Development of a Real-Time Enzymatic Recombinase Amplification Assay (RT-ERA) and an ERA Combined with a Lateral Flow Dipstick (LFD) Assay (ERA-LFD) for Enteric Microsporidian (Enterospora epinepheli) in Grouper Fishes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Samples and Pathogens
2.2. ERA Primer and Probe Design
2.3. The Construction of the Positive Standard Recombinant Plasmid
2.4. DNA Extraction
2.5. Optimization of Primer Combination for Basic ERA Detection of E. epinepheli
2.6. Development of the RT-ERA Detection Method for E. epinepheli
2.7. Development of the ERA-LFD Detection Method for E. epinepheli
2.8. Sensitivity Analysis
2.9. Specificity Analysis
2.10. Clinical Tissue Samples and Water Samples for E. epinepheli Detection
3. Results
3.1. Optimization of the Primer Selection by ERA
3.2. Optimization of ERA Assay Conditions for the Detection
3.3. Sensitivity Analysis Result
3.4. Specificity Analysis Result
3.5. Detection of Clinical Tissue Samples and Water Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rimmer, M.A.; Glamuzina, B. A review of grouper (Family Serranidae: Subfamily Epinephelinae) aquaculture from a sustainability science perspective. Rev. Aquac. 2019, 11, 58–87. [Google Scholar]
- Xu, L.; Liu, X.; Zhang, J.; Liu, G.; Feng, J. Outbreak of enteric microsporidiosis of hatchery-bred juvenile groupers, Epinephelus spp., associated with a new intranuclear microporidian in China. J. Fish Dis. 2017, 40, 183–189. [Google Scholar] [PubMed]
- Yan, Y.Y.; Liu, X.H.; Xu, L.W.; Zhang, J.Y. The taxonomic position of causative agent of enteric microsporidiosis of hatchery-bred juvenile grouper, Epinephelus spp., cultured in the area off coast of South China Sea. Acta Hydrobiol. Sin. 2018, 42, 942–949. [Google Scholar]
- Liu, Q.; Wang, Y.; Chen, J.; Pan, G.; Yue, Y.; Zhou, Z.; Fang, W. Establishment of a TaqMan probe-based qPCR assay for detecting microsporidia Enterospora epinepheli in grouper. J. Fish Dis. 2024, 47, e13893. [Google Scholar] [PubMed]
- Wu, H.B.; Wu, Y.S.; Wu, Z.H. Occurrence of a new microsporidium in the abdominal cavity of Epinephelus akaara. Acta Hydrobiol. Sin. 2005, 29, 150–154. [Google Scholar]
- Abdel-Ghaffar, F.; Bashtar, A.R.; Mehlhorn, H.; Al-Rasheid, K.; Morsy, K. Microsporidian parasites: A danger facing marine fishes of the Red Sea. Parasitol. Res. 2011, 108, 219–225. [Google Scholar]
- Azevedo, C.; Abdel-Baki, A.A.; Rocha, S.; Al-Quraishy, S.; Casal, G. Ultrastructure and phylogeny of Glugea arabica n. sp. (Microsporidia), infecting the marine fish Epinephelus polyphekadion from the Red Sea. Eur. J. Protistol. 2016, 52, 11–21. [Google Scholar]
- Xu, F.; Li, Z.; Korabecna, M.; Neuzil, P. Quantitative or digital PCR? A comparative analysis for choosing the optimal one for biosensing applications. TrAC Trends Anal. Chem. 2024, 174, 117676. [Google Scholar]
- Li, J.; Wang, Y.; Hu, J.; Bao, Z.; Wang, M. An isothermal enzymatic recombinase amplification (ERA) assay for rapid and accurate detection of Enterocytozoon hepatopenaei infection in shrimp. J. Invertebr. Pathol. 2023, 197, 107895. [Google Scholar]
