Assessment of the Nutritional Composition, Antimicrobial Potential, Anticoccidial, and Antioxidant Activities of Arthospira platensis in Broilers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Collections
2.2. Nutritional Composition Arthospira platensis Powder
2.2.1. Total Lipids and Fatty Acid Composition of Arthospira platensis
2.2.2. Total Protein
2.2.3. Moisture and Ash Determination
2.3. Preparation and Extraction of Arthospira platensis
2.4. Activity Testing of Arthospira platensis Against Bacterial and Coccidial Strains
2.4.1. Antibacterial Activity Assessment
2.4.2. Anticoccidial Assay
2.5. The Phytochemical Analysis of the Arthospira platensis Extract
2.5.1. Determination of Total Phenolic Content (TPC)
2.5.2. Determination of Total Flavonoid Content (TFC)
2.5.3. Quantification of Condensed Tannin Content
2.6. Determination of Antioxidant Activity
2.6.1. DPPH Radical Scavenging Assay
2.6.2. ABTS Radical Scavenging Assay
2.6.3. Ferric Reducing Antioxidant Power (FRAP) Assay
2.7. Phytochemical Analysis Using LCMS/MS
2.8. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Composition of Arthospira platensis
3.2. Antibacterial Activity of Arthospira platensis Extracts
3.3. Anticoccidial Efficacy of Arthospira platensis Extracts
3.4. Total Phenolic, Flavonoid, and Tannin Content in Arthospira platensis Extracts
3.5. Antioxidant Activities of Arthospira platensis Extracts
3.6. LC-MS/MS Profiling of Arthospira platensis Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belay, A.; Ota, Y.; Miyakawa, K.; Shimamatsu, H. Current knowledge on potential health benefits of Spirulina. J. Appl. Phycol. 1993, 5, 235–241. [Google Scholar] [CrossRef]
- Capelli, B.; Cysewski, G.R. Potential health benefits of Spirulina microalgae. Nutrafoods 2010, 9, 19–26. [Google Scholar] [CrossRef]
- Ovando, C.A.; de Carvalho, J.C.; Vinícius de Melo Pereira, G.; Jacques, P.; Soccol, V.T.; Soccol, C.R. Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Int. Food Res. J. 2018, 34, 34–51. [Google Scholar] [CrossRef]
- Kumari, D.J.; Babitha, B.; Jaffar, S.; Prasad, M.G.; Ibrahim, M.; Khan, M.S. Potential health benefits of Spirulina platensis. Int. J. Adv. Pharm. Sci. 2011, 2, 417–422. [Google Scholar]
- Fernandes, R.; Campos, J.; Serra, M.; Fidalgo, J.; Almeida, H.; Casas, A.; Toubarro, D.; Barros, A.I.R.N.A. Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications. Pharmaceuticals 2023, 16, 592. [Google Scholar] [CrossRef]
- Khan, S.; Mobashar, M.; Mahsood, F.K.; Javaid, S.; Abdel-Wareth, A.; Ammanullah, H.; Mahmood, A. Spirulina inclusion levels in a broiler ration: Evaluation of growth performance, gut integrity, and immunity. Trop. Anim. Health Prod. 2020, 52, 3233–3240. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Elbaz, M.I.; Ismail, I.E.; Reda, F.M.; Alagawany, M.; El-Tarabily, K.A.; Abdelgeliel, A.S. Dietary Supplementation with a Mixture of Dunaliella Salina and Spirulina Enhances Broiler Performance by Improving Growth, Immunity, Digestive Enzymes and Gut Microbiota. Poult. Sci. 2024, 103, 103337. [Google Scholar] [CrossRef]
