S.; Gargouri, R.; Triki, M.A.; Ksantini, M.; Leclerque, A. Providencia entomophila Sp. Nov., a New Bacterial Species Associated with Major Olive Pests in Tunisia. PLoS ONE 2019, 14, e0223943. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.; Alba-Ramírez, C.; Garrido Jurado, I.; Mateu, J.; Raya Díaz, S.; Valverde-García, P.; Quesada-Moraga, E. Metarhizium brunneum (Ascomycota; Hypocreales) Treatments Targeting Olive Fly in the Soil for Sustainable Crop Production. Front. Plant Sci. 2018, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.; Lozano-Tovar, M.D.; Garrido-Jurado, I.; Quesada-Moraga, E. Biocontrol of Bactrocera oleae (Diptera: Tephritidae) With Metarhizium brunneum and Its Extracts. J. Econ. Entomol. 2013, 106, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.; Khaled, A.; Ibrahim, A.; Soliman, N.; Attia, S. Evaluation of Entomopathogenic Fungi, Beauveriabassiana And Metarhizium anisopliae on Peach Fruit Fly, Bactrocera zonata (Saunders) (Diptera:Tephritidae). Egypt. Acad. J. Biol. Sci. F. Toxicol. Pest Control 2018, 10, 59–68. [Google Scholar] [CrossRef]
- Sookar, P.; Bhagwant, S.; Allymamod, M.N. Effect of Metarhizium anisopliae on the Fertility and Fecundity of Two Species of Fruit Flies and Horizontal Transmission of Mycotic Infection. J. Insect Sci. 2014, 14. [Google Scholar] [CrossRef]
- Wakil, W.; Usman, M.; Piñero, J.C.; Wu, S.; Toews, M.D.; Shapiro-Ilan, D.I. Combined Application of Entomopathogenic Nematodes and Fungi against Fruit Flies, Bactrocera zonata and B. dorsalis (Diptera: Tephritidae): Laboratory Cups to Field Study. Pest Manag. Sci. 2022, 78, 2779–2791. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Hernández, R.A.; Toledo, J.; Valle-Mora, J.; Holguín-Meléndez, F.; Liedo, P.; Huerta-Palacios, G. Pathogenicity and Virulence of Purpureocillium lilacinum (Hypocreales: Ophiocordycipitaceae) on Mexican Fruit Fly Adults. Fla. Entomol. 2019, 102, 309. [Google Scholar] [CrossRef]
- Rejili, M.; Fernandes, T.; Dinis, A.M.; Pereira, J.A.; Baptista, P.; Santos, S.A.P.; Lino-Neto, T. A PCR-Based Diagnostic Assay for Detecting DNA of the Olive Fruit Fly, Bactrocera oleae, in the Gut of Soil-Living Arthropods. Bull. Entomol. Res. 2016, 106, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.; Pereira, J.A.; Lino-Neto, T.; Bento, A.; Baptista, P. Plant-Mediated Effects on Entomopathogenic Fungi: How the Olive Tree Influences Fungal Enemies of the Olive Moth, Prays oleae. BioControl 2015, 60, 93–102. [Google Scholar] [CrossRef]
- Ras, E.; Beukeboom, L.W.; Cáceres, C.; Bourtzis, K. Review of the Role of Gut Microbiota in Mass Rearing of the Olive Fruit Fly, Bactrocera oleae, and Its Parasitoids. Entomol. Exp. Appl. 2017, 164, 237–256. [Google Scholar] [CrossRef]
- Noman, M.S.; Liu, L.; Bai, Z.; Li, Z. Tephritidae Bacterial Symbionts: Potentials for Pest Management. Bull. Entomol. Res. 2020, 110, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.Á.; Barceló, C.; Valdés, F.; Feliu, J.F.; Nestel, D.; Papadopoulos, N.; Sciarretta, A.; Ruiz, M.; Alorda, B. Developing and Implementation of Decision Support System (DSS) for the Control of Olive Fruit Fly, Bactrocera oleae, in Mediterranean Olive Orchards. Agronomy 2019, 9, 620. [Google Scholar] [CrossRef]
