The Disputable Costs of Sleeping
Simple Summary
Abstract
1. Sleep in Animals
2. The Birth of Mammalian Sleep
3. Causal Relationships in Sleep
4. Sleep and Vital Activities
5. Sleep, the Metabolic Syndrome, and Excessive Foraging
6. Sleep and Reproductive Efficiency
7. Sleep and Predation
7.1. Predators and Prey: Costs and Benefits
7.2. The Concepts of Optimal Foraging and Optimal Prey
7.3. Sleep and Predation: Causes and Consequences
7.3.1. The Perception of Predatory Risk Using Contact Sensory Receptors
7.3.2. Vision
7.3.3. Audition
7.3.4. Olfaction
7.4. Sleep-Related Sensory Shutdown: Is It Real?
7.5. Do Predators Sleep More than Prey?
7.6. Body Size and Predation Risk
7.7. Predation Risk and Diet
BW (kg) | Sleep-Rest Time (h) | Foraging Time (h) and % Daily | |
---|---|---|---|
African Buffalo (Syncerus caffer) | ~650 | 6.63 h [210] | 18.02 h (75.1%) [211] |
Tsessebe (Damaliscus lunatus) | ~120 | 1.92 h [212,213] | 18.0 h (75%) [214] |
Blue wildebeest (Connochaetes taurinus) | ~215 | 4.8 h [211] | 18.56 h (77.2%) [211] |
Horse (Equus caballus) | ~600 | 2.9 h [212] | 20 h (83%) [210,211] |
Donkey (Equus asinus) | ~450 | 3.3 h [212] | 11.18 h (46.6%) [213] |
Tapir (Tapirus Terrestris | ~235 | 4.4 h [212] | 10.56 h (44%) [214] |
Sheep (Ovis aries) | ~100 | 3.8 h [212] | 12.6 h (52.5% [215] |
Cow (Bos taurus) | ~285 | 4.0 h [212,216] | 20 h (83.3%) [213,214] |
Goat (Capra aegirus hircus) | ~100 | 5.4 h [212] | 13.8 h (57.5% [215] |
Average | 306 kg | 4.12 h (17.1%) | 15.86 h (66.08%) |
Predation Risks and Diet
7.8. Sleep in Predators
7.9. Sleep and Predation in Prey Weighing Less than 100 kg
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piéron, H. Le Problème Physiologique du Sommeil; Masson et Cie: Paris, France, 1913. [Google Scholar]
- Flanigan, W.F., Jr. Sleep and Wakefulness in Iguanid Lizards, Ctenosaura pectinata and Iguana iguana. Brain Behav. Evol. 1973, 8, 417–436. [Google Scholar] [CrossRef]
- Durie, D.B. Sleep in animals. In Psychopharma-Cology of Sleep; Weatley, D., Ed.; Raven Press: New York, NY, USA, 1981; pp. 1–18. [Google Scholar]
- Borbély, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1982, 1, 195–204. [Google Scholar]
- Rial, R.V.; Canellas, F.; Gamundí, A.; Akaârir, M.; Nicolau, M.C. Pleasure: The missing link in the regulation of sleep. Neurosci. Biobehav. Rev. 2018, 88, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Van Swinderen, B.; Nitz, D.A.; Greenspan, R.J. Uncoupling of brain activity from movement defines arousal states in Drosophila. Curr. Biol. 2004, 14, 81–87. [Google Scholar] [CrossRef]
- van Swinderen, B. The remote roots of consciousness in fruit-fly selective attention? In Consciousness Transitions; Lihestrom, H., Arhem, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Chapter 2; pp. 28–44. [Google Scholar]
- Rial, R.V.; Canellas, F.; Akaârir, M.; Rubiño, J.A.; Barceló, P.; Martín, A.; Nicolau, M.C. The birth of the mammalian sleep. Biology 2022, 11, 734. [Google Scholar] [CrossRef] [PubMed]
- Cabanac, M.; Cabanac, A.J. Measuring consciousness in animals. In Measuring Behavior 2008, Proceedings of the 6th International Conference on Methods and Techniques in Behavioral Research, Maastricht, The Netherlands, 26–29 August 2008; Noldus Information Technology: Wageningen, The Netherlands, 2008. [Google Scholar]
- Paradis, S.; Cabanac, M. Flavor aversion learning induced by lithium chloride in reptiles but not in amphibians. Behav. Process. 2004, 67, 11–18. [Google Scholar] [CrossRef]
- Emery, N.J. Cognitive ornithology: The evolution of avian intelligence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002, 361, 23–43. [Google Scholar] [CrossRef]
- Rial, R.V.; Nicolau, M.C.; Gamundí, A.; Akaârir, M.; Garau, C.; Esteban, S. The evolution of consciousness in animals. In Consciousness Transitions; Lihestrom, H., Arhem, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Chapter 2; pp. 45–76. [Google Scholar]
- Ruckebusch, Y. The relevance of drowsiness in the circadian cycle of farm animals. Anim. Behav. 1972, 20, 637–643. [Google Scholar] [CrossRef]
- Piercy, J.; Rogers, K.; Reichert, M.; Andrade, D.V.; Abe, A.S.; Tattersall, G.J.; Milsom, W.K. The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity. J. Comp. Physiol. B 2015, 185, 891–903. [Google Scholar]
- Tattersall, G.J. Reptile thermogenesis and the origins of endothermy. Zoology 2016, 119, 403–405. [Google Scholar] [CrossRef]
- Rial, R.V.; Akaârir, M.; Canellas, F.; Barceló, P.; Rubiño, J.A.; Martín-Reina, A.; Gamundí, A.; Nicolau, M.C. Mammalian NREM and REM sleep: Why, When and How. Neurosci. Biobehav. Rev. 2023, 146, 105041. [Google Scholar] [CrossRef]
- Parsons, L.C.; Huggins, S.E. Effects of Temperature on Electroencephalogram of the Caiman. Proc. Soc. Exp. Biol. Med. 1965, 120, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Hartse, K.M. Phylogeny in Sleep Medicine. In Sleep Medicine: A Comprehensive Guide to Its Development, Clinical Milestones, and Advances in Treatment; Springer: New York, NY, USA, 2015; pp. 545–555. [Google Scholar]
- Libourel, P.A.; Barrillot, B.; Arthaud, S.; Massot, B.; Morel, A.L.; Beuf, O.; Luppi, P.H. Partial homologies between sleep states in lizards. Mammals and birds suggest a complex evolution of sleep states in amniotes. PLoS Biol. 2018, 16, e2005982. [Google Scholar] [CrossRef] [PubMed]
- Libourel, P.A.; Barrillot, B. Is there REM sleep in reptiles? A key question, but still unanswered. Curr. Opin. Physiol. 2020, 15, 134–142. [Google Scholar] [CrossRef]
- Shein-Idelson, M.; Ondracek, J.M.; Liaw, H.P.; Reiter, S.; Laurent, G. Slow waves, sharp waves, ripples and REM in sleeping dragons. Science 2016, 352, 590–595. [Google Scholar] [CrossRef]
- Economo, C.V.V. Sleep as a problem of localization. J. Nerv. Ment. Dis. 1930, 71, 249–259. [Google Scholar] [CrossRef]
- Silva, J.A.C. Sleep disorders in psychiatry. Metabolism 2006, 55, S40–S44. [Google Scholar] [CrossRef]
- Maquet, P. Understanding non rapid eye movement sleep through neuroimaging. World J. Biol. Psychiatry 2010, 11 (Suppl. S1), 9–15. [Google Scholar] [CrossRef]
- Heesy, C.P.; Hall, M.I. The nocturnal bottleneck and the evolution of mammalian vision. Brain Behav. Evol. 2010, 75, 195–203. [Google Scholar] [CrossRef]