- El-Abd, N.M.; Hamouds, R.A.; Saddiq, A.A.; Al-Shaikh, T.M.; Khusaifan, T.J.; Abou-El-Souod, G. Effect of dietary Arthrospira platensis phycocyanin on broiler chicken growth performance, physiological status, fatty and amino acid profiles. Vet. World 2024, 17, 1098–1107. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; De Marzo, D.; Dimuccio, M.M.; Bozzo, G.; Tufarelli, V.; Losacco, C.; Ragni, M. Aloe vera: A Sustainable Green Alternative to Exclude Antibiotics in Modern Poultry Production. Antibiotics 2023, 12, 44. [Google Scholar] [CrossRef]
- El-Shall, N.A.; Jiang, S.; Farag, M.R.; Azzam, M.; Al-Abdullatif, A.A.; Alhotan, R.; Dhama, K.; Hassan, F.U.; Alagawany, M. Potential of Spirulina Platensis as a Feed Supplement for Poultry to Enhance Growth Performance and Immune Modulation. Front. Immunol. 2023, 14, 1072787. [Google Scholar] [CrossRef]
- Irshad, Z.; Qasim, M.; Hajati, H.; Hosseini, S.A. Functional feed for broiler chickens: Exploring Spirulina platensis as a nutritional supplement. Worlds. Poult. Sci. J. 2024, 80, 511–525. [Google Scholar] [CrossRef]
- Gogna, S.; Kaur, J.; Sharma, K.; Prasad, R.; Singh, J.; Bhadariya, V.; Kumar, P.; Jarial, S. Spirulina-An Edible Cyanobacterium with Potential Therapeutic Health Benefits and Toxicological Consequences. J. Am. Nutr. Assoc. 2022, 42, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.; Wu, Q.; Kuča, K. Spirulina. In Nutraceuticals; Academic Press: Cambridge, MA, USA, 2016; pp. 569–583. ISBN 9780128021477. [Google Scholar]
- Elwakil, B.H.; Eskandrani, A.; El-Kady, H.; Shahin, Y.H.; Awaad, A.K. Spirulina platensis as a super prebiotic to enhance the antibacterial effect of Lactobacillus casei. S. Afr. J. Bot. 2024, 173, 417–429. [Google Scholar] [CrossRef]
- Mathesh, A.; Mohanprasanth, A.; Saravanan, M. Synthesis and characterization of Spirulina-mediated titanium dioxide nanoparticles: Antimicrobial activity against multidrug-resistant bacteria. Nano-Struct. Nano-Objects 2024, 39, 101225. [Google Scholar] [CrossRef]
- Safari, R.; Amiri, Z.R.; Kenari, R.E. Antioxidant and antibacterial activities of C-phycocyanin from common name Spirulina platensis. Iran. J. Fish. Sci. 2019, 19, 1911–1927. [Google Scholar]
- Saraswathi, K.; Kavitha, C.N. Spirulina: Pharmacological Activities and Health Benefits. J. Young Pharm. 2023, 15, 441–447. [Google Scholar] [CrossRef]
- Mao, M.; Han, G.; Zhao, Y.; Xu, X.; Zhao, Y. A review of phycocyanin: Production, extraction, stability and food applications. Int. J. Biol. Macromol. 2024, 24, 135860. [Google Scholar] [CrossRef]
- Abdel Haleem, M.I.; Khater, H.F.; Edris, S.N.; Taie, H.A.; Abdel Gawad, S.M.; Hassan, N.A.; Elbasuni, S.S. Bioefficacy of dietary inclusion of Nannochloropsis oculata on Eimeria spp. challenged chicks: Clinical approaches, meat quality, and molecular docking. Avian Pathol. 2024, 53, 199–217. [Google Scholar] [CrossRef]
- Bondar, A.; Horodincu, L.; Solcan, G.; Solcan, C. Use of Spirulina platensis and Curcuma longa as Nutraceuticals in Poultry. Agriculture 2023, 13, 1553. [Google Scholar] [CrossRef]
