Superior Live Birth Rates, Reducing Sperm DNA Fragmentation (SDF), and Lowering Miscarriage Rates by Using Testicular Sperm Versus Ejaculates in Intracytoplasmic Sperm Injection (ICSI) Cycles from Couples with High SDF: A Systematic Review and Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Search Procedures
2.2. Study Selection Criteria
2.3. Outcomes Measured
2.4. Data Analysis
2.5. Risk of Bias Assessment
3. Results
3.1. Sperm DNA Fragmentation
3.2. Clinical Outcomes
3.3. Assessment of Research Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen Sixth Edition; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Kendall Rauchfuss, L.M.; Kim, T.; Bleess, J.L.; Ziegelmann, M.J.; Shenoy, C.C. Testicular Sperm Extraction vs. Ejaculated Sperm Use for Nonazoospermic Male Factor Infertility. Fertil. Steril. 2021, 116, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Palermo, G.; Joris, H.; Devroey, P.; Van Steirteghem, A.C. Pregnancies after Intracytoplasmic Injection of Single Spermatozoon into an Oocyte. Lancet 1992, 340, 17–18. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, D.; Alvarez, J.G. Sperm DNA Fragmentation: Mechanisms of Origin, Impact on Reproductive Outcome, and Analysis. Fertil. Steril. 2010, 93, 1027–1036. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Benet, J. Single and Double Strand Sperm DNA Damage: Different Reproductive Effects on Male Fertility. Genes 2019, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Maynou, J.; Yeste, M.; Becerra-Tomás, N.; Aston, K.I.; James, E.R.; Salas-Huetos, A. Clinical Implications of Sperm DNA Damage in IVF and ICSI: Updated Systematic Review and Meta-Analysis. Biol. Rev. 2021, 96, 1284–1300. [Google Scholar] [CrossRef] [PubMed]
- McQueen, D.B.; Zhang, J.; Robins, J.C. Sperm DNA Fragmentation and Recurrent Pregnancy Loss: A Systematic Review and Meta-Analysis. Fertil. Steril. 2019, 112, 54–60.e3. [Google Scholar] [CrossRef]
- Simon, L.; Zini, A.; Dyachenko, A.; Ciampi, A.; Carrell, D. A Systematic Review and Meta-Analysis to Determine the Effect of Sperm DNA Damage on in Vitro Fertilization and Intracytoplasmic Sperm Injection Outcome. Asian J. Androl. 2017, 19, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Cho, C.L.; Esteves, S.C. Should We Evaluate and Treat Sperm DNA Fragmentation? Curr. Opin. Obs. Gynecol. 2016, 28, 164–171. [Google Scholar] [CrossRef]
- Dar, S.; Grover, S.A.; Moskovtsev, S.I.; Swanson, S.; Baratz, A.; Librach, C.L. In Vitro Fertilization-Intracytoplasmic Sperm Injection Outcome in Patients with a Markedly High DNA Fragmentation Index (>50%). Fertil. Steril. 2013, 100, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Okubo, T.; Onda, N.; Hayashi, T.; Kobayashi, T.; Omi, K.; Segawa, T. Performing a Sperm DNA Fragmentation Test in Addition to Semen Examination Based on the WHO Criteria Can Be a More Accurate Diagnosis of IVF Outcomes. BMC Urol. 2023, 23, 78. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Majzoub, A.; Baskaran, S.; Selvam, M.K.P.; Cho, C.L.; Henkel, R.; Finelli, R.; Leisegang, K.; Sengupta, P.; Barbarosie, C.; et al. Sperm DNA Fragmentation: A New Guideline for Clinicians. World J. Men’s Health 2020, 38, 412–471. [Google Scholar] [CrossRef]
- Esteves, S.C.; Zini, A.; Coward, R.M.; Evenson, D.P.; Gosálvez, J.; Lewis, S.E.M.; Sharma, R.; Humaidan, P. Sperm DNA Fragmentation Testing: Summary Evidence and Clinical Practice Recommendations. Andrologia 2020, 53, e13874. [Google Scholar] [CrossRef]