- Gerkema, M.P.; Davies, W.I.; Foster, R.G.; Menaker, M.; Hut, R.A. The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130508. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Wang, H.; Feng, J. Arms race of temporal partitioning between carnivorous and herbivorous mammals. Sci. Rep. 2018, 8, 1713. [Google Scholar]
- Fuchs, T.; Haney, A.; Jechura, T.J.; Moore, F.R.; Bingman, V.P. Daytime naps in night-migrating birds: Behavioural adaptation to seasonal sleep deprivation in the Swainson’s thrush, Catharus ustulatus. Anim. Behav. 2006, 72, 951–958. [Google Scholar] [CrossRef]
- Lima, S.L.; Rattenborg, N.C. A behavioural shutdown can make sleeping safer: A strategic perspective on the function of sleep. Anim. Behav. 2007, 74, 189–197. [Google Scholar] [CrossRef]
- Capellini, I.; Preston, B.T.; McNamara, P.; Barton, R.A.; Nunn, C.L. Ecological constraints on mammalian sleep architecture. In Evolution of Sleep: Phylogenetic and Functional Perspectives; Cambridge University Press: New York, NY, USA, 2010; pp. 12–33. [Google Scholar]
- Zhao, X.; Sun, H.; Tang, Z.; Flanders, J.; Zhang, S.; Ma, Y. Characterization of the sleep architecture in two species of fruit bat. Behav. Brain Res. 2010, 208, 497–501. [Google Scholar]
- Acerbi, A.; Nunn, C.L. Predation and the phasing of sleep: An evolutionary individual-based model. Anim. Behav. 2011, 81, 801–811. [Google Scholar]
- Amo, L.; Caro, S.P.; Visser, M.E. Sleeping birds do not respond to predator odour. PLoS ONE 2011, 6, e27576. [Google Scholar]
- Stuber, E.F.; Grobis, M.M.; Abbey-Lee, R.; Kempenaers, B.; Mueller, J.C.; Dingemanse, N.J. Perceived predation risk affects sleep behaviour in free-living great tits, Parus major. Anim. Behav. 2014, 98, 157–165. [Google Scholar]
- Aulsebrook, A.E.; Jones, T.M.; Rattenborg, N.C.; Roth, T.C., II; Lesku, J.A. Sleep ecophysiology: Integrating neuroscience and ecology. Trends Ecol. Evol. 2016, 31, 590–599. [Google Scholar]
- Joiner, W.J. Unraveling the evolutionary determinants of sleep. Curr. Biol. 2016, 26, R1073–R1087. [Google Scholar]
- Nunn, C.L.; Samson, D.R.; Krystal, A.D. Shining evolutionary light on human sleep and sleep disorders. Evol. Med. Public Health 2016, 2016, 227–243. [Google Scholar]
- Eban-Rothschild, A.; Appelbaum, L.; de Lecea, L. Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacology 2018, 43, 937–952. [Google Scholar] [PubMed]
- Anafi, R.C.; Kayser, M.S.; Raizen, D.M. Exploring phylogeny to find the function of sleep. Nat. Rev. Neurosci. 2019, 20, 109–116. [Google Scholar]
- Fumagalli, M.; Cesario, A.; Costa, M. Where dolphins sleep: Resting areas in the red sea. In Oceanographic and Biological Aspects of the Red Sea; Springer: Cham, Switzerland, 2019; pp. 305–326. [Google Scholar]
- Sotelo, M.I.; Tyan, J.; Dzera, J.; Eban-Rothschild, A. Sleep and motivated behaviors from physiology to pathology. Curr. Opin. Physiol. 2020, 15, 159–166. [Google Scholar]
- Jacobs, B.L.; McGinty, D.J. Effects of food deprivation on sleep and wakefulness in the rat. Exp. Neurol. 1971, 30, 212–222. [Google Scholar] [PubMed]
- Goldstein, N.; Levine, B.J.; Loy, K.A.; Duke, W.L.; Meyerson, O.S.; Jamnik, A.A.; Carter, M.E. Hypothalamic neurons that regulate feeding can influence sleep/wake states based on homeostatic need. Curr. Biol. 2018, 28, 3736–3747. [Google Scholar]
- Hua, R.; Wang, X.; Chen, X.; Wang, X.; Huang, P.; Li, P.; Li, H. Calretinin neurons in the midline thalamus modulate starvation-induced arousal. Curr. Biol. 2018, 28, 3948–3959. [Google Scholar] [CrossRef] [PubMed]
- Knutson, K.L.; Spiegel, K.; Penev, P.; Van Cauter, E. The metabolic consequences of sleep deprivation. Sleep Med. Rev. 2007, 11, 163–178. [Google Scholar]
- Åkerstedt, T.; Wright, K.P. Sleep loss and fatigue in shift work and shift work disorder. Sleep Med. Clin. 2009, 4, 257–271. [Google Scholar]
- Garaulet, M.; Ordovas, J.M.; Madrid, J.A. The chronobiology: Etiology and pathophysiology of obesity. Int. J. Obes. 2010, 34, 1667–1683. [Google Scholar] [CrossRef]
- Hernández-García, J.; Navas-Carrillo, D.; Orenes-Piñero, E. Alterations of circadian rhythms and their impact on obesity, metabolic syndrome and cardiovascular diseases. Crit. Rev. Food Sci. Nutr. 2020, 60, 1038–1047. [Google Scholar]
- Alberti, K.G.M.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar]
- Wolk, R.; Somers, V.K. Sleep and the metabolic syndrome. Exp. Physiol. 2007, 92, 67–78. [Google Scholar] [PubMed]
- Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Eckel, R.H. The metabolic syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar] [PubMed]
- Eckel, R.H.; Alberti, K.G.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2010, 375, 181–183. [Google Scholar] [PubMed]
- Troxel, W.M.; Buysse, D.J.; Matthews, K.A.; Kip, K.E.; Strollo, P.J.; Hall, M.; Reis, S.E. Sleep symptoms predict the development of the metabolic syndrome. Sleep 2010, 33, 1633–1640. [Google Scholar]
- Flo, E.; Pallesen, S.; Magerøy, N.; Moen, B.E.; Grønli, J.; Nordhus, I.H.; Bjorvatn, B. Shift work disorder in nurses—Assessment, prevalence and related health problems. PLoS ONE 2012, 7, e33981. [Google Scholar]
- Lin, S.C.; Sun, C.A.; You, S.L.; Hwang, L.C.; Liang, C.Y.; Yang, T.; Chou, Y.C. The link of self-reported insomnia symptoms and sleep duration with metabolic syndrome: A Chinese population-based study. Sleep 2016, 39, 1261–1266. [Google Scholar]
- Isomaa, B.; Almgren, P.; Tuomi, T.; Forsén, B.; Lahti, K.; Nissén, M.; Taskinen, M.-R.; Groop, L. Cardiovascular Morbidity and Mortality Associated with the Metabolic Syndrome. Diabetes Care 2001, 24, 683–689. [Google Scholar]
- Ardern, C.I.; Janssen, I. Metabolic syndrome and its association with morbidity and mortality. Appl. Physiol. Nutr. Metab. 2007, 32, 33–45. [Google Scholar]
- Prasun, P. Mitochondrial dysfunction in metabolic syndrome. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165838. [Google Scholar]
- McCay, C.M.; Sperling, G.; Barnes, L.L. Growth, ageing, chronic diseases, and life span in rats. Arch. Biochem. 1943, 2, 469–479. [Google Scholar]
- Weindruch, R.; Walford, R. The Retardation of Aging and Disease by Dietary Restriction; Thomas: Springfield, IL, USA, 1988. [Google Scholar]
- Masoro, E.J. Caloric restriction and aging: An update. Exp. Gerontol. 2000, 35, 299–305. [Google Scholar] [PubMed]