- Kavroudakis, D.; Kizos, T.; Tscheulin, T.; Katsikogiannis, G.; Stavrianakis, G.; Tsalta, L. Spatial Analysis of Olive Fly on Samos Island. Int. J. Pest Manag. 2024, 1–13. [Google Scholar] [CrossRef]
- Katsikogiannis, G.; Kavroudakis, D.; Tscheulin, T.; Kizos, T. Population Dynamics of the Olive Fly, Bactrocera oleae (Diptera: Tephritidae), Are Influenced by Different Climates, Seasons, and Pest Management. Sustainability 2023, 15, 14466. [Google Scholar] [CrossRef]
- Cobo, A.; González-Núñez, M.; Sánchez-Ramos, I.; Pascual, S. Selection of Non-target Tephritids for Risk Evaluation in Classical Biocontrol Programmes against the Olive Fruit Fly. J. Appl. Entomol. 2015, 139, 179–191. [Google Scholar] [CrossRef]
- Piñero, J.C.; Mau, R.F.L.; Vargas, R.I. Comparison of Rain-Fast Bait Stations Versus Foliar Bait Sprays for Control of Oriental Fruit Fly, Bactrocera dorsalis, in Papaya Orchards in Hawaii. J. Insect Sci. 2010, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Pontikakos, C.M.; Tsiligiridis, T.A.; Yialouris, C.P.; Kontodimas, D.C. Pest Management Control of Olive Fruit Fly (Bactrocera oleae) Based on a Location-Aware Agro-Environmental System. Comput. Electron. Agric. 2012, 87, 39–50. [Google Scholar] [CrossRef]
- Rice, R.E.; Phillips, P.A.; Stewart-Leslie, J.; Sibbett, G.S. Olive Fruit Fly Populations Measured in Central and Southern California. Calif. Agric. 2003, 57, 122–127. [Google Scholar] [CrossRef]
- Rebora, M.; Salerno, G.; Piersanti, S.; Gorb, E.; Gorb, S. Role of Fruit Epicuticular Waxes in Preventing Bactrocera oleae (Diptera: Tephritidae) Attachment in Different Cultivars of Olea Europaea. Insects 2020, 11, 189. [Google Scholar] [CrossRef]
- Karakoyun, N.S.; Uçkun, A.A. Susceptibility of Olive Cultivars to Olive Fly (Bactrocera oleae) and Parameters That Play a Role in Olive Fly (Bactrocera oleae) Cultivar Selection. J. Entomol. Zool. Stud. 2023, 11, 185–193. [Google Scholar] [CrossRef]
- Diller, Y.; Shamsian, A.; Shaked, B.; Altman, Y.; Danziger, B.-C.; Manrakhan, A.; Serfontein, L.; Bali, E.; Wernicke, M.; Egartner, A.; et al. A Real-Time Remote Surveillance System for Fruit Flies of Economic Importance: Sensitivity and Image Analysis. J. Pest Sci. 2023, 96, 611–622. [Google Scholar] [CrossRef]
- Molina-Rotger, M.; Morán, A.; Miranda, M.A.; Alorda-Ladaria, B. Remote Fruit Fly Detection Using Computer Vision and Machine Learning-Based Electronic Trap. Front. Plant Sci. 2023, 14, 1241576. [Google Scholar] [CrossRef] [PubMed]
- Mamdouh, N.; Khattab, A. YOLO-Based Deep Learning Framework for Olive Fruit Fly Detection and Counting. Inst. Electr. Electron. Eng. Access 2021, 9, 84252–84262. [Google Scholar] [CrossRef]
- Mira, J.L.; Barba, J.; Romero, F.P.; Escolar, M.S.; Caba, J.; López, J.C. Benchmarking of Computer Vision Methods for Energy-Efficient High-Accuracy Olive Fly Detection on Edge Devices. Multimed. Tools Appl. 2024, 83, 81785–81809. [Google Scholar] [CrossRef]
- Lantero, E.; Matallanas, B.; Callejas, C. Current Status of the Main Olive Pests: Useful Integrated Pest Management Strategies and Genetic Tools. Appl. Sci. 2023, 13, 12078. [Google Scholar] [CrossRef]