- Zhang, L.; Wang, Y.; Hu, J.; Bao, Z.; Wang, M. Rapid detection of white spot syndrome virus in Penaeus vannamei based on real-time enzymatic recombinase amplification. Aquaculture 2023, 566, 739196. [Google Scholar]
- Zhang, L.; Wang, Y.; Liu, M.; Hu, J.; Bao, Z.; Wang, M. Development of a multiplex real-time enzymatic recombinase amplification assay for differentiation of yellow head virus genotype 1 and 2 in Penaeus vannamei. Aquaculture 2024, 582, 740564. [Google Scholar]
- Zhou, Q.; Wang, Y.; Hu, J.; Bao, Z.; Wang, M. Development of a real-time enzymatic recombinase amplification assay (RT-ERA) and an ERA combined with lateral flow dipsticks (LFD) assay (ERA-LFD) for rapid detection of acute hepatopancreatic necrosis disease (AHPND) in shrimp Penaeus vannamei. Aquaculture 2023, 566, 739205. [Google Scholar]
- Mansfield, M.A.; Millipore, E.M.D.; Bedford, M.A. Troubleshooting Problems with Lateral Flow Assays; EMD Millipore: Burlington, MA, USA, 2015. [Google Scholar]
- Lai, M.-Y.; Ooi, C.-H.; Lau, Y.-L. Recombinase Polymerase Amplification Combined with a Lateral Flow Strip for the Detection of Plasmodium knowlesi. Am. J. Trop. Med. Hyg. 2018, 98, 700–703. [Google Scholar]
- Patterson West, J. Biochemical & Biophysical Studies of an Hfq Homolog from a Deep-branching Bacterium. Ph.D. Thesis, University of Virginia, Charlottesville, VA, USA, 2014. [Google Scholar]
- Singh, J.; Sharma, S.; Nara, S. Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water. Food Chem. 2015, 170, 470–483. [Google Scholar]
- Madeira, F.; Madhusoodanan, N.; Lee, J.; Eusebi, A.; Niewielska, A.; Tivey, A.R.N.; Lopez, R.; Butcher, S. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024, 52, W521–W525. [Google Scholar] [PubMed]
- Primer Premier 6.0 Manual; PREMIER Biosoft International: Palo Alto, CA, USA, 2009.
- Lee, C.; Kim, J.; Shin, S.G.; Hwang, S. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 2006, 123, 273–280. [Google Scholar]
- Stentiford, G.; Bateman, K.; Longshaw, M.; Feist, S. Enterospora canceri n. Gen., n. Sp., intranuclear within the hepatopancreatocytes of the European edible crab Cancer pagurus. Dis. Aquat. Org. 2007, 75, 61–72. [Google Scholar]
- Munkongwongsiri, N.; Prachumwat, A.; Eamsaard, W.; Lertsiri, K.; Flegel, T.W.; Stentiford, G.D.; Sritunyalucksana, K. Propionigenium and Vibrio species identified as possible component causes of shrimp white feces syndrome (WFS) associated with the microsporidian Enterocytozoon hepatopenaei. J. Invertebr. Pathol. 2022, 192, 107784. [Google Scholar]
- Couch, C.E.; Kent, M.L.; Weiss, L.M.; Takvorian, P.M.; Nervino, S.; Cummins, L.; Sanders, J.L. Enterocytozoon schreckii n. sp. infects the enterocytes of adult chinook salmon (Oncorhynchus tshawytscha) and may be a sentinel of Immunosenescence. mSphere 2022, 7, e00908-21. [Google Scholar]
- Ahmed, N.H.; Caffara, M.; Sitjà-Bobadilla, A.; Fioravanti, M.L.; Mazzone, A.; Aboulezz, A.S.; Metwally, A.M.; Omar, M.A.; Palenzuela, O.R. Detection of the intranuclear microsporidian Enterospora nucleophila in gilthead sea bream by in situ hybridization. J. Fish Dis. 2019, 42, 809–815. [Google Scholar]