- Mattison, J.A.; Roth, G.S.; Lane, M.A.; Ingram, D.K. Dietary restriction in aging nonhuman primates. In Mechanisms of Dietary Restriction in Aging and Disease; Karger Publishers: Basel, Switzerland, 2007; Volume 35, pp. 137–158. [Google Scholar]
- Bishop, N.A.; Guarente, L. Genetic links between diet and lifespan: Shared mechanisms from yeast to humans. Nat. Rev. Genet. 2007, 8, 835–844. [Google Scholar] [PubMed]
- Willcox, D.C.; Scapagnini, G.; Willcox, B.J. Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mech. Ageing Dev. 2014, 136, 148–162. [Google Scholar]
- Pascual, P.; Pedrajas, J.R.; Toribio, F.; López-Barea, J.; Peinado, J. Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chem.-Biol. Interact. 2003, 145, 191–199. [Google Scholar]
- Magwere, T.; Chapman, T.; Partridge, L. Sex differences in the effect of dietary restriction on life span and mortality rates in female and male Drosophila melanogaster. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2004, 59, B3–B9. [Google Scholar]
- Partridge, L.; Piper, M.D.; Mair, W. Dietary restriction in Drosophila. Mech. Ageing Dev. 2005, 126, 938–950. [Google Scholar]
- Verdery, R.B.; Ingram, D.K.; Roth, G.S.; Lane, M.A. Caloric restriction increases HDL2 levels in rhesus monkeys (Macaca mulatta). Am. J. Physiol.-Endocrinol. Metab. 1997, 273, E714–E719. [Google Scholar]
- Bodkin, N.L.; Alexander, T.M.; Ortmeyer, H.K.; Johnson, E.; Hansen, B.C. Mortality and morbidity in laboratory-maintained Rhesus monkeys and effects of long-term dietary restriction. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, B212–B219. [Google Scholar]
- Kemnitz, J.W. Calorie restriction and aging in nonhuman primates. ILAR J. 2011, 52, 66–77. [Google Scholar]
- Cleator, J.; Abbott, J.; Judd, P.; Sutton, C.; Wilding, J.P.H. Night eating syndrome: Implications for severe obesity. Nutr. Diabetes 2012, 2, e44. [Google Scholar] [CrossRef]
- O’Flanagan, C.H.; Smith, L.A. McDonell, S.B.; Hursting, S.D. When less may be more: Calorie restriction and response to cancer therapy. BMC Med. 2017, 15, 106. [Google Scholar] [CrossRef]
- Kritchevsky, D. Caloric restriction and cancer: Search for the molecular mechanisms. In Vitamins and Minerals in the Prevention and Treatment of Cancer; CRC Press: Boca Raton, FL, USA, 2018; pp. 113–122. [Google Scholar]
- Rochette, L.; Vergely, C. “Pro-youthful” factors in the “labyrinth” of cardiac rejuvenation. Exp. Gerontol. 2016, 83, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mattison, J.A.; Colman, R.J.; Beasley, T.M.; Allison, D.B.; Kemnitz, J.W.; Roth, G.S.; Anderson, R.M. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 2017, 8, 14063. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.P.; Tremblay, A. Insufficient sleep as a contributor to weight gain: An update. Curr. Obes. Rep. 2012, 1, 245–256. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; O’Keeffe, M.; Roberts, A.L.; RoyChoudhury, A.; Laferrère, B. Short sleep duration, glucose dysregulation and hormonal regulation of appetite in men and women. Sleep 2012, 35, 1503–1510. [Google Scholar] [CrossRef]
- Blumfield, M.L.; Bei, B.; Zimberg, I.Z.; Cain, S.W. Dietary disinhibition mediates the relationship between poor sleep quality and body weight. Appetite 2018, 120, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Lesku, J.A.; Rattenborg, N.C.; Valcu, M.; Vyssotski, A.L.; Kuhn, S.; Kuemmeth, F.; Kempenaers, B. Adaptive sleep loss in polygynous pectoral sandpipers. Science 2012, 337, 1654–1658. [Google Scholar] [CrossRef]
- Moreau, R.E. Clutch-size: A comparative study, with special reference to African birds. IBIS 1944, 86, 286–347. [Google Scholar] [CrossRef]
- Lack, D. The significance of clutch-size. IBIS 1947, 89, 302–352. [Google Scholar] [CrossRef]
- Lord, R.D., Jr. Litter size and latitude in North American mammals. Am. Midl. Nat. 1960, 64, 488–499. [Google Scholar]
- Sikes, R.S.; Ylönen, H. Considerations of optimal litter size in mammals. Oikos 1998, 83, 452–465. [Google Scholar]
- Poigner, J.; Szendrö, Z.S.; Levai, A.; Radnai, I.; Biro-Nemeth, E. Effect of birth weight and litter size on growth and mortality in rabbits. World Rabbit. Sci. 2000, 8, 17–22. [Google Scholar] [CrossRef]
- Drogemuller, C.; Hamann, H.; Distl, O. Candidate gene markers for litter size in different German pig lines. J. Anim. Sci. 2001, 79, 2565–2570. [Google Scholar]
- Guerra, R.F.; Carlos, R.D.O. Effects of litter size on maternal care, body weight and infant development in golden hamsters (Mesocricetus auratus). Behav. Process. 2001, 55, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Stockley, P. Female multiple mating behavior, early reproductive failure and litter size variation in mammals. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 271–278. [Google Scholar]
- Ylönen, H.; Jacob, J.; Runcie, M.J.; Singleton, G.R. Is reproduction of the Australian house mouse (Mus domesticus) constrained by food? A large-scale field experiment. Oecologia 2003, 135, 372–377. [Google Scholar]
- Parsons, J.L.; Hellgren, E.C.; Jorgensen, E.E.; Leslie, D.M., Jr. Neonatal growth and survival of rodents in response to variation in maternal dietary nitrogen: Life history strategy vs dietary niche. Oikos 2005, 110, 297–308. [Google Scholar]
- Van Aarde, R.J.; Jackson, T.P. Food, reproduction and survival in mice on sub-Antarctic Marion Island. Polar Biol. 2007, 30, 503–511. [Google Scholar]
- Stockley, P.; Hobson, L. Paternal care and litter size coevolution in mammals. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160140. [Google Scholar]
- Hediger, H. Sleep: Comparative Observations on Sleep. Proc. R. Soc. Med. 1969, 62, 153–156. [Google Scholar]
- Allison, T.; Cicchetti, D.V. Sleep in Mammals—Ecological and Constitutional Correlates. Science 1976, 194, 732–734. [Google Scholar]
- Meddis, R. The Sleep Instinct; Routledge & Kegan Paul: London, UK, 1977. [Google Scholar]
- Meddis, R. The evolution of sleep. In Sleep Mechanisms and Functions in Humans and Animals: An Evolutionary Perspective; Mayes, A., Ed.; Van Nostrand Reinhold Press: Berkshire, UK, 1983; pp. 57–106. [Google Scholar]
- Lima, S.L.; Rattenborg, N.C.; Lesku, J.A.; Amlaner, C.J. Sleeping under the risk of predation. Anim. Behav. 2005, 70, 723–736. [Google Scholar]