- Fries-Craft, K.; Meyer, M.M.; Bobeck, E.A. Algae-based feed ingredient protects intestinal health during Eimeria challenge and alters systemic immune responses with differential outcomes observed during acute feed restriction. Poult. Sci. 2021, 100, 101369. [Google Scholar] [CrossRef]
- Soheili, M.; Khosravi-Darani, K. The Potential Health Benefits of Algae and Micro Algae in Medicine: A Review on Spirulina platensis. Curr. Nutr. Food Sci. 2011, 7, 279–285. [Google Scholar] [CrossRef]
- Maddiboyina, B.; Vanamamalai, H.K.; Roy, H.; Ramaiah; Gandhi, S.; Kavisri, M.; Moovendhan, M. Food and drug industry applications of microalgae Spirulina platensis: A review. J. Basic Microbiol. 2023, 63, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Nege, S.A.; Masithah, E.D.; Khotib, J. Trends in the Uses of Spirulina Microalga: A mini-review. J. Ilm. Perikan. Dan Kelaut. 2020, 12, 149–166. [Google Scholar] [CrossRef]
- El-Ratel, I.T.; Elbasuny, M.E.; El-Nagar, H.A.; Abdel-Khalek, A.K.E.; El-Raghi, A.A.; El Basuini, M.F.; Fouda, S.F. The synergistic impact of Spirulina and selenium nanoparticles mitigates the adverse effects of heat stress on the physiology of rabbits bucks. PLoS ONE 2023, 18, e0287644. [Google Scholar] [CrossRef] [PubMed]
- El Basuini, M.F.; Khattab, A.A.A.; Hafsa, S.H.A.; Teiba, I.I.; Elkassas, N.E.M.; El-Bilawy, E.H.; Dawood, M.A.O.; Atia, S.E.S. Impacts of Algae Supplements (Arthrospira & Chlorella) on Growth, Nutrient Variables, Intestinal Efficacy, and Antioxidants in New Zealand White Rabbits. Sci. Rep. 2023, 13, 7891. [Google Scholar]
- Markou, G.; Kougia, E.; Arapoglou, D.; Chentir, I.; Andreou, V.; Tzovenis, I. Production of Arthrospira platensis: Effects on growth and biochemical composition of long-term acclimatization at different salinities. Bioengineering 2023, 10, 233. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1990. [Google Scholar]
- Gheda, S.F.; Abo-Shady, A.; Abdel-Karim, O.; Ismail, G. Antioxidant and Antihyperglycemic Activity of Arthrospira platensis (Spirulina platensis) Methanolic Extract: In Vitro and in Vivo Study. Egypt. J. Bot. 2021, 61, 71–93. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Conway, D.P.; McKenzie, M.E. Poultry Coccidiosis: Diagnostic and Testing Procedures; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Biabani, N.; Taherpour, K.; Ghasemi, H.A.; Gharaei, M.A.; Hafizi, M.; Nazaran, M.H. Dietary advanced chelate technology-based 7-mineral supplement improves growth performance and intestinal health indicators during a mixed Eimeria challenge in broiler chickens. Vet. Parasitol. 2024, 331, 110277. [Google Scholar] [CrossRef]
- Nouri, A. Age-dependent development trends (models) of intestinal significant microbiota species and Eimeria oocysts in coccidia-challenged broiler chickens as affected by dietary encapsulated organic acids and anticoccidial drugs. Avian Pathol. 2024, 53, 264–284. [Google Scholar] [CrossRef]