- Greco, E.; Scarselli, F.; Iacobelli, M.; Rienzi, L.; Ubaldi, F.; Ferrero, S.; Franco, G.; Anniballo, N.; Mendoza, C.; Tesarik, J. Efficient Treatment of Infertility Due to Sperm DNA Damage by ICSI with Testicular Spermatozoa. Hum. Reprod. 2005, 20, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Moskovtsev, S.I.; Jarvi, K.; Mullen, J.B.M.; Cadesky, K.I.; Hannam, T.; Lo, K.C. Testicular Spermatozoa Have Statistically Significantly Lower DNA Damage Compared with Ejaculated Spermatozoa in Patients with Unsuccessful Oral Antioxidant Treatment. Fertil. Steril. 2010, 93, 1142–1146. [Google Scholar] [CrossRef]
- Moskovtsev, S.I.; Alladin, N.; Lo, K.C.; Jarvi, K.; Mullen, J.B.M.; Librach, C.L. A Comparison of Ejaculated and Testicular Spermatozoa Aneuploidy Rates in Patients with High Sperm DNA Damage. Syst. Biol. Reprod. Med. 2012, 58, 142–148. [Google Scholar] [CrossRef]
- Mehta, A.; Bolyakov, A.; Schlegel, P.N.; Paduch, D.A. Higher Pregnancy Rates Using Testicular Sperm in Men with Severe Oligospermia. Fertil. Steril. 2015, 104, 1382–1387. [Google Scholar] [CrossRef]
- Esteves, S.C.; Sánchez-Martín, F.; Sánchez-Martín, P.; Schneider, D.T.; Gosálvez, J. Comparison of Reproductive Outcome in Oligozoospermic Men with High Sperm DNA Fragmentation Undergoing Intracytoplasmic Sperm Injection with Ejaculated and Testicular Sperm. Fertil. Steril. 2015, 104, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Pabuccu, E.G.; Caglar, G.S.; Tangal, S.; Haliloglu, A.H.; Pabuccu, R. Testicular versus Ejaculated Spermatozoa in ICSI Cycles of Normozoospermic Men with High Sperm DNA Fragmentation and Previous ART Failures. Andrologia 2017, 49, e12609. [Google Scholar] [CrossRef] [PubMed]
- Bradley, C.K.; McArthur, S.J.; Gee, A.J.; Weiss, K.A.; Schmidt, U.; Toogood, L. Intervention Improves Assisted Conception Intracytoplasmic Sperm Injection Outcomes for Patients with High Levels of Sperm DNA Fragmentation: A Retrospective Analysis. Andrology 2016, 4, 903–910. [Google Scholar] [CrossRef]
- Arafa, M.; AlMalki, A.; AlBadr, M.; Burjaq, H.; Majzoub, A.; AlSaid, S.; Elbardisi, H. ICSI Outcome in Patients with High DNA Fragmentation: Testicular versus Ejaculated Spermatozoa. Andrologia 2018, 50, e12835. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.B.; Lusignan, M.F.; Son, W.Y.; Sabbah, M.; Buckett, W.; Chan, P. ICSI Outcomes Using Testicular Spermatozoa in Non-Azoospermic Couples with Recurrent ICSI Failure and No Previous Live Births. Andrology 2019, 7, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, M.; Almarzouq, A.; Zini, A. Sperm Retrieval and Intracytoplasmic Sperm Injection Outcomes with Testicular Sperm Aspiration in Men with Severe Oligozoospermia and Cryptozoospermia. Can. Urol. Assoc. J. 2020, 15, E272–E275. [Google Scholar] [CrossRef] [PubMed]
- Suganuma, R.; Yanagimachi, R.; Meistrich, M.L. Decline in Fertility of Mouse Sperm with Abnormal Chromatin during Epididymal Passage as Revealed by ICSI. Hum. Reprod. 2005, 20, 3101–3108. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Keating, D.; Parrella, A.; Cheung, S.; Rosenwaks, Z.; Goldstein, M.; Palermo, G.D. Sperm Genomic Integrity by TUNEL Varies throughout the Male Genital Tract. J. Urol. 2020, 203, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Jiang, X.; Zheng, Y.; Bai, H.; Jiang, Z.; Cheng, S.; Li, D. Outcomes Comparison of Testicular versus Ejaculated Sperm for Intracytoplasmic Sperm Injection in Infertile Men with High DNA Fragmentation: Updated Systematic Review and Meta-Analysis. Transl. Androl. Urol. 2023, 12, 1785–1802. [Google Scholar] [CrossRef]