- Lesku, J.A.; Bark, R.J.; Martinez-Gonzalez, D.; Rattenborg, N.C.; Amlaner, C.J.; Lima, S.L. Predator-induced plasticity in sleep architecture in wild-caught Norway rats (Rattus norvegicus). Behav. Brain Res. 2008, 189, 298–305. [Google Scholar]
- Dimond, S.; Lazarus, J. The problem of vigilance in animal life. Brain Behav. Evol. 1974, 9, 60–79. [Google Scholar]
- Gliwicz, J.; Dabrowski, M.J. Ecological factors affecting the diel activity of voles in a multi-species community. Ann. Zool. Fenn. 2008, 45, 242–247. [Google Scholar]
- Lotka, A.J. Elements of Physical Biology; Williams and Wilkins: Baltimore, MD, USA, 1925. [Google Scholar]
- Volterra, V. Variations and fluctuations of the number of individuals in animal species living together. ICES J. Mar. Sci. 1928, 3, 3–51. [Google Scholar]
- Colinvaux, P. Why Big Fierce Animals Are Rare: An Ecologist’s Perspective; Princeton University Press: Princeton, NJ, USA, 1979. [Google Scholar]
- Carbone, C.; Gittleman, J.L. A common rule for the scaling of carnivore density. Science 2002, 295, 2273–2276. [Google Scholar]
- Brown, J.S.; Vincent, T.L. Organization of predator-prey communities as an evolutionary game. Evolution 1992, 46, 1269–1283. [Google Scholar]
- Klauschies, T.; Vasseur, D.A.; Gaedke, U. Trait adaptation promotes species coexistence in diverse predator and prey communities. Ecol. Evol. 2016, 6, 4141–4159. [Google Scholar]
- Chakraborty, B.; Bairagi, N. Complexity in a prey-predator model with prey refuge and diffusion. Ecol. Complex. 2019, 37, 11–23. [Google Scholar]
- Mishra, S.; Upadhyay, R.K. Strategies for the existence of spatial patterns in predator–prey communities generated by cross-diffusion. Nonlinear Anal. Real World Appl. 2020, 51, 103018. [Google Scholar]
- Pyke, G.H. Optimal foraging theory: A critical review. Annu. Rev. Ecol. Syst. 1984, 15, 523–575. [Google Scholar]
- Pyke, G. Optimal foraging theory: An introduction. In Encyclopedia of Animal Behavior; Elsevier Academic Press: Amsterdam, The Netherlands, 2019; pp. 111–117. [Google Scholar]
- Doniol-Valcroze, T.; Lesage, V.; Giard, J.; Michaud, R. Optimal foraging theory predicts diving and feeding strategies of the largest marine predator. Behav. Ecol. 2011, 22, 880–888. [Google Scholar]
- Gosling, L.M.; Petrie, M. The economics of social organization. In Physiological Ecology; Townsend, C.R., Calow, P., Eds.; Blackwell Scientific Publications: Oxford, UK, 1981; pp. 315–345. [Google Scholar]
- Temple, S.A. Do predators always capture substandard individuals disproportionately from prey populations? Ecology 1987, 68, 669–674. [Google Scholar]
- Houston, A.I.; McNamara, J.M.; Hutchinson, J.M. General Results concerning the trade-off between gaining energy and avoiding predation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1993, 341, 375–397. [Google Scholar]
- Scheel, D. Profitability, encounter rates and prey choice of African lions. Behav. Ecol. 1993, 4, 90–97. [Google Scholar]
- Penteriani, V.; Del Mar Delgado, M.; Bartolommei, P.; Maggio, C.; Alonso-Alvarez, C.; Holloway, G.J. Owls and rabbits: Predation against substandard individuals of an easy prey. J. Avian Biol. 2008, 39, 215–221. [Google Scholar]
- Genovart, M.; Negre, N.; Tavecchia, G.; Bistuer, A.; Parpal, L.; Oro, D. The young, the weak and the sick: Evidence of natural selection by predation. PLoS ONE 2010, 5, e9774. [Google Scholar]
- Melis, C.; Holmern, T.; Ringsby, T.H.; Sæther, B.E. Who ends up in the eagle owl pellets? A new method to assess whether water voles experience different predation risk. Mamm. Biol. 2011, 76, 683–686. [Google Scholar]
- Tucker, S.; Mark Hipfner, J.; Trudel, M. Size- and condition-dependent predation: A seabird disproportionately targets substandard individual juvenile salmon. Ecology 2016, 97, 461–471. [Google Scholar] [CrossRef]
- Zahavi, A.; Zahavi, A. The Handicap Principle: A Missing Piece of Darwin’s Puzzle; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Zahavi, A. The theory of signal selection and some of its implications. In International Symposium of Biological Evolution; Adtiatici Editrici: Bari, Italy, 1987. [Google Scholar]
- Pawlyk, A.C.; Morrison, A.R.; Ross, R.J.; Brennan, F.X. Stress-induced changes in sleep in rodents: Models and mechanisms. Neurosci. Biobehav. Rev. 2007, 32, 99–117. [Google Scholar] [CrossRef]
- Âkerstedt, T. Psychosocial stress and impaired sleep. Scand. J. Work Environ. Health 2006, 32, 493–501. [Google Scholar]
- Cano, G.; Mochizuki, T.; Saper, C.B. Neural Circuitry of Stress-Induced Insomnia in Rats. J. Neurosci. 2008, 28, 10167–10184. [Google Scholar]
- Han, K.S.; Kim, L.; Shim, I. Stress and sleep disorder. Exp. Neurobiol. 2012, 21, 141–150. [Google Scholar]
- Rattenborg, N.C.; Amlaner, C.J.; Lima, S.L. Unilateral eye closure and interhemispheric EEG asymmetry during sleep in the pigeon (Columba livia). Brain Behav. Evol. 2001, 58, 323–332. [Google Scholar]
- Lyamin, O.I.; Mukhametov, L.M.; Siegel, J.M.; Nazarenko, E.A.; Polyakova, I.G.; Shpak, O.V. Unihemispheric slow wave sleep and the state of the eyes in a white whale. Behav. Brain Res. 2002, 129, 125–129. [Google Scholar]
- Lyamin, O.I.; Siegel, J.M.; Nazarenko, E.A.; Vu, M.; Rozhnov, V.V. Sleep with open eyes in two species of deer, the Indian Sambar (Rusa unicolor) and Sika Deer (Cervus nippon). In Doklady Biological Sciences; Pleiades Publishing: Moscow, Russia, 2023; Volume 512, pp. 295–299. [Google Scholar]
- Mascetti, G.G. Unihemispheric sleep and asymmetrical sleep: Behavioral, neurophysiological, and functional perspectives. Nat. Sci. Sleep 2016, 8, 221–238. [Google Scholar] [CrossRef]
- Hunter, L.T.; Skinner, J.D. Vigilance behaviour in African ungulates: The role of predation pressure. Behaviour 1998, 135, 195–211. [Google Scholar]
- Beauchamp, G. Vigilance in a selfish herd. Anim. Behav. 2007, 73, 445–451. [Google Scholar] [CrossRef]
- Velluti, R. Interactions between sleep and sensory physiology. J. Sleep Res. 1997, 6, 61–77. [Google Scholar] [CrossRef]