- Debbou-Iouknane, N.; Nerín, C.; Amrane, M.; Ghemghar, M.; Madani, K.; Ayad, A. In Vitro Anticoccidial Activity of Olive Pulp (Olea europaea L. var. Chemlal) Extract Against Eimeria Oocysts in Broiler Chickens. Acta Parasitol. 2019, 64, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Hezil, N.; Baazize-Ammi, D.; Abdelli, A.; Adel, A.; Kebbal, S.; Gharbi, I.; Guetarni, D. Effects of Artemisia absinthium on broiler chicken coccidiosis: A systematic review and meta-analysis. Avian Pathol. 2024, 53, 350–358. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Iqbal, E.; Salim, K.A.; Lim, L.B. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (airy shaw) from brunei darussalam. J. King Saud Univ.-Sci. 2015, 27, 224–232. [Google Scholar] [CrossRef]
- Bouhalla, A.W.; Benabdelmoumene, D.; Dahmouni, S.; Bengharbi, Z.; Hellal, K.; Qadi, W.S.; Mediani, A. Comparative LC–MS-based metabolite profiling, antioxidant, and antibacterial properties of Bunium bulbocastanum tubers from two regions in Algeria. Sci. Rep. 2024, 14, 21719. [Google Scholar] [CrossRef]
- Zakaria, Z.; Aziz, R.; Lachimanan, Y.L.; Sreenivasan, S.; Rathinam, X. Antioxidant Activity of Coleus blumei, Orthosiphon Stamineus, Ocimum basilicum and Mentha arvensis from Lamiaceae Family. Int. J. Nat. Eng. Sci. 2008, 2, 93–95. [Google Scholar]
- Zeng, Q.; Fan, X.; Zheng, Q.; Wang, J.; Zhang, X. Anti-oxidant, hemolysis inhibition, and collagen-stimulating activities of a new hexapeptide derived from Arthrospira (Spirulina) platensis. J. Appl. Phycol. 2018, 30, 1655–1665. [Google Scholar] [CrossRef]
- Musa, K.H.; Abdullah, A.; Jusoh, K.; Subramaniam, V. Antioxidant activity of pink-flesh guava (Psidium guajava L.): Effect of extraction techniques and solvents. Food Anal. Methods 2011, 4, 100–107. [Google Scholar] [CrossRef]
- Phinyo, K.; Ruangrit, K.; Pekkoh, J.; Tragoolpua, Y.; Kaewkod, T.; Duangjan, K.; Pumas, C.; Suwannarach, N.; Kumla, J.; Pathom-Aree, W.; et al. Naturally occurring functional ingredient from filamentous thermophilic cyanobacterium Leptolyngbya sp. KC45: Phytochemical characterizations and their multiple bioactivities. Antioxidants 2022, 11, 2437. [Google Scholar] [CrossRef]
- Kumar, N.; Hans, S.; Verma, R.; Srivastava, A. Acclimatization of microalgae Arthrospira platensis for treatment of heavy metals in Yamuna River. Water Sci. Eng. 2020, 13, 214–222. [Google Scholar] [CrossRef]
- Grosshagauer, S.; Kraemer, K.; Somoza, V. The True Value of Spirulina. J. Agric. Food Chem. 2020, 68, 4109–4115. [Google Scholar] [CrossRef]
- Sopandi, T.; Rohmah, S.; Agustina, S.A.T. Biomass and nutrient composition of Spirulina platensis grown in goat manure media. Asian J. Agric. Biol. 2020, 8, 158–167. [Google Scholar] [CrossRef]
- Kurt, H.; Hosoglu, M.I.; Guneser, O.; Karagul-Yuceer, Y. Influence of Different Bacteria Species in Chemical Composition and Sensory Properties of Fermented Spirulina. Food Chem. 2023, 400, 133994. [Google Scholar] [CrossRef]
- Dibeklioglu, H.; Koru, E.; Diraman, H. Fatty Acid Profile of Spirulina platensis Used as a Food Supplement. Isr. J. Aquac.-Bamidgeh. 2009, 61, 20548. [Google Scholar]
- Kaushik, P.; Chauhan, A. Cyanobacteria: Antibacterial Activity; New India Publishing Agency: New Delhi, India, 2009; pp. 1–198. [Google Scholar]