- Esteves, S.C.; Roque, M.; Bradley, C.K.; Garrido, N. Reproductive Outcomes of Testicular versus Ejaculated Sperm for Intracytoplasmic Sperm Injection among Men with High Levels of DNA Fragmentation in Semen: Systematic Review and Meta-Analysis. Fertil. Steril. 2017, 108, 456–467.e1. [Google Scholar] [CrossRef]
- Alharbi, M.; Hamouche, F.; Phillips, S.; Kadoch, J.I.; Zini, A. Use of Testicular Sperm in Couples with SCSA- Defined High Sperm DNA Fragmentation and Failed Intracytoplasmic Sperm Injection Using Ejaculated Sperm. Asian J. Androl. 2020, 22, 348–353. [Google Scholar] [CrossRef]
- Yu, X.W.; Liu, Y.H.; Zhang, X.Y.; Wang, Q. Reproductive Outcomes of Testicular and Ejaculated Sperm for ICSI in Patients with Previous ICSI Failures: A Systematic Review and Meta-Analysis. J. Men’s Health 2021, 17, 44–51. [Google Scholar] [CrossRef]
- Khoo, C.C.; Cayetano-Alcaraz, A.A.; Rashid, R.; Tharakan, T.; Yap, T.; Sofikitis, N.; Salonia, A.; Corona, G.; Giwercman, A.; Jayasena, C.N.; et al. Does Testicular Sperm Improve Intracytoplasmic Sperm Injection Outcomes for Nonazoospermic Infertile Men with Elevated Sperm DNA Fragmentation? A Systematic Review and Meta-Analysis. Eur. Urol. Focus 2024, 10, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Herrero, I.H. Evaluación de La Mejora En Los Resultados Clínicos En Varones Con Oligozoospermia Severa, Fallos de ICSI y Elevada Fragmentación Del ADN Mediante El Uso de Espermatozoides Testiculares. Ph.D. Thesis, Facultat de Ciències Biològiques, Valencia, Spain, 2024. [Google Scholar]
- Zhou, H.; Pan, C.; Wu, Y.; Ye, D.; Fei, Q.; Kong, X.; Zhang, H.; Jin, W. Reproductive Outcomes in Patients with High Levels of Sperm DNA Fragmentation Using Testicular Sperm for Intracytoplasmic Injection: A Retrospective Analysis. Hum. Fertil. 2024, 27, 2338290. [Google Scholar] [CrossRef]
- Feijó, C.M.; Esteves, S.C. Diagnostic Accuracy of Sperm Chromatin Dispersion Test to Evaluate Sperm Deoxyribonucleic Acid Damage in Men with Unexplained Infertility. Fertil. Steril. 2014, 101, 58–63.e3. [Google Scholar] [CrossRef] [PubMed]
- Saleh, R.A.; Agarwal, A.; Nelson, D.R.; Nada, E.A.; El-Tonsy, M.H.; Alvarez, J.G.; Thomas, A.J.; Sharma, R.K. Increased Sperm Nuclear DNA Damage in Normozoospermic Infertile Men: A Prospective Study. Fertil. Steril. 2002, 78, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Alsomait, H.; Seshadri, S.; El-Toukhy, T.; Khalaf, Y. The Effect of Sperm DNA Fragmentation on Live Birth Rate after IVF or ICSI: A Systematic Review and Meta-Analysis. Reprod. Biomed. Online 2015, 30, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Hervás, I.; Pacheco, A.; Gil Julia, M.; Rivera-Egea, R.; Navarro-Gomezlechon, A.; Garrido, N. Sperm Deoxyribonucleic Acid Fragmentation (by Terminal Deoxynucleotidyl Transferase Biotin DUTP Nick End Labeling Assay) Does Not Impair Reproductive Success Measured as Cumulative Live Birth Rates per Donor Metaphase II Oocyte Used. Fertil. Steril. 2022, 118, 79–89. [Google Scholar] [CrossRef]
- Hervas, I.; Pacheco, A.; Rivera-Egea, R.; Julia, M.G.; Navarro-Gomezlechon, A.; Navarro-Gomezlechon, A.; Garrido, N. IVF/ICSI Cumulative Live Birth Rates per Consumed Oocyte Remain Comparable Regardless of Sperm DNA Fragmentation by TUNEL. Reprod. Biomed. Online 2022, 44, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Ten, J.; Guerrero, J.; Linares, Á.; Rodríguez-Arnedo, A.; Morales, R.; Lledó, B.; Llácer, J.; Bernabeu, R. Sperm DNA Fragmentation on the Day of Fertilisation Is Not Associated with Assisted Reproductive Technique Outcome Independently of Gamete Quality. Hum. Fertil. 2021, 25, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Green, K.A.; Patounakis, G.; Dougherty, M.P.; Werner, M.D.; Scott, R.T.; Franasiak, J.M. Sperm DNA Fragmentation on the Day of Fertilization Is Not Associated with Embryologic or Clinical Outcomes after IVF/ICSI. J. Assist. Reprod. Genet. 2020, 37, 71–76. [Google Scholar] [CrossRef]