- Velluti, R.A. The Auditory System in Sleep; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Csépe, V.; Karmos, G.; Molnar, M. Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat—Animal model of mismatch negativity. Electroencephalogr. Clin. Neurophysiol. 1987, 66, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Loewy, D.H.; Campbell, K.B.; de Lugt, D.R.; Elton, M.; Kok, A. The mismatch negativity during natural sleep: Intensity deviants. Clin. Neurophysiol. 2000, 111, 863–872. [Google Scholar] [CrossRef]
- Kalyakin, I. Extraction of Mismatch Negativity from Electroencephalography Data. Ph.D. Thesis, University of Jyväskylä, Jyväskylä, Finland, 2010. [Google Scholar]
- Cheour-Luhtanen, M.; Alho, K.; Kujala, T.; Sainio, K.; Reinikainen, K.; Renlund, M.; Aaltonen, O.; Eerola, O.; Näätänen, R. Mismatch negativity indicates vowel discrimination in newborns. Hear. Res. 1995, 82, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Cheour, M.; Leppänen, P.H.; Kraus, N. Mismatch negativity (MMN) as a tool for investigating auditory discrimination and sensory memory in infants and children. Clin. Neurophysiol. 1999, 111, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Atienza, M.; Cantero, J.L.; Dominguez-Marin, E. Mismatch negativity (MMN): An objective measure of sensory memory and long-lasting memories during sleep. Int. J. Psychophysiol. 2002, 46, 215–225. [Google Scholar] [CrossRef]
- Leppänen, P.H.; Guttorm, T.K.; Pihko, E.; Takkinen, S.; Eklund, K.M.; Lyytinen, H. Maturational effects on newborn ERPs measured in the mismatch negativity paradigm. Exp. Neurol. 2004, 190, 91–101. [Google Scholar] [CrossRef]
- Martynova, O.; Kirjavainen, J.; Cheour, M. Mismatch negativity and late discriminative negativity in sleeping human newborns. Neurosci. Lett. 2003, 340, 75–78. [Google Scholar] [CrossRef]
- Hirasawa, Y.; Shirasu, M.; Okamoto, M.; Touhara, K. Subjective unpleasantness of malodors induces a stress response. Psychoneuroendocrinology 2019, 106, 206–215. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, Q.; Li, H.; Dong, X.; Tu, W. Evaluation of auditory perception development in neonates by quantitative electroencephalography and auditory event-related potentials. PLoS ONE 2017, 12, e0183728. [Google Scholar] [CrossRef]
- Sambeth, A.; Huotilainen, M.; Kushnerenko, E.; Fellman, V.; Pihko, E. Newborns discriminate novel from harmonic sounds: A study using magnetoencephalography. Clin. Neurophysiol. 2006, 117, 496–503. [Google Scholar]
- Pérez-González, D.; Malmierca, M.S.; Covey, E. Novelty detector neurons in the mammalian auditory midbrain. Eur. J. Neurosci. 2005, 22, 2879–2885. [Google Scholar]
- Fritz, J.B.; Elhilali, M.; David, S.V.; Shamma, S.A. Auditory attention—Focusing the searchlight on sound. Curr. Opin. Neurobiol. 2007, 17, 437–455. [Google Scholar] [PubMed]
- Türker, B.; Musat, E.M.; Chabani, E.; Fonteix-Galet, A.; Maranci, J.B.; Wattiez, N.; Pouget, P.; Sitt, J.; Naccache, L.; Arnulf, I.; et al. Behavioral and brain responses to verbal stimuli reveal transient periods of cognitive integration of the external world during sleep. Nat. Neurosci. 2023, 26, 1981–1993. [Google Scholar] [CrossRef]
- Ruby, P.; Caclin, A.; Boulet, S.; Delpuech, C.; Morlet, D. Odd sound processing in the sleeping brain. J. Cogn. Neurosci. 2008, 20, 296–311. [Google Scholar]
- Barja, I. Decision making in plant selection during the faecal-marking behaviour of wild wolves. Anim. Behav. 2009, 77, 489–493. [Google Scholar]
- Piñeiro, A.; Barja, I.; Silván, G.; Illera, J.C. Effects of tourist pressure and reproduction on physiological stress response in wildcats: Management implications for species conservation. Wildl. Res. 2012, 39, 532–539. [Google Scholar]
- Stoddart, D.M. Some responses of a free living community of rodents to the odors of predators. In Chemical Signals; Springer: Boston, MA, USA, 1980; pp. 1–10. [Google Scholar]
- Stoddart, D.M. Does trap odour influence estimation of population size of the short-tailed vole, Microtus agrestis? J. Anim. Ecol. 1982, 51, 375–386. [Google Scholar]
- Stoddart, D.M. Demonstration of olfactory discrimination by the short-tailed vole, Microtus agrestis L. Anim. Behav. 1982, 30, 293–294. [Google Scholar]
- Calder1, C.J.; Gorman, M.L. The effects of red fox Vulpes vulpes faecal odours on the feeding behaviour of Orkney voles Microtus arvalis. J. Zool. 1991, 224, 599–606. [Google Scholar]
- Jędrzejewski, W.; Rychlik, L.; Jędrzejewska, B. Responses of bank voles to odours of seven species of predators: Experimental data and their relevance to natural predator-vole relationships. Oikos 1993, 68, 251–257. [Google Scholar]
- Navarro-Castilla, A.; Barja, I. Antipredatory response and food intake in wood mice (Apodemus sylvaticus) under simulated predation risk by resident and novel carnivorous predators. Ethology 2014, 120, 90–98. [Google Scholar]
- Carskadon, M.A.; Herz, R.S. Minimal olfactory perception during sleep: Why odor alarms will not work for humans. Sleep 2004, 27, 402–405. [Google Scholar]
- Stuck, B.A.; Weitz, H.; Hörmann, K.; Maurer, J.T.; Hummel, T. Chemosensory event-related potentials during sleep—A pilot study. Neurosci. Lett. 2006, 406, 222–226. [Google Scholar]
- Stuck, B.A.; Stieber, K.; Frey, S.; Freiburg, C.; Hörmann, K.; Maurer, J.T.; Hummel, T. Arousal responses to olfactory or trigeminal stimulation during sleep. Sleep 2007, 30, 506–510. [Google Scholar]
- Schreck, M.R.; Zhuang, L.; Janke, E.; Moberly, A.H.; Bhattarai, J.P.; Gottfried, J.A.; Wesson, D.W.; Ma, M. State-dependent olfactory processing in freely behaving mice. Cell Rep. 2022, 38, 110450. [Google Scholar]
- Brauchli, P.; Rüegg, P.B.; Etzweiler, F.; Zeier, H. Electrocortical and autonomic alteration by administration of a pleasant and an unpleasant odor. Chem. Senses 1995, 20, 505–515. [Google Scholar]
- Arzi, A.; Sela, L.; Green, A.; Givaty, G.; Dagan, Y.; Sobel, N. The influence of odorants on respiratory patterns in sleep. Chem. Senses 2010, 35, 31–40. [Google Scholar]
- Arzi, A.; Shedlesky, L.; Ben-Shaul, M.; Nasser, K.; Oksenberg, A.; Hairston, I.S.; Sobel, N. Humans can learn new information during sleep. Nat. Neurosci. 2012, 15, 1460–1465. [Google Scholar]
- Arzi, A.; Trentin, C.; Laudini, A.; Krugliak, A.; Nikolla, D.; Bekinschtein, T. Dynamic auditory remapping across the sleep-wake cycle. bioRxiv 2021. [Google Scholar] [CrossRef]