- Abbas, M.; Khan, A.A.; Khan, T.; Qadir, R.; Aziz, T.; Alharbi, M.; Alasmari, A.F.; Alshammari, A. Elucidation and Comparative Assessment of Photochemical content and Antibacterial activity of Parthenium Hysterophorus Extract in different solvents. Appl. Ecol. Environ. Res. 2024, 22, 761–775. [Google Scholar] [CrossRef]
- Rathi Bhuvaneswari, G.; Shukla, S.P.; Makesh, M.; Thirumalaiselvan, S.; Arun Sudhagar, S.; Kothari, D.C.; Singh, A. Antibacterial Activity of Spirulina (Arthospira platensis Geitler) against Bacterial Pathogens in Aquaculture. Isr. J. Aquac.-Bamidgeh. 2013, 65, 932. [Google Scholar]
- Nayyef, S.H.; Thalij, K.M. The Antibacterial activity of Spirulina platensis aqueous extract and Chitosan nanoparticles on bacterial isolates from different human Sources. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 928, p. 062027. [Google Scholar]
- Azmy, L.; Al-Olayan, E.; Abdelhamid, M.A.A.; Zayed, A.; Gheda, S.F.; Youssif, K.A.; Abou-Zied, H.A.; Abdelmohsen, U.R.; Ibraheem, I.B.M.; Pack, S.P.; et al. Antimicrobial Activity of Arthrospira Platensis-Mediated Gold Nanoparticles against Streptococcus Pneumoniae: A Metabolomic and Docking Study. Int. J. Mol. Sci. 2024, 25, 10090. [Google Scholar] [CrossRef] [PubMed]
- Hardiningtyas, S.D.; Jauharah, N.; Tarman, K. Characteristics of Bioactive Components in Fermented Sargassum and Ulva Seaweed Using SCOBY as Potential Anti-Diabetic Candidates. BIO Web Conf. 2024, 106, 02013. [Google Scholar] [CrossRef]
- Bratchkova, A.; Kroumov, A.D. Microalgae as producers of biologically active compounds with antibacterial, antiviral, antifungal, antialgal, antiprotozoal, antiparasitic and anticancer activity. Acta Microbiol. Bulg. 2020, 36, 79–89. [Google Scholar]
- Ramez, A.M.; Elmahallawy, E.K.; Elshopakey, G.E.; Saleh, A.A.; Moustafa, S.M.; Al-Brakati, A.; Abdo, W.; El-Shewehy, D.M.M. Hepatosplenic protective actions of Spirulina platensis and matcha green tea against Schistosoma mansoni infection in mice via antioxidative and anti-inflammatory mechanisms. Front. Vet. Sci. 2021, 8, 650531. [Google Scholar] [CrossRef]
- El-Baz, F.; El-Senousy, W.; El-Sayed, A.; Kamel, M. In vitro antiviral and antimicrobial activities of Spirulina platensis extract. J. Appl. Pharm. Sci. 2013, 3, 52–56. [Google Scholar]
- Nguyen, H.; Chen, C.C.; Lin, K.H.; Chao, P.Y.; Lin, H.H.; Huang, M.Y. Bioactive Compounds, Antioxidants, and Health Benefits of Sweet Potato Leaves. Molecules 2021, 26, 1820. [Google Scholar] [CrossRef] [PubMed]
- Gershwin, M.E.; Belay, A. (Eds.) Spirulina in Human Nutrition and Health; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: London, UK; New York, NY, USA, 2007. [Google Scholar]
- Lalthanpuii, P.B.; Lalchhandama, K. Antiparasitic activity of the steroid-rich extract of Schima wallichii against poultry cestode. Vet. World 2024, 17, 1299. [Google Scholar] [CrossRef] [PubMed]
- Seghiri, R.; Kharbach, M.; Essamri, A. Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. J. Food Qual. 2019, 2019. [Google Scholar] [CrossRef]
- Ould Bellahcen, T.; Cherki, M.; Sánchez, J.A.C.; Cherif, A.; El Amrani, A. Chemical composition and antibacterial activity of the essential oil of Spirulina platensis from Morocco. J. Essent. Oil Bear. Plants 2019, 22, 1265–1276. [Google Scholar] [CrossRef]