- Horta, F.; Catt, S.; Ramachandran, P.; Vollenhoven, B.; Temple-Smith, P. Female Ageing Affects the DNA Repair Capacity of Oocytes in IVF Using a Controlled Model of Sperm DNA Damage in Mice. Hum. Reprod. 2020, 35, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Setti, A.S.; Braga, D.P.d.A.F.; Provenza, R.R.; Iaconelli, A.; Borges, E. Oocyte Ability to Repair Sperm DNA Fragmentation: The Impact of Maternal Age on Intracytoplasmic Sperm Injection Outcomes. Fertil. Steril. 2021, 116, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Meseguer, M.; Santiso, R.; Garrido, N.; García-Herrero, S.; Remohí, J.; Fernandez, J.L. Effect of Sperm DNA Fragmentation on Pregnancy Outcome Depends on Oocyte Quality. Fertil. Steril. 2011, 95, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Coimbra, I.; Hallak, J. Surgically Retrieved Spermatozoa for ICSI Cycles in Non-Azoospermic Males with High Sperm DNA Fragmentation in Semen. Andrology 2023, 11, 1613–1634. [Google Scholar] [CrossRef] [PubMed]
- Yagci, A.; Murk, W.; Stronk, J.; Huszar, G. Spermatozoa Bound to Solid State Hyaluronic Acid Show Chromatin Structure with High DNA Chain Integrity: An Acridine Orange Fluorescence Study. J. Androl. 2010, 31, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Kocur, O.M.; Xie, P.; Cheung, S.; Souness, S.; McKnight, M.; Rosenwaks, Z.; Palermo, G.D. Can a Sperm Selection Technique Improve Embryo Ploidy? Andrology 2023, 11, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Martín, P.; Dorado-Silva, M.; Sánchez-Martín, F.; González Martínez, M.; Johnston, S.D.; Gosálvez, J. Magnetic Cell Sorting of Semen Containing Spermatozoa with High DNA Fragmentation in ICSI Cycles Decreases Miscarriage Rate. Reprod. Biomed. Online 2017, 34, 506–512. [Google Scholar] [CrossRef]
- Mangoli, E.; Khalili, M.A.; Talebi, A.R.; Mehdi Kalantar, S.; Montazeri, F.; Agharahimi, A.; Woodward, B.J. Association between Early Embryo Morphokinetics plus Transcript Levels of Sperm Apoptotic Genes and Clinical Outcomes in IMSI and ICSI Cycles of Male Factor Patients. Reprod. Physiol. Dis. 2020, 37, 2555–2567. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Gupta, S.; Du Plessis, S.; Sharma, R.; Esteves, S.C.; Cirenza, C.; Eliwa, J.; Al-Najjar, W.; Kumaresan, D.; Haroun, N.; et al. Abstinence Time and Its Impact on Basic and Advanced Semen Parameters. Urology 2016, 94, 102–110. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, Z.; Shan, G.; Chu, L.T.; Huang, Z.; Moskovstev, S.; Librach, C.; Jarvi, K.; Sun, Y. Advances in Sperm Analysis: Techniques, Discoveries and Applications. Nat. Rev. Urol. 2021, 18, 447–467. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.; Pavitt, S.; Sharma, V.; Forbes, G.; Hooper, R.; Bhattacharya, S.; Kirkman-Brown, J.; Coomarasamy, A.; Lewis, S.; Cutting, R.; et al. Physiological, Hyaluronan-Selected Intracytoplasmic Sperm Injection for Infertility Treatment (HABSelect): A Parallel, Two-Group, Randomised Trial. Lancet 2019, 393, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Lepine, S.; McDowell, S.; Searle, L.M.; Kroon, B.; Glujovsky, D.; Yazdani, A. Advanced Sperm Selection Techniques for Assisted Reproduction. Cochrane Database Syst. Rev. 2019, 7, CD010461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xue, H.; Qiu, F.; Zhong, J.; Su, J. Testicular Spermatozoon Is Superior to Ejaculated Spermatozoon for Intracytoplasmic Sperm Injection to Achieve Pregnancy in Infertile Males with High Sperm DNA Damage. Andrologia 2019, 51, e13175. [Google Scholar] [CrossRef] [PubMed]