- Soussignan, R.; Schaal, B.; Marlier, L.; Jiang, T. Facial and autonomic responses to biological and artificial olfactory stimuli in human neonates: Re-examining early hedonic discrimination of odors. Physiol. Behav. 1997, 62, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Seelke, A.M.; Blumberg, M.S. Sniffing in infant rats during sleep and wakefulness. Behav. Neurosci. 2004, 118, 267–273. [Google Scholar] [CrossRef]
- Krauel, K.; Schott, P.; Sojka, B.; Pause, B.M.; Ferstl, R. Is there a mismatch negativity analogue in the olfactory event-related potential? J. Psychophysiol. 1999, 13, 49–55. [Google Scholar] [CrossRef]
- Badia, P.; Wesensten, N.; Lammers, W.; Culpepper, J.; Harsh, J. Responsiveness to olfactory stimuli presented in sleep. Physiol. Behav. 1990, 48, 87–90. [Google Scholar] [CrossRef]
- Andrillon, T.; Kouider, S. The vigilant sleeper: Neural mechanisms of sensory (de)coupling during sleep. Curr. Opin. Physiol. 2019, 15, 47–59. [Google Scholar] [CrossRef]
- Mikulas, W.L.; Coffman, M.G.; Dayton, D.; Frayne, C.; Maier, P.L. Behavioral Bibliotherapy and Games for Treating Fear of the Dark. Child Fam. Behav. Ther. 1985, 7, 1–7. [Google Scholar] [CrossRef]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, K.R.; Walters, E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef]
- Rechtschaffen, A. Current perspectives on the function of sleep. Perspect. Biol. Med. 1998, 41, 359–390. [Google Scholar] [CrossRef]
- Allison, T.; Van Twyver, H. Sleep in the moles, Scalopus aquaticus and Condylura cristata. Exp. Neurol. 1970, 27, 564–578. [Google Scholar] [CrossRef] [PubMed]
- Elgar, M.A.; Pagel, M.D.; Harvey, P.H. Sleep in mammals. Anim. Behav. 1988, 36, 1407–1419. [Google Scholar] [CrossRef]
- Owen-Smith, R.N. Megaherbivores: The Influence of Very Large Body Size on Ecology; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Pringle, R.M. How large herbivores subsidize aquatic food webs in African savannas. Proc. Natl. Acad. Sci. USA 2017, 114, 7489–7491. [Google Scholar] [PubMed]
- Burger, J.; Gochfeld, M. Vigilance in African mammals: Differences among mothers, other females, and males. Behaviour 1994, 131, 153–169. [Google Scholar]
- Sinclair, A.R.E.; Mduma, S.; Brashares, J.S. Patterns of predation in a diverse predator–prey system. Nature 2003, 425, 288–290. [Google Scholar]
- Woodward, G.; Ebenman, B.; Emmerson, M.; Montoya, J.; Olesen, J.; Valido, A.; Warren, P. Body size in ecological networks. Trends Ecol. Evol. 2005, 20, 402–409. [Google Scholar]
- Cohen, J.E.; Pimm, S.L.; Yodzis, P.; Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 1993, 62, 67–78. [Google Scholar] [CrossRef]
- Du Toit, J.T.; Yetman, C.A. Effects of body size on the diurnal activity budgets of African browsing ruminants. Oecologia 2005, 143, 317–325. [Google Scholar]
- Barnes, C.; Maxwell, D.; Reuman, D.C.; Jennings, S. Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 2010, 91, 222–232. [Google Scholar] [PubMed]
- Tobler, I. Behavioral sleep in the Asian elephant in captivity. Sleep 1992, 15, 1–12. [Google Scholar]
- Gravett, N.; Bhagwandin, A.; Sutcliffe, R.; Landen, K.; Chase, M.J.; Lyamin, O.I.; Siegel, J.M.; Manger, P.R. Inactivity/sleep in two wild free-roaming African elephant matriarchs–Does large body size make elephants the shortest mammalian sleepers? PLoS ONE 2017, 12, e0171903. [Google Scholar]
- Power, R.J.; Compion, R.X.S. Lion predation on elephants in the Savuti, Chobe National Park, Botswana. Afr. Zool. 2009, 44, 36–44. [Google Scholar]
- Joubert, D. Hunting behaviour of lions (Panthera leo) on elephants (Loxodonta africana) in the Chobe National Park, Botswana. Afr. J. Ecol. 2006, 44, 279–281. [Google Scholar]
- Wyatt, J.R.; Eltringham, S.K. The daily activity of the elephant in the Rwenzori National Park, Uganda. Afr. J. Ecol. 1974, 12, 273–289. [Google Scholar] [CrossRef]
- Tichagwa, T.; Pegg, N.; Ndagurwa, H.G.; Zhuwau, C. Factors influencing the diurnal behaviour of white rhino (Ceratotherium simum) in Matobo National Park, Zimbabwe. Afr. J. Ecol. 2020, 58, 766–777. [Google Scholar] [CrossRef]
- Bempah, G.; Osei, M.; Gyimah, A.; Nsoah, W. Diurnal activity budget and conservation implication of Hippopotamus amphibius at Bui National Park, Ghana. bioRxiv 2021. [Google Scholar] [CrossRef]
- How Much Do Rhinos Sleep? Available online: https://rhinos.org/blog/how-much-do-rhinos-sleep/ (accessed on 17 April 2024).
- Ginnett, T.F.; Demment, M.W. Sex differences in giraffe foraging behavior at two spatial scales. Oecologia 1997, 110, 291–300. [Google Scholar] [PubMed]
- Strauss, M.K.; Packer, C. Using claw marks to study lion predation on giraffes of the Serengeti. J. Zool. 2013, 289, 134–142. [Google Scholar]
- Mahenya, O.; Ndjamba, J.K.; Mathisen, K.M.; Skarpe, C. Giraffe browsing in response to plant traits. Acta Oecologica 2016, 75, 54–62. [Google Scholar]
- Tobler, I.; Schwierin, B. Behavioural sleep in the giraffe (Giraffa camelopardalis) in a zoological garden. J. Sleep Res. 1996, 5, 21–32. [Google Scholar]
- Burger-Schulz, A.L.; Thiel, E.; Fennessy, J.; Fennessy, S.; Dierkes, P.W. Accelerometry reveals nocturnal biphasic sleep behavior in wild giraffe. Front. Mammal Sci. 2023, 2, 1243883. [Google Scholar]
- Snyder, K.D. The common hippopotamus in the wild and in captivity: Conservation for less charismatic species. J. Int. Wildl. Law Policy 2015, 18, 337–354. [Google Scholar]
- Lyamin, O.I.; Siegel, J.M. Sleep in aquatic mammals. In Handbook of Behavioral Neuroscience; Elsevier: Amsterdam, The Netherlands, 2019; Volume 30, pp. 375–393. [Google Scholar]
- Lewison, R.L.; Carter, J. Exploring behavior of an unusual megaherbivore: A spatially explicit foraging model of the hippopotamus. Ecol. Model. 2004, 171, 127–138. [Google Scholar] [CrossRef]
- Dimarogona, M.; Topakas, E.; Christakopoulos, P. Cellulose degradation by oxidative enzymes. Comput. Struct. Biotechnol. J. 2012, 2, e201209015. [Google Scholar] [CrossRef]
- Adin, G.; Solomon, R.; Nikbachat, M.; Zenou, A.; Yosef, E.; Brosh, A.; Shabtay, A.; Mabjeesh, S.J.; Halachmi, I.; Miron, J. Effect of feeding cows in early lactation with diets differing in roughage-neutral detergent fiber content on intake behavior, rumination and milk production. J. Dairy Sci. 2009, 92, 3364–3373. [Google Scholar] [CrossRef]