- Gabr, G.A.; El-Sayed, S.M.; Hikal, M.S. Antioxidant activities of phycocyanin: A bioactive compound from Spirulina platensis. J. Pharm. Res. Int. 2020, 32, 73–85. [Google Scholar] [CrossRef]
- Hidayati, J.R.; Yudiati, E.; Pringgenies, D.; Oktaviyanti, D.T.; Kusuma, A.P. Comparative study on antioxidant activities, total phenolic compound and pigment contents of tropical Spirulina platensis, Gracilaria arcuata and Ulva lactuca extracted in different solvents polarity. E3S Web Conf. 2020, 147, 03012. [Google Scholar] [CrossRef]
- Abd El-Baky, H.H.; El Baz, F.K.; El-Baroty, G.S. Enhancement of antioxidant production in Spirulina platensis under oxidative stress. Acta Physiol. Plant 2009, 31, 623–631. [Google Scholar] [CrossRef]
- Ak, İ.; Türker, G. Free Radical Scavenging Activity and Biochemical characteristics of Ulva rigida (Ulvophyceae) and Arthrospira platensis (Cyanophyceae). Turk. J. Agric.-Food Sci. Technol. 2019, 7, 145–149. [Google Scholar] [CrossRef]
- Sommella, E.; Conte, G.M.; Salviati, E.; Pepe, G.; Bertamino, A.; Ostacolo, C.; Sansone, F.; Prete, F.D.; Aquino, R.P.; Campiglia, P. Fast profiling of natural pigments in different Spirulina (Arthrospira platensis) dietary supplements by DI-FT-ICR and evaluation of their antioxidant potential by pre-column DPPH-UHPLC assay. Molecules 2018, 23, 1152. [Google Scholar] [CrossRef]
- Shalaby, E.A.; Sanaa, S.M.M. Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J. Mar. Sci. 2013, 42, 556–564. [Google Scholar]
- Golmakani, M.-T.; Moosavi-Nasab, M.; Keramat, M.; Mohammadi, M.-A. Arthrospira platensis extract as a natural antioxidant for improving oxidative stability of common kilka (Clupeonella cultriventris caspia) oil. Turk. J. Fish. Aquat. Sci. 2018, 18, 1315–1323. [Google Scholar] [CrossRef]
- Chauhan, R.; Tripathi, A.; Chauhan, A.; Basniwal, R.K.; Ranjan, A.; Kumari, A.; Prasad, R. Bioactive compounds from high altitude lake Arthrospira platensis HANL01: Antioxidant property, thermal stability and antibacterial assessment against multiple antibiotics resistant bacteria. Bioresour. Technol. Rep. 2023, 22, 101398. [Google Scholar] [CrossRef]
- Nainangu, P.; Antonyraj, A.P.M.; Subramanian, K.; Kaliyaperumal, S.; Gopal, S.; Renuka, P.S. In vitro screening of antimicrobial, antioxidant, cytotoxic activities, and characterization of bioactive substances from freshwater cyanobacteria Oscillatoria sp. SSCM01 and Phormidium sp. SSCM02. Biocatal. Agric. Biotechnol. 2020, 29, 101772. [Google Scholar] [CrossRef]
- Shawer, E.; Sabae, S.; El-Gamal, A.; Elsaied, H. Characterization of Bioactive Compounds with Antioxidant Activity and Antimicrobial Activity from Freshwater Cyanobacteria. Egypt. J. Chem. 2022, 65, 723–735. [Google Scholar] [CrossRef]
- Stunda-Zujeva, A.; Berele, M.; Lece, A.; Šķesters, A. Comparison of antioxidant activity in various Spirulina containing products and factors affecting it. Sci. Rep. 2023, 13, 4529. [Google Scholar] [CrossRef]
- Mohammadi, M.; Hamishehkar, H.; McClements, D.J.; Shahvalizadeh, R.; Barri, A. Encapsulation of Spirulina protein hydrolysates in liposomes: Impact on antioxidant activity and gastrointestinal behavior. Food Chem. 2023, 400, 133973. [Google Scholar] [CrossRef]