- Bigiotti, G.; Pastorelli, R.; Belcari, A.; Sacchetti, P. Symbiosis Interruption in the Olive Fly: Effect of Copper and Propolis on Candidatus Erwinia dacicola. J. Appl. Entomol. 2019, 143, 357–364. [Google Scholar] [CrossRef]
- Kampouraki, A.; Stavrakaki, M.; Karataraki, A.; Katsikogiannis, G.; Pitika, E.; Varikou, K.; Vlachaki, A.; Chrysargyris, A.; Malandraki, E.; Sidiropoulos, N.; et al. Recent Evolution and Operational Impact of Insecticide Resistance in Olive Fruit Fly Bactrocera oleae Populations from Greece. J. Pest Sci. 2018, 91, 1429–1439. [Google Scholar] [CrossRef]
- Kampouraki, A.; Tsakireli, D.; Koidou, V.; Stavrakaki, M.; Kaili, S.; Livadaras, I.; Grigoraki, L.; Ioannidis, P.; Roditakis, E.; Vontas, J. Functional Characterization of Cytochrome P450s Associated with Pyrethroid Resistance in the Olive Fruit Fly Bactrocera oleae. Pestic. Biochem. Physiol. 2023, 191, 105374. [Google Scholar] [CrossRef]
- Majeed, A.; Rasheed, M.T.; Akram, J.; Shahzadi, N.; Kousar, M.; Bodlah, I.; Iqbal, J.; Haq, I.U.; Munir, Y.; Siddiqui, J.A. Insight into Insecticide Resistance Mechanism and Eco-Friendly Approaches for the Management of Olive Fruit Fly, Bactrocera oleae Rossi: A Review. J. Plant Dis. Prot. 2025, 132, 10. [Google Scholar] [CrossRef]
- Godefroid, M.; Cruaud, A.; Rossi, J.-P.; Rasplus, J.-Y. Assessing the Risk of Invasion by Tephritid Fruit Flies: Intraspecific Divergence Matters. PLoS ONE 2015, 10, e0135209. [Google Scholar] [CrossRef] [PubMed]
- Caselli, A.; Petacchi, R. Climate Change and Major Pests of Mediterranean Olive Orchards: Are We Ready to Face the Global Heating? Insects 2021, 12, 802. [Google Scholar] [CrossRef] [PubMed]
- Van Der Putten, W.H.; Macel, M.; Visser, M.E. Predicting Species Distribution and Abundance Responses to Climate Change: Why It Is Essential to Include Biotic Interactions across Trophic Levels. Philos. Trans. R. Soc. B 2010, 365, 2025–2034. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, U.; Chaudhry, M.N.; Peterson, A.T. Ecological Niche Models of Biotic Interactions Predict Increasing Pest Risk to Olive Cultivars with Changing Climate. Ecosphere 2021, 12, e03714. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Rodias, E.; Terpou, A.; Afratis, N.; Athanasiou, G.; Zahariadis, T. Bactrocera oleae Control and Smart Farming Technologies for Olive Orchards in the Context of Optimal Olive Oil Quality: A Review. Agronomy 2024, 14, 2586. [Google Scholar] [CrossRef]
- Moreno, A.; Rescia, A.J.; Pascual, S.; Ortega, M. Methodological Approach to Spatial Analysis of Agricultural Pest Dispersal in Olive Landscapes. Environ. Monit. Assess. 2022, 194, 411. [Google Scholar] [CrossRef] [PubMed]
- Ioja, I.; Nedeff, V.; Agop, M.; Nedeff, F.M. Some Possibilities of the aerial drones use in precision agriculture—A Review. J. Eng. Stud. Res. 2024, 29, 43–49. [Google Scholar] [CrossRef]
- Koskinioti, P.; Ras, E.; Augustinos, A.A.; Tsiamis, G.; Beukeboom, L.W.; Caceres, C.; Bourtzis, K. The Effects of Geographic Origin and Antibiotic Treatment on the Gut Symbiotic Communities of Bactrocera oleae Populations. Entomol. Exp. Appl. 2019, 167, 197–208. [Google Scholar] [CrossRef]