- Welch, J.G.; Smith, A.M. Effect of Varying Amounts of Forage Intake on Rumination, J. Anim. Sci. 1969, 28, 827–830. [Google Scholar] [CrossRef]
- Kurauwone, M.V.; Justice, M.; Beven, U.; Olga, K.; Simon, C.; Tawanda, T. Activity budgets of impala (Aepyceros melampus) in closed environments: The Mukuvisi Woodland Experience, Zimbabwe. Int. J. Biodivers. 2013, 2013, 270454. [Google Scholar]
- Torsvall, L.; Åkerstedt, T. Extreme sleepiness: Quantification of EOG and spectral EEG parameters. Int. J. Neurosci. 1988, 38, 435–441. [Google Scholar] [CrossRef]
- Muir, J.G.; Yao, C.K.; Gibson, P.G. Functional short-chain carbohydrates (prebiotics) in the diet to improve the microbiome and health of the gastrointestinal tract. Anim. Prod. Sci. 2015, 55, 1376–1380. [Google Scholar] [CrossRef]
- Khoruts, A.; Hippen, K.L.; Lemire, A.M.; Holtan, S.G.; Knights, D.; Young, J.A.H. Toward revision of antimicrobial therapies in hematopoietic stem cell transplantation: Target the pathogens, but protect the indigenous microbiota. Transl. Res. 2017, 179, 116–125. [Google Scholar] [PubMed]
- Fujimori, S. Humans have intestinal bacteria that degrade the plant cell walls in herbivores. World J. Gastroenterol. 2021, 27, 7784–7791. [Google Scholar] [CrossRef]
- Hintz, H.F.; Schryver, H.F.; Stevens, C.E. Digestion and absorption in the hind gut of nonruminant herbivores. J. Anim. Sci. 1978, 46, 1803–1807. [Google Scholar]
- Mackie, R.I. Mutualistic Fermentative Digestion in the Gastrointestinal Tract: Diversity and Evolution. Integr. Comp. Biol. 2002, 42, 319–326. [Google Scholar] [CrossRef]
- Alexander, R.M. The relative merits of foregut and hindgut fermentation. J. Zool. 1993, 231, 391–401. [Google Scholar] [CrossRef]
- Hume, I.D.; Sakaguchi, E. Patterns of digesta flow and digestion in foregut and hindgut fermenters. In Physiological Aspects of Digestion and Metabolism in Ruminants; Tsuda, T., Saaski, Y., Kawashima, R., Eds.; Academic Press: San Diego, CA, USA, 1991; pp. 427–451. [Google Scholar]
- Beekman, J.H.; Prins, H.H.T. Feeding strategies of sedentary large herbivores in East Africa, with emphasis on the African buffalo, Syncerus caffer. Afr. J. Ecol. 1989, 27, 129–147. [Google Scholar] [CrossRef]
- Prins, H.H.T. Competition for food. In Ecology and Behaviour of the African Buffalo; Chapman & Hall Wildlife Ecology and Behaviour Series; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Campbell, S.S.; Tobler, I. Animal sleep: A review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 1984, 8, 269–300. [Google Scholar] [CrossRef] [PubMed]
- Moehlman, P.D. Feral asses (Equus africanus): Intraspecific variation in social organization in arid and mesic habitats. Appl. Anim. Behav. Sci. 1998, 60, 171–195. [Google Scholar]
- Foerster, C.R.; Vaughan, C. Diet and foraging behavior of a female Baird’s tapir (Tapirus bairdi) in a Costa Rican lowland rainforest. Cuad. Investig. UNED 2015, 7, 259–267. [Google Scholar] [CrossRef]
- Kam, M.; El-Meccawi, S.; Degen, A.A. Foraging behaviour and diet selection of free-ranging sheep and goats in the Negev Desert, Israel. J. Agric. Sci. 2012, 150, 379–387. [Google Scholar]
- Ternman, E.; Hänninen, L.; Pastell, M.; Agenäs, S.; Nielsen, P.P. Sleep in dairy cows recorded with a non-invasive EEG technique. Appl. Anim. Behav. Sci. 2012, 140, 25–32. [Google Scholar]
- Aldama, J.J.; Beltran, J.F.; Delibes, M. Energy expenditure and prey requirements of free-ranging Iberian lynx in southwestern Spain. J. Wildl. Manag. 1991, 55, 635–641. [Google Scholar]
- Kolowski, J.M.; Katan, D.; Theis, K.R.; Holekamp, K.E. Daily patterns of activity in the spotted hyena. J. Mammal. 2007, 88, 1017–1028. [Google Scholar]
- Negi, T. Review on current worldwide status, distribution, ecology and dietary habits of golden jackal, Canis aureus. Octa J. Environ. Res. 2014, 2, 338–359. [Google Scholar]
- Temu, S.E.; Nahonyo, C.L.; Moehlman, P.D. Comparative foraging efficiency of two sympatric jackals, silver-backed jackals (Canis mesomelas) and golden jackals (Canis aureus), in the Ngorongoro Crater, Tanzania. Int. J. Ecol. 2016, 2016, 6178940. [Google Scholar]
- Eloff, F.C. Food ecology of the Kalahari lion Panthera leo vernayi. Koedoe 1984, 27, 249–258. [Google Scholar]
- Johnson, J. Lion; Black Rabbit Books: Mankato, MN, USA, 2006. [Google Scholar]
- Lehmann, M.B.; Funston, P.J.; Owen, C.R.; Slotow, R. Feeding behaviour of lions (Panthera leo) on a small reserve. S. Afr. J. Wildl. Res. 2008, 38, 66–78. [Google Scholar]
- Martínez-Macipe, M.; Lafont-Lecuelle, C.; Manteca, X.; Pageat, P.; Cozzi, A. Evaluation of an innovative approach for sensory enrichment in zoos: Semiochemical stimulation for captive lions (Panthera leo). Anim. Welf. 2015, 24, 455–461. [Google Scholar]
- Meena, V. Reproductive Strategy and Behaviour of Males Asiatic Lions. Ph.D. Thesis, Forest Reasearch Institute, Dehra Dun, Uttarakhand, India, 2008. [Google Scholar]
- Hayward, M.W.; Hayward, G.J. Activity patterns of reintroduced lion Panthera leo and spotted hyaena Crocuta crocuta in the Addo Elephant National Park, South Africa. Afr. J. Ecol. 2007, 45, 135–141. [Google Scholar]
- Iason, G.R.; Prins, H.H.T. Dangerous lions and nonchalant buffalo. Behaviour 1989, 108, 262–296. [Google Scholar]
- Klingel, H. Fluctuating fortunes of the river horse. Nat. Hist. 1995, 104, 46–57. [Google Scholar]
- Zepelin, H.; Rechtschaffen, A. Mammalian sleep, longevity and energy metabolism. Brain Behav. Evolut. 1974, 10, 425–470. [Google Scholar]
- Staines, B.W. Digestion of heather by red deer. Proc. Nutr. Soc. 1969, 28, 21A–22A. [Google Scholar]
- Milne, J.A.; MacRae, J.C.; Spence, A.M.; Wilson, S. A comparison of the voluntary intake and digestion of a range of forages at different times of the year by the sheep and the red deer (Ceruus eluphus). Br. J. Nutr. 1978, 40, 347–357. [Google Scholar] [PubMed]
- DeSesso, J.M.; Jacobson, C.F.; Williams, A.L.; Lyubimov, A.V. Anatomical and physiological parameters that influence gastrointestinal absorption. Encycl. Drug Metab. Interact. 2012, 2, 43–79. [Google Scholar]
- Furstenburg, D. Focus on the Lion (Panthera leo). 2012; Geo Wild Consult; pp. 1–17. Available online: https://es.scribd.com/document/461955362/E-Book29Lion (accessed on 10 March 2024).