- Palenzuela, O.; Redondo, M.J.; Cali, A.; Takvorian, P.M.; Alonso-Naveiro, M.; Alvarez-Pellitero, P.; Sitjà-Bobadilla, A. A new intranuclear microsporidium, Enterospora nucleophila n. Sp., causing an emaciative syndrome in a piscine host (Sparus aurata), prompts the redescription of the family Enterocytozoonidae. Int. J. Parasitol. 2014, 44, 189–203. [Google Scholar]
- Li, J.; Hu, J.; Bao, Z.; Wang, M. Rapid and sensitive detection of Taura syndrome virus (TSV) in shrimp based on an isothermal enzymatic recombinase amplification (ERA) assay. Aquacult. Int. 2024, 32, 6211–6225. [Google Scholar]
- Xu, J.; Wang, Y.; Hu, J.; Bao, Z.; Wang, M. Development and visualization improvement for the rapid detection of decapod iridescent virus 1 (DIV1) in Penaeus vannamei based on an isothermal recombinase polymerase amplification assay. Viruses 2022, 14, 2752. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Yu, Y.; Ai, T.; Zhang, Y.; Su, J. Rapid detection of Edwardsiella ictaluri in yellow catfish (Pelteobagrus fulvidraco) by real-time RPA and RPA-LFD. Aquaculture 2022, 552, 737976. [Google Scholar]
- Shahin, K.; Gustavo Ramirez-Paredes, J.; Harold, G.; Lopez-Jimena, B.; Adams, A.; Weidmann, M. Development of a recombinase polymerase amplification assay for rapid detection of Francisella noatunensis subsp. orientalis. PLoS ONE 2018, 13, e0192979. [Google Scholar]
- Jaroenram, W.; Owens, L. Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectious Penaeus stylirostris densovirus and virus-related sequences in shrimp genome. J. Virol. Methods 2014, 208, 144–151. [Google Scholar]
- Garg, N.; Ahmad, F.J.; Kar, S. Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Curr. Res. Microb. Sci. 2022, 3, 100120. [Google Scholar]
- Li, T.; Ding, R.; Zhang, J.; Zhou, Y.; Liu, C.; Cao, Z.; Sun, Y. The establishment of the Multi-Visual Loop-Mediated Isothermal Amplification method for the rapid detection of Vibrio harveyi, Vibrio parahaemolyticus, and Singapore grouper iridovirus. Fishes 2024, 9, 225. [Google Scholar] [CrossRef]
- Sathish Kumar, T.; Suvetha, S.; Naveen Rajeshwar, B.; Makesh, M.; Shashi Shekhar, M.; Lal, K.K. Portable DNA extraction and loop-mediated isothermal amplification (LAMP) for the on-site detection of white spot syndrome virus (WSSV). Aquaculture 2025, 596, 741760. [Google Scholar]
- Prescott, M.A.; Reed, A.N.; Jin, L.; Pastey, M.K. Rapid detection of Cyprinid Herpesvirus 3 in latently infected Koi by recombinase polymerase amplification. J. Aquat. Anim. Health 2016, 28, 173–180. [Google Scholar] [PubMed]
- Mabrok, M.; Elayaraja, S.; Chokmangmeepisarn, P.; Jaroenram, W.; Arunrut, N.; Kiatpathomchai, W.; Debnath, P.P.; Delamare-Deboutteville, J.; Mohan, C.V.; Fawzy, A.; et al. Rapid visualization in the specific detection of Flavobacterium columnare, a causative agent of freshwater columnaris using a novel recombinase polymerase amplification (RPA) combined with lateral flow dipstick (LFD) assay. Aquaculture 2021, 531, 735780. [Google Scholar]
- Xia, X.; Yu, Y.; Weidmann, M.; Pan, Y.; Yan, S.; Wang, Y. Rapid detection of shrimp White Spot Syndrome Virus by Real Time, Isothermal Recombinase Polymerase Amplification Assay. PLoS ONE 2014, 9, e104667. [Google Scholar]