- Tan, K.C.; Pham, T.X.; Lee, Y.; Lee, J.Y.; Balunas, M.J. Identification of Apocarotenoids as Chemical Markers of in Vitro AntiInflammatory Activity for Spirulina Supplements. J. Agric. Food Chem. 2021, 69, 12674–12685. [Google Scholar] [CrossRef]
Arthospira platensis (g/100 g of Dry Matter) | ||
---|---|---|
Moisture % | 8.47 ± 0.88 | |
Protein % | 72.08 ± 2.22 | |
Ash % | 13.41 ± 0.22 | |
Lipid % | 6.49 ± 0.86 | |
Fatty acids (%) profile | C14 | 1.00 ± 0.13 |
C15 | 0.40 ± 0.02 | |
C16 | 16.20 ± 0.90 | |
C16:1 [n-7] | 1.50 ± 0.01 | |
C17 | 1.20 ± 0.01 | |
C16:2 [n-6] | 20.40 ± 1.08 | |
C18 | 2.80 ± 0.03 | |
C18:1 [n-13] | 0.30 ± 0.01 | |
C18:1 [n-9] | 4.20 ± 0.04 | |
C18:1 [n-7] | 2.00 ± 0.01 | |
C18:2 [n-6] | 35.10 ± 0.91 | |
C19 | 0.20 ± 0.001 | |
C18:3 [n-6] | 5.20 ± 0.04 | |
C20 | 5.70 ± 0.08 | |
C20:1 [n-9] | 0.40 ± 0.001 | |
C20:2 | 1.30 ± 0.02 | |
C20:3 [n-6] | 0.40 ± 0.007 | |
C21 | 0.20 ± 0.01 | |
C20:4 [n-6] | 0.60 ± 0.03 | |
C22 | 0.90 ± 0.04 | |
Total SFA | 28.60 ± 0.91 | |
Total MUFA | 8.40 ± 0.044 | |
Total PUFA | 63.00 ± 1.41 |
Bacteria Strains | SPE | SPM | SPA |
---|---|---|---|
Zone of inhibition (mm) | |||
Escherichia coli | 12.20 ± 0.10 a | 10.80 ± 0.80 b | 6.32 ± 0.50 c |
Enterobacter sp. | 19.00 ± 0.12 a | 15.22 ± 0.66 b | 7.00 ± 0.22 c |
Salmonella typhi | 16.10 ± 0.63 a | 12.10 ± 1.10 c | 14.42 ± 0.74 b |
Salmonella typhimurium | 16.00 ± 0.00 a | 12.60 ± 0.80 b | 10.70 ± 0.64 b |
Salmonella Enteritidis | 10.12 ± 1.12 b | 13.00 ± 0.73 a | 9.00 ± 0.14 b |
Salmonella gallinarum | 12.66 ± 0.84 a | 11.00 ± 0.52 b | 10.00 ± 0.15 c |
Proteus mirabilis | 16.00 ± 0.11 a | 13.00 ± 050 b | 11.40 ± 0.22 c |
Pseudomonas aeruginosa | 14.00 ± 0.43 a | 10.00 ± 0.08 b | 9.32 ± 0.50 b |
Listeria monocytogenes | 12.11 ± 0.70 b | 14.34 ± 0.82 a | 8.70 ± 0.08 c |
Staphylococcus aureus | 15.50 ± 0.82 a | 13.55 ± 0.80 b | 10.00 ± 0.55 c |
Parameter | Initial Values | SPE | SPM | SPA |
---|---|---|---|---|
IFC (103 oocysts/g) | 32.33 ± 1.62 a | 1.14 ± 0.05 d | 5.24 ± 0.12 c | 8.22 ± 0.16 b |
CFC (103 oocysts/g) | 50.73 ± 0.90 a | 2.02 ± 0.01 e | 9.32 ± 0.42 c | 12.60 ± 0.50 b |
OD (IFC) | 0.89 ± 0.004 d | 2.92 ± 0.001 a | 2.60 ± 0.001 b | 1.38 ± 0.006 c |
OD(CFC) | 0.08 ± 0.001 e | 0.77 ± 0.004 a | 0.44 ± 0.005 c | 0.21 ± 0.001 d |
Compound | SPE | SPM | SPA |
---|---|---|---|
Polyphenol (mg GAE/g) | 15.74 ± 0.08 b | 18.90 ± 1.10 a | 13.50 ± 0.70 c |
Flavonoid (mg QE/g) | 9.07 ± 0.05 a | 9.10 ± 0.72 a | 6.83 ± 0.42 b |
Tannin (mg CE/g) | 2.72 ± 0.24 a | 2.82 ± 0.31 a | 2.00 ± 0.20 b |
Parameter | SPE | SPM | SPA |
---|---|---|---|
DPPH (%) | 62.17 ± 5.51 c | 91.07 ± 7.44 a | 77.51 ± 6.28 b |
FRAP (mmol Fe2⁺/g extract) | 3.07 ± 0.11 c | 5.28 ± 0.19 a | 3.31 ± 0.09 b |
ABTS (mmol Trolox/g) | 4.94 ± 0.22 b | 5.81 ± 0.13 a | 3.27 ± 0.09 c |
Class | RT (min) | m/z (M − H)− | m/z (M + H)+ | Molecular Formula | MS/MS Fragmentation Ions | Number | Proposed Compound |
---|---|---|---|---|---|---|---|
Phenolic Acid | 5.4 | 179.034 | 181.050 | C9H8O4 | 135.034, 119.045 | 1 | Caffeic acid |