- Kraatz, B.; Belabbas, R.; Fostowicz-Frelik, Ł.; Ge, D.-Y.; Kuznetsov, A.N.; Lang, M.M.; López-Torres, S.; Mohammadi, Z.; Racicot, R.A.; Ravosa, M.J.; et al. Lagomorpha as a model morphological system. Front. Ecol. Evol. 2021, 9, 636402. [Google Scholar]
- Chalukian, S.C.; de Bustos, M.S.; Lizárraga, R.L. Diet of lowland tapir (Tapirus terrestris) in El Rey National Park, Salta, Argentina. Integr. Zool. 2013, 8, 48–56. [Google Scholar]
- Gulevich, G.; Dement, W.; Johnson, L. Psychiatric and EEG observations on a case of prolonged (264 hours) wakefulness. Arch. Gen. Psychiatry 1966, 15, 29–35. [Google Scholar] [PubMed]
- Buysse, D.J.; Monk, T.H.; Carrier, J.; Begley, A. Circadian patterns of sleep, sleepiness, and performance in older and younger adults. Sleep 2005, 28, 1365–1376. [Google Scholar]
- Durmer, J.S.; Dinges, D.F. Neurocognitive consequences of sleep deprivation. In Seminars in Neurology; Thieme Medical Publishers, Inc.: New York, NY, USA, 2005; Volume 25, pp. 117–129. [Google Scholar]
- Axelsson, J.; Kecklund, G.; Åkerstedt, T.; Donofrio, P.; Lekander, M.; Ingre, M. Sleepiness and performance in response to repeated sleep restriction and subsequent recovery during semi-laboratory conditions. Chronobiol. Int. 2008, 25, 297–308. [Google Scholar]
- Okajima, I.; Komada, Y.; Ito, W.; Inoue, Y. Sleep debt and social jetlag associated with sleepiness, mood, and work performance among workers in Japan. Int. J. Environ. Res. Public Health 2021, 18, 2908. [Google Scholar] [CrossRef]
- Summala, H.; Mikkola, T. Fatal accidents among car and truck drivers: Effects of fatigue, age, and alcohol consumption. Hum. Factors 1994, 36, 315–326. [Google Scholar]
- Verster, J.C.; Taillard, J.; Sagaspe, P.; Olivier, B.; Philip, P. Prolonged nocturnal driving can be as dangerous as severe alcohol-impaired driving. J. Sleep Res. 2011, 20, 585–588. [Google Scholar]
- Gonçalves, M.; Amici, R.; Lucas, R.; Åkerstedt, T.; Cirignotta, F.; Horne, J.; Léger, D.; McNicholas, W.T.; Partinen, M.; Téran-Santos, J.; et al. Sleepiness at the wheel across Europe: A survey of 19 countries. J. Sleep Res. 2015, 24, 242–253. [Google Scholar]
- Garbarino, S.; Nobili, L.; Philip, P.; Plazzi, G.; Campus, C.; Morrone, E.; De Carli, F. Circadian sleep propensity and alcohol interaction at the wheel. J. Clin. Sleep Med. 2016, 12, 1011–1017. [Google Scholar] [PubMed]
- Bibi, I.; Awan, E.A.; Waseem, F. Role of Alcohol in Road Traffic Accidents. Pak. J. Med. Health Sci. 2020, 14, 469–471. [Google Scholar]
- Cabanac, M. Pleasure: The common currency. J. Theor. Biol. 1992, 155, 173–200. [Google Scholar] [PubMed]
- Cabanac, M.; Pouliot, C.; Everett, J. Pleasure as a sign of efficacy of mental activity. Eur. Psychol. 1997, 2, 226–234. [Google Scholar]
- Cabanac, M. Sensory pleasure and homeostasis. In Beyond Environmental Comfort; Routledge: London, UK, 2013; pp. 43–62. [Google Scholar]
- Foster, R.G. There is no mistery to sleep. PsyCh J. 2018, 7, 206–208. [Google Scholar]
Species | Predator | Predation Risk | Daily Foraging Time | Daily Sleep/Rest Time |
---|---|---|---|---|
African/Asian Elephant (Loxodonta africana/Elephas maximus 2500–6000 kg) | Lion (rare) | Invulnerable (adults) [184,185] | 74.2% = 17.8 h [186] | 4.0 h [182,183] |
White rhinoceros (1000–3500) kg (Diceros bicornis) | Lion (rare) | Invulnerable (adults) [187] | 54% = 12.86 h [188] | 8 h URL (accessed on 17 April 2024) [189]: https://rhinos.org/blog/how-much-do-rhinos-sleep/ |
Giraffe (800–1200 kg Giraffa camelopardalis | Lion (rare) | Low (adults) [190,191] | 54% = 12.96 h [190,192] | 4.65 [193,194] |
Hippopotami (H. amphibius) 1300–200 kg | Lion, crocodile (rare) | Very low [174,195] | >4.8 h% = 5 h [188,196] | 14.04 h [188,196] |
Average | 16 h (excluding hippos) | 16 h (excluding hippos) |
Authors: Orders: | Zepelin and Rechstchaffen (1974) [229] | Campbell and Tobler, (1984) [212] | Elgar et al. (1988) [173] | Nunn et al. (2016) [37] | Average (% of Sleeping Time) |
---|---|---|---|---|---|
Rodents | 12.98 h | 12.7 h | 13.47 h | - | 13.05 h (54.37%) |
Insectivores | 12.02 h | 12.85 h | - | 12.43 h (51.79%) | |
Non-placental | 12.65 h | 14.41 h | 15.58 h | - | 14.21 h (59.2%) |
Lagomorpha | 8.4 h | 8.8 h | 8.71 h | - | 8.63 h (35.95%) |
Edentates | 18.3 h | 13.54 h | 15.34 h | - | 15.72 h (65.52%) |
Primates | 11.47 h | 10.01 h | 10.32 h | 11.32 h | 10.78 h (44.91%) |
Phalangers | 13.7 h | - | - | - | 13.7 h (57.08%) |
Chiropters | 19.7 h | - | 19.8 h | - | 19.75 h (82.3%) |
Tapir | 6.2 h | 4.4 h | - | - | 5.3 h (22.08%) |
Pinnipeds | - | - | 4.76 h | - | 4.76 h (19.83%) |
Marsupials | - | - | 15.43 h | - | 15.43 h (64.29%) |
Hyracoidean | - | - | 5.16 h | - | 5.16 h (21.5%) |
Average | 12.82 h | 10.95 h | 12.06 h | 11.32 h | 12.41 h 51.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akaarir, M.; Nicolau, M.C.; Cañellas, F.; Rubiño, J.A.; Barceló, P.; Gamundí, A.; Martin-Reina, A.; Rial, R.V. The Disputable Costs of Sleeping. Biology 2025, 14, 352. https://doi.org/10.3390/biology14040352
Akaarir M, Nicolau MC, Cañellas F, Rubiño JA, Barceló P, Gamundí A, Martin-Reina A, Rial RV. The Disputable Costs of Sleeping. Biology. 2025; 14(4):352. https://doi.org/10.3390/biology14040352
Chicago/Turabian StyleAkaarir, Mourad, M. Cristina Nicolau, Francesca Cañellas, Jose A. Rubiño, Pere Barceló, Antonio Gamundí, Aida Martin-Reina, and Rubén V. Rial. 2025. "The Disputable Costs of Sleeping" Biology 14, no. 4: 352. https://doi.org/10.3390/biology14040352
APA StyleAkaarir, M., Nicolau, M. C., Cañellas, F., Rubiño, J. A., Barceló, P., Gamundí, A., Martin-Reina, A., & Rial, R. V. (2025). The Disputable Costs of Sleeping. Biology, 14(4), 352. https://doi.org/10.3390/biology14040352