- Hozain, M.; Alkhader, H.; Eltanbouly, S.; Zaki, H. A Comparison of Reproductive Outcome Using Testicular Sperm Vs. Ejaculated Sperm in ICSI for Patients with Abnormal DNA Fragmentation. In Proceedings of the Abstracts of the 34th Annual Meeting of ESHRE, Barcelona, Spain, 1–4 July 2018. [Google Scholar]
- Abhyankar, N.; Kathrins, M.; Niederberger, C. Use of Testicular versus Ejaculated Sperm for Intracytoplasmic Sperm Injection among Men with Cryptozoospermia: A Meta-Analysis. Fertil. Steril. 2016, 105, 1469–1475.e1. [Google Scholar] [CrossRef] [PubMed]
- Al-Malki, A.H.; Alrabeeah, K.; Mondou, E.; Brochu-Lafontaine, V.; Phillips, S.; Zini, A. Testicular Sperm Aspiration (TESA) for Infertile Couples with Severe or Complete Asthenozoospermia. Andrology 2017, 5, 226–231. [Google Scholar] [CrossRef]
- Ben-Ami, I.; Raziel, A.; Strassburger, D.; Komarovsky, D.; Ron-El, R.; Friedler, S. Intracytoplasmic Sperm Injection Outcome of Ejaculated versus Extracted Testicular Spermatozoa in Cryptozoospermic Men. Fertil. Steril. 2013, 99, 1867–1871. [Google Scholar] [CrossRef] [PubMed]
- Weissman, A.; Horowitz, E.; Ravhon, A.; Nahum, H.; Golan, A.; Levran, D. Pregnancies and Live Births Following ICSI with Testicular Spermatozoa after Repeated Implantation Failure Using Ejaculated Spermatozoa. Reprod. Biomed. Online 2008, 17, 605–609. [Google Scholar] [CrossRef]
- Vallet-Buisan, M.; Mecca, R.; Jones, C.; Coward, K.; Yeste, M. Contribution of Semen to Early Embryo Development: Fertilization and Beyond. Hum. Reprod. Update 2023, 29, 395–433. [Google Scholar] [CrossRef] [PubMed]
- Hourvitz, A.; Shulman, A.; Madjar, I.; Levron, J.; Levran, D.; Mashiach, S.; Dor, J. In Vitro Fertilization Treatment for Severe Male Factor: A Comparative Study of Intracytoplasmic Sperm Injection with Testicular Sperm Extraction and with Spermatozoa from Ejaculate. J. Assist. Reprod. Genet. 1998, 15, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Park, C.W.; Cheon, Y.P.; Lim, C.K. Potential of Testicular Sperm to Support Embryonic Development to the Blastocyst Stage Is Comparable to That of Ejaculated Sperm. J. Assist. Reprod. Genet. 2018, 35, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Oron, G.; Fisch, B.; Sapir, O.; Wertheimer, A.; Garor, R.; Feldberg, D.; Pinkas, H.; Ben-Haroush, A. Pregnancy Outcome after ICSI with Thawed Testicular Sperm from Men with Non-Obstructive Azoospermia Compared to ICSI with Ejaculated Sperm from Men with Severe Oligoasthenoteratozoospermia and IVF with Normal Ejaculated Sperm. Gynecol. Endocrinol. 2014, 30, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Middelkamp, S.; Van Tol, H.T.A.; Spierings, D.C.J.; Boymans, S.; Guryev, V.; Roelen, B.A.J.; Lansdorp, P.M.; Cuppen, E.; Kuijk, E.W. Sperm DNA Damage Causes Genomic Instability in Early Embryonic Development. Sci. Adv. 2020, 6, eaaz7602. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Henkel, R.; Agarwal, A. Comparative Analysis of Tests Used to Assess Sperm Chromatin Integrity and DNA Fragmentation. Andrologia 2020, 53, e13718. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, Q.; Wang, Y.; Li, Y. Whether Sperm Deoxyribonucleic Acid Fragmentation Has an Effect on Pregnancy and Miscarriage after in Vitro Fertilization/Intracytoplasmic Sperm Injection: A Systematic Review and Meta-Analysis. Fertil. Steril. 2014, 102, 998–1005.e8. [Google Scholar] [CrossRef] [PubMed]