- Ahmad, S.; Haq, I.U.; Cáceres, C.; Sto Tomas, U.; Dammalage, T.; Gembinsky, K.; Paulus, H.; Vreysen, M.J.B.; Rempoulakis, P. One for All: Mating Compatibility among Various Populations of Olive Fruit Fly (Diptera: Tephritidae) for Application of the Sterile Insect Technique. PLoS ONE 2018, 13, e0206739. [Google Scholar] [CrossRef] [PubMed]
- Sime, K.R.; Daane, K.M.; Wang, X.G.; Johnson, M.W.; Messing, R.H. Evaluation of Fopius arisanus as a Biological Control Agent for the Olive Fruit Fly in California. Agric. For. Entomol. 2008, 10, 423–431. [Google Scholar] [CrossRef]
- Augustinos, A.A.; Stratikopoulos, E.E.; Drosopoulou, E.; Kakani, E.G.; Mavragani-Tsipidou, P.; Zacharopoulou, A.; Mathiopoulos, K.D. Isolation and Characterization of Microsatellite Markers from the Olive Fly, Bactrocera oleae, and Their Cross-Species Amplification in the Tephritidae Family. BMC Genom. 2008, 9, 618. [Google Scholar] [CrossRef]
- Varikou, K.; Kasiotis, K.M.; Bempelou, E.; Manea-Karga, E.; Anagnostopoulos, C.; Charalampous, A.; Garantonakis, N.; Birouraki, A.; Hatjina, F.; Machera, K. A Pesticide Residues Insight on Honeybees, Bumblebees and Olive Oil after Pesticidal Applications against the Olive Fruit Fly Bactrocera oleae (Diptera: Tephritidae). Insects 2020, 11, 855. [Google Scholar] [CrossRef]
- Varikou, K.; Garantonakis, N.; Marketaki, M.; Charalampous, A.; Anagnostopoulos, C.; Bempelou, E. Residual Degradation and Toxicity of Insecticides against Bactrocera oleae. Environ. Sci. Pollut. Res. 2018, 25, 479–489. [Google Scholar] [CrossRef]
- Ortega, M.; Pascual, S. Spatio-Temporal Analysis of the Relationship between Landscape Structure and the Olive Fruit Fly Bactrocera oleae (Diptera: Tephritidae): Effect of Landscape on B. Oleae. Agric. For. Entomol. 2014, 16, 14–23. [Google Scholar] [CrossRef]
- Marchi, S.; Guidotti, D.; Ricciolini, M.; Petacchi, R. Towards Understanding Temporal and Spatial Dynamics of Bactrocera oleae (Rossi) Infestations Using Decade-Long Agrometeorological Time Series. Int. J. Biometeorol. 2016, 60, 1681–1694. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Li, Z.H.; Deng, Y.L.; Wu, J.J.; Liu, R.S.; Buahom, N. Rapid Diagnosis of the Economically Important Fruit Fly, Bactrocera correcta (Diptera: Tephritidae) Based on a Species-Specific Barcoding Cytochrome Oxidase I Marker. Bull. Entomol. Res. 2013, 103, 363–371. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavrianakis, G.; Sentas, E.; Zafeirelli, S.; Tscheulin, T.; Kizos, T. Utilizing Olive Fly Ecology Towards Sustainable Pest Management. Biology 2025, 14, 125. https://doi.org/10.3390/biology14020125
Stavrianakis G, Sentas E, Zafeirelli S, Tscheulin T, Kizos T. Utilizing Olive Fly Ecology Towards Sustainable Pest Management. Biology. 2025; 14(2):125. https://doi.org/10.3390/biology14020125
Chicago/Turabian StyleStavrianakis, Giorgos, Efstratios Sentas, Sofia Zafeirelli, Thomas Tscheulin, and Thanasis Kizos. 2025. "Utilizing Olive Fly Ecology Towards Sustainable Pest Management" Biology 14, no. 2: 125. https://doi.org/10.3390/biology14020125
APA StyleStavrianakis, G., Sentas, E., Zafeirelli, S., Tscheulin, T., & Kizos, T. (2025). Utilizing Olive Fly Ecology Towards Sustainable Pest Management. Biology, 14(2), 125. https://doi.org/10.3390/biology14020125