- Loo, K.-Y.; Law, J.W.-F.; Tan, L.T.-H.; Pusparajah, P.; Letchumanan, V.; Lee, L.-H. Diagnostic techniques for rapid detection of Vibrio species. Aquaculture 2022, 561, 738628. [Google Scholar]
- CLi, N.; Lin, Z.; Feng, M.; Lin, B.; Guan, K.; Chen, Q. Chen. CRISPR/Cas12a based rapid molecular detection of acute hepatopancreatic necrosis disease in shrimp. Front. Vet. Sci. 2022, 8, 819681. [Google Scholar]
- Lu, Z.; Liang, M.; Li, C.; Xu, Y.; Weng, S.; He, J.; Guo, C. Rapid, sensitive, and visual detection of mandarin fish ranavirus and infectious spleen and kidney necrosis virus using an RPA-CRISPR/Cas12a system. Front. Microbiol. 2024, 15, 1495777. [Google Scholar]
- Ding, W.C.; Chen, J.; Shi, Y.H.; Lu, X.J.; Li, M.Y. Rapid and sensitive detection of infectious spleen and kidney necrosis virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. Arch. Virol. 2010, 155, 385–389. [Google Scholar]
- Li, H.; Yuan, G.; Luo, Y.; Yu, Y.; Ai, T.; Su, J. Rapid and sensitive detection of infectious spleen and kidney necrosis virus by recombinase polymerase amplification combined with lateral flow dipsticks. Aquaculture 2020, 519, 734926. [Google Scholar]
Detection Method | ERA/RT-ERA/ERA-LFD | PCR | ||
---|---|---|---|---|
Sample | Tissue | Water | Tissue | Water |
Positive number | 26 | 3 | 22 | 0 |
Negative number | 16 | 23 | 20 | 26 |
Total number | 42 | 26 | 42 | 26 |
Positive rate | 61.9% | 11.5% | 52.4% | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Zhou, Y.; Wang, S.; Luo, J.; Guo, W.; Deng, H.; Zheng, P.; Zhong, Z.; Su, B.; Zhang, D.; et al. Development of a Real-Time Enzymatic Recombinase Amplification Assay (RT-ERA) and an ERA Combined with a Lateral Flow Dipstick (LFD) Assay (ERA-LFD) for Enteric Microsporidian (Enterospora epinepheli) in Grouper Fishes. Biology 2025, 14, 330. https://doi.org/10.3390/biology14040330
Chen M, Zhou Y, Wang S, Luo J, Guo W, Deng H, Zheng P, Zhong Z, Su B, Zhang D, et al. Development of a Real-Time Enzymatic Recombinase Amplification Assay (RT-ERA) and an ERA Combined with a Lateral Flow Dipstick (LFD) Assay (ERA-LFD) for Enteric Microsporidian (Enterospora epinepheli) in Grouper Fishes. Biology. 2025; 14(4):330. https://doi.org/10.3390/biology14040330
Chicago/Turabian StyleChen, Minqi, Yongcan Zhou, Shifeng Wang, Jian Luo, Weiliang Guo, Hengwei Deng, Pei Zheng, Zhihong Zhong, Baofeng Su, Dongdong Zhang, and et al. 2025. "Development of a Real-Time Enzymatic Recombinase Amplification Assay (RT-ERA) and an ERA Combined with a Lateral Flow Dipstick (LFD) Assay (ERA-LFD) for Enteric Microsporidian (Enterospora epinepheli) in Grouper Fishes" Biology 14, no. 4: 330. https://doi.org/10.3390/biology14040330
APA StyleChen, M., Zhou, Y., Wang, S., Luo, J., Guo, W., Deng, H., Zheng, P., Zhong, Z., Su, B., Zhang, D., & Ye, Z. (2025). Development of a Real-Time Enzymatic Recombinase Amplification Assay (RT-ERA) and an ERA Combined with a Lateral Flow Dipstick (LFD) Assay (ERA-LFD) for Enteric Microsporidian (Enterospora epinepheli) in Grouper Fishes. Biology, 14(4), 330. https://doi.org/10.3390/biology14040330