- Muriel, L.; Goyanes, V.; Segrelles, E.; Gosálvez, J.; Alvarez, J.G.; Fernández, J.L. Increased Aneuploidy Rate in Sperm with Fragmented DNA as Determined by the Sperm Chromatin Dispersion (SCD) Test and FISH Analysis. J. Androl. 2007, 28, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Vendrell, X.; Ferrer, M.; García-Mengual, E.; Muñoz, P.; Triviño, J.C.; Calatayud, C.; Rawe, V.Y.; Ruiz-Jorro, M. Correlation between Aneuploidy, Apoptotic Markers and DNA Fragmentation in Spermatozoa from Normozoospermic Patients. Reprod. Biomed. Online 2014, 28, 492–502. [Google Scholar] [CrossRef]
- Figueira, R.C.J.; Bento, F.C.; Melo, A.A.; Martinhago, C.D.; Esteves, S.C. ICSI Using Surgically Retrieved Testicular Sperm Of-Azoospermic Men with High Sperm DNA Fragmentation and Blastocyst Ploidy: A Safe Approachhuman Reproduction. In Proceedings of the Abstracts of the 35th Annual Meeting of the European Society of Human Reproduction and Embryology, Vienna, Austria, 25 June 2019. [Google Scholar]
- Hervas, I.; Gil Julia, M.; Rivera-Egea, R.; Navarro-Gomezlechon, A.; Mossetti, L.; Garrido, N. Switching to Testicular Sperm after a Previous ICSI Failure with Ejaculated Sperm Significantly Improves Blastocyst Quality without Increasing Aneuploidy Risk. J. Assist. Reprod. Genet. 2022, 39, 2275–2285. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.; Roque, M.; Garrido, N. Use of Testicular Sperm for Intracytoplasmic Sperm Injection in Men with High Sperm DNA Fragmentation: A SWOT Analysis. Asian J. Androl. 2018, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
Study | Design | Study Population Criteria: Inclusion (I)/Exclusion (E) | Semen Analysis | SDF Test | Testicular Sperm Retrieval | Sperm Retrieval Complications | Outcome Measures |
---|---|---|---|---|---|---|---|
Greco et al., 2005 [14] | Retrospective cohort study | I: Couples with at least two ICSI failures. Normozoospermic males. N = 18 | Concentration (M/mL) (mean ± SD) 26.8 ± 20.8 Motility (%) 36.7 ± 20.1 Mean morphology (%) (media ± SD) 20.9 ± 19.2 | TUNEL (>15%) | TESE and TESA | _ | FR, CPR |
Moskovtsev et al., 2010 [15] | Prospective cohort study | I: Males with persistent high SDF after 3-month antioxidant therapy. E: Varicocelectomy or antibiotic N = 12 | _ | TUNEL (>30%) | TESE | None | SDF rate between paired testicular sperm and ejaculated sperm |
Moskovtsev et al., 2012 [16] | Prospective cohort study | I: Males with persistent high SDF after 3-month antioxidant therapy. T-ICSI: N = 8 E-ICSI: N = 10 | Concentration (M/mL) (mean ± SD) 26.7 ± 38.8 Motility (%) 14.1 ± 13.6 | TUNEL (>30%) | TESE | None | SDF rate between paired testicular sperm and ejaculated sperm |
Mehta et al., 2015 [17] | Case series | I: Oligozoospermic males (<5 million/mL) with at least one IVF or ICSI failure. E: Obstructive azoospermia, non-operative varicocele, testicular trauma, orchiectomy, chemotherapy, or pelvic radiation. N = 24 | _ | TUNEL (>7%) | micro-TESE | _ | SDF rate between paired testicular sperm and ejaculated sperm |