Phenolic Acid | 6.3 | 153.018 | 155.033 | C7H6O4 | 109.020, 91.019 | 2 | p-Coumaric acid |
Flavonoid Glycoside | 7.8 | 301.035 | 303.051 | C15H10O6 | 285.029, 271.026, 255.020 | 3 | Quercetin |
Carotenoid | 8.0 | 567.412 | 569.428 | C40H56O2 | 551.387, 533.379, 515.360 | 4 | Zeaxanthin |
Flavonoid Glycoside | 8.2 | 449.109 | 451.125 | C21H20O11 | 287.055, 151.003 | 5 | Rutin |
Flavonoid Aglycone | 9.0 | 271.061 | 273.077 | C15H10O5 | 153.018, 125.015, 109.020 | 6 | Kaempferol |
Polyphenol | 9.5 | 355.092 | 357.108 | C15H14O9 | 193.034, 175.025, 121.021 | 7 | Chlorogenic acid |
Carotenoid | 9.8 | 597.387 | 599.403 | C40H52O4 | 581.371, 563.354, 545.344 | 8 | Astaxanthin |
Carotenoid | 10.1 | 569.395 | 571.411 | C40H56 | 551.387, 533.379, 425.369 | 9 | β-carotene |
Vitamin E (Tocopherol) | 10.5 | N.D | 431.384 | C29H50O2 | 413.368, 395.355, 377.347 | 10 | α-Tocopherol |
Carotenoid | 11.2 | 565.371 | 567.387 | C40H52O2 | 549.354, 531.345, 513.335 | 11 | Canthaxanthin |
Carotenoid | 11.7 | 537.363 | 539.379 | C40H52 | 519.354, 501.345, 437.335 | 12 | Lycopene |
Flavonoid Aglycone | 12.0 | 285.040 | 287.055 | C15H10O7 | 151.003, 125.015, 107.007 | 13 | Myricetin |
Chlorophyll | 14.8 | 905.529 | 907.545 | C55H70MgN4O6 | 627.424, 593.411, 565.401 | 14 | Chlorophyll b |
Chlorophyll Derivative | 15.6 | 893.504 | 895.520 | C55H72O6N4Mg | 615.391, 581.377, 553.367 | 15 | OH-Chlorophyll a |
Phycobiliprotein | 16.5 | 614.342 | 616.358 | C33H38N4O6 | 598.324, 570.309, 500.279 | 16 | Phycocyanin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahmouni, S.; Bengharbi, Z.; Benabdelmoumene, D.; Benamar, N.; Qadi, W.S.M.; Dawoud, E.A.D.; Al-Olayan, E.; Dahimi, O.; Moreno, A.; Zainudin, M.A.M.; et al. Assessment of the Nutritional Composition, Antimicrobial Potential, Anticoccidial, and Antioxidant Activities of Arthospira platensis in Broilers. Biology 2025, 14, 379. https://doi.org/10.3390/biology14040379
Dahmouni S, Bengharbi Z, Benabdelmoumene D, Benamar N, Qadi WSM, Dawoud EAD, Al-Olayan E, Dahimi O, Moreno A, Zainudin MAM, et al. Assessment of the Nutritional Composition, Antimicrobial Potential, Anticoccidial, and Antioxidant Activities of Arthospira platensis in Broilers. Biology. 2025; 14(4):379. https://doi.org/10.3390/biology14040379
Chicago/Turabian StyleDahmouni, Said, Zineb Bengharbi, Djilali Benabdelmoumene, Nardjess Benamar, Wasim S. M. Qadi, Esraa Adnan Dawoud Dawoud, Ebtesam Al-Olayan, Omar Dahimi, Andres Moreno, Mohd Asraf Mohd Zainudin, and et al. 2025. "Assessment of the Nutritional Composition, Antimicrobial Potential, Anticoccidial, and Antioxidant Activities of Arthospira platensis in Broilers" Biology 14, no. 4: 379. https://doi.org/10.3390/biology14040379
APA StyleDahmouni, S., Bengharbi, Z., Benabdelmoumene, D., Benamar, N., Qadi, W. S. M., Dawoud, E. A. D., Al-Olayan, E., Dahimi, O., Moreno, A., Zainudin, M. A. M., & Mediani, A. (2025). Assessment of the Nutritional Composition, Antimicrobial Potential, Anticoccidial, and Antioxidant Activities of Arthospira platensis in Broilers. Biology, 14(4), 379. https://doi.org/10.3390/biology14040379