Esteves et al., 2015 [18] | Prospective cohort study | I: Infertility > 1 year. Women < 40 years and men < 46 years. Oligozoospermia (<15 million/mL). No physical or endocrine abnormalities. No infections. High SDF in two semen samples after taking antioxidants for at least 3 months. E: Severe oligozoospermia < 5 million/mL and azoospermia. Women with low response to stimulation. T-ICSI: N = 81 E-ICSI: N = 91 | Concentration (M/mL) (media ± SD) T-ICSI: 10 ± 3.3 E-ICSI: 9.3 ± 3.9 Motility (%) T-ICSI: 36.6 ± 16.5 E-ICSI: 43.5 ± 11.4 Normal morphology (%) (mean ± SD) T-ICSI: 2.2 ± 2.0 E-ICSI: 2.3 ± 1.8 | SCD (>30%) | TESE (n = 29) TESA (n = 52) | They described a 6.2% complication rate (no difference between the TESE vs. TESA group). Pain was the most common complaint (n = 4), while two patients had moderate scrotal swelling. | SDF rate between paired testicular sperm and ejaculated sperm FR, CPR, MR, LBR |
Pabuccu et al., 2016 [19] | Retrospective cohort study | I: Normozoospermia. At least two previous ICSI failures. Women aged 18–40 years. Sperm count ≥ 15 million/mL. E: Clinical abnormalities (endocrine profile, physical examination, infections, cancer, cryptorchidism, varicocele, etc.). Women with low response, PGT, oocyte donation, uterine or tubal pathology. Genetic disorders, smokers (>20 cigarettes per day). T-ICSI: N = 31 E-ICSI: N = 40 | Motility (range) % T-ICSI: 54.7 (5–200) E-ICSI: 45 (11–87) No. of males with morphology >4% n(%) T-ICSI: 12 (38.7) E-ICSI: 17 (42.5) | TUNEL (>30%) | TESA | None | FR |
Bradley et al., 2016 [20] | Retrospective cohort study | I: Oligozoospermia. T-ICSI: N = 148 ciclos E-ICSI: N = 80 ciclos | Mean concentration (range) M/mL E-ICSI: 8.4 (0.6–28.5) T-ICSI: 12.0 (1.6–27.8). Mean progressive motility (range) % E-ICSI: 38 (15–51) T-ICSI: 38 (20–56). Normal morphology (range) % E-ICSI 2 (0–2) T-ICSI 1 (0–2) | SCIT (≥29%) | TESA and TESE | _ | FR, CPR, MR, LBR |
Arafa et al., 2017 [21] | Prospective cohort study | I: Normozoospermia with previous E-ICSI failure. E: Men with genetic abnormalities, severe oligozoospermia (<5 mill/mL), azoospermia, female factor (low reserve, PCOS, uterine and hormonal pathology). N = 36 | Concentration M/mL (mean ± SD) 16.49 ± 20.52 Motility (%) (media ± SD) 19.86 ± 20.65) Abnormal morphology (mean ± SD) 86.25 ± 16.80 SDF (mean ± SD) 56.36 ± 15.3 | SCD (≥30%) | TESA | _ | FR, CPR, MR, LBR |
Herrero et al., 2019 [22] | Retrospective cohort study | I: Normozoospermia with at least two failed ICSI and no previous birth. E: Azoospermia, secondary infertility, donated sperm or oocytes, frozen homologous sperm, non-existent TESE, uterine pathology. T-ICSI: N = 77 E-ICSI: N = 68 | Concentration (M/mL) (min–max range) T-ICSI: 37.6 (0.1–271.7) E-ICSI: 51.3 (0.01–246.8) Motility (%) (mean ± SD) T-ICSI:23.5 ± 19.6 E-ICSI: 32.3 ± 24.3 Normal morphology (%) (mean ± SD) T-ICSI: 4.2 ± 6.7 E-ICSI: 4.6 ± 5 NS | TUNEL (>36%) y SCSA (>25%) | TESE | _ | CPR, MR, LBR |
Alharbi et al., 2020 [28] | Retrospective cohort study | I: Normozoospermia with one or more unsuccessful ICSI cycles. E: Azoospermia, female infertility factor and males with reversible male factor (infections or varicocele). T-ICSI: N = 52 E-ICSI N = 48 | Concentration (M/mL) (min–max range) T-ICSI: 22.9 ± 31.6 E-ICSI: 41.2 ± 49.9 Motility (%) (media ± SD) T-ICSI: 42.0 ± 23.9 E-ICSI: 52 ± 22.8 Normal morphology (%) (mean ± SD) T-ICSI: 1.9 ± 1.7 E-ICSI: 1.8 ± 1.6 | SCSA (>30%) | TESA | _ | CPR, MR, LBR |
Xie et al., 2020 [25] | Retrospective cohort study | I: Males with previous ICSI failure and high SDF. E: Males with defects in spermatogenesis with non-obstructive azoospermia or cryptozoospermia. Couples with abnormal BMI, smokers, drug users, or heavy drinkers. T-ICSI: N = 76 E-ICSI: N = 83 | - | TUNEL (>15%) | TESE | - | SDF rate between paired testicular sperm and ejaculated sperm |
Hervás 2024 [31] | Prospective randomized study | I: Males with severe oligozoospermia (<5 mill/mL) or previous ICSI failure with their partner. Females with adequate ovarian reserve (AMH > 2 ng/mL) or antral follicle count (AFR > 6). E: Abnormal karyotype, microdeletions in the Y chromosome, mutations in the cystic fibrosis gene, varicocele; female age > 38 years, uterine pathology (fibroids, uterine malformations, etc.). | Concentration M/mL (media ± SD) E-ICSI: 5.5 ± 12.02 T-ICSI: 0.09 ± 0.2 Motility (%) (mean ± SD) E-ICSI: 2.67 ± 2.42 T-ICSI: 0.83 ± 0.75 | SCD (>30%) | TESE | None | SDF rate between paired testicular sperm and ejaculated sperm |
Zhou et al., 2023 [32] | Retrospective cohort study | I: Male patients exhibiting high (25%) SDF. No anomalies in their physical examination or endocrinological profile, and no evidence of genital infection. E: Obstructive azoospermia, unresolved varicocele, testicular trauma, orchiectomy, chemotherapy, or pelvic radiotherapy, any genetic abnormalities. | Concentration (M/mL) (min,max range) T-ICSI: 35.90 (12.0, 88.5) E-ICSI: 13.95 (3.8, 73.7) Motility (%) (min,max range) T-ICSI: 9.60 (1.8, 22.3) E-ICSI: 10.80 (4.3, 23.0) SDF(%) (media ± SD) T-ICSI: 60.58 ± 16.41 E-ICSI: 53.25 ± 18.15 | SCD (>25%) | TESA | - | SDF rate between paired testicular sperm and ejaculated sperm FR, CPR, MR, LBR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano-Extremera, M.; Hervas, I.; Gisbert Iranzo, A.; Falquet Guillem, M.; Gil Juliá, M.; Navarro-Gomezlechon, A.; Pacheco-Rendón, R.; Garrido Puchalt, N. Superior Live Birth Rates, Reducing Sperm DNA Fragmentation (SDF), and Lowering Miscarriage Rates by Using Testicular Sperm Versus Ejaculates in Intracytoplasmic Sperm Injection (ICSI) Cycles from Couples with High SDF: A Systematic Review and Meta-Analysis. Biology 2025, 14, 130. https://doi.org/10.3390/biology14020130
Cano-Extremera M, Hervas I, Gisbert Iranzo A, Falquet Guillem M, Gil Juliá M, Navarro-Gomezlechon A, Pacheco-Rendón R, Garrido Puchalt N. Superior Live Birth Rates, Reducing Sperm DNA Fragmentation (SDF), and Lowering Miscarriage Rates by Using Testicular Sperm Versus Ejaculates in Intracytoplasmic Sperm Injection (ICSI) Cycles from Couples with High SDF: A Systematic Review and Meta-Analysis. Biology. 2025; 14(2):130. https://doi.org/10.3390/biology14020130
Chicago/Turabian StyleCano-Extremera, Marina, Irene Hervas, Alma Gisbert Iranzo, Mar Falquet Guillem, María Gil Juliá, Ana Navarro-Gomezlechon, Rosa Pacheco-Rendón, and Nicolás Garrido Puchalt. 2025. "Superior Live Birth Rates, Reducing Sperm DNA Fragmentation (SDF), and Lowering Miscarriage Rates by Using Testicular Sperm Versus Ejaculates in Intracytoplasmic Sperm Injection (ICSI) Cycles from Couples with High SDF: A Systematic Review and Meta-Analysis" Biology 14, no. 2: 130. https://doi.org/10.3390/biology14020130
APA StyleCano-Extremera, M., Hervas, I., Gisbert Iranzo, A., Falquet Guillem, M., Gil Juliá, M., Navarro-Gomezlechon, A., Pacheco-Rendón, R., & Garrido Puchalt, N. (2025). Superior Live Birth Rates, Reducing Sperm DNA Fragmentation (SDF), and Lowering Miscarriage Rates by Using Testicular Sperm Versus Ejaculates in Intracytoplasmic Sperm Injection (ICSI) Cycles from Couples with High SDF: A Systematic Review and Meta-Analysis. Biology, 14(2), 130. https://doi.org/10.3390/biology14020130