The Cœlomic Microbiota Among Three Echinoderms: The Black Sea Cucumber Holothuria forskali, the Sea Star Marthasterias glacialis, and the Sea Urchin Sphaerechinus granularis
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Sample Collection
2.2. DNA Extraction, Amplification and Illumina MiSeq Sequencing
2.3. Bioinformatics and Data Processing
2.4. Statistical Analysis on Microbial Communities
2.5. Enumeration and Isolation of Culturable Bacteria
2.6. Antimicrobial Activities of Cœlomic Isolates
2.7. Identification of Antibacterial Isolates
3. Results
3.1. Sequencing Information and Quality Control
3.2. Composition of the Cœlomic Microbiota of the Three Echinoderms and of the Bacterial Communities of the Surrounding Sea Water
3.2.1. H. forskali
3.2.2. M. glacialis
3.2.3. S. granularis
3.2.4. Composition of Bacterial Communities of the Surrounding Seawater
3.3. Diversities (Alpha and Beta Analyses)
3.3.1. α Diversity
3.3.2. Diversity Analysis
3.3.3. OTUs Distribution and Core Microbiota Among the Three Echinoderms
3.4. Culturable Microbiota
3.4.1. Enumeration of Culturable Microbiota
3.4.2. Screening for Antibacterial Activity in Culturable Strains
4. Discussion
4.1. Richness and Diversity of the Microbiota Among the Three Echinoderms and the Bacterial Communities of the Surrounding Seawater
4.2. Core Microbiote
4.3. Antibacterial Activities from the Bacterial Microbiota
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirth, F. On the Origin and Evolution of the Tripartite Brain. Brain Behav. Evol. 2010, 76, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.M. Sea Urchins: Biology and Ecology; Academic Press: Cambridge, MA, USA, 2020; 736p. [Google Scholar]
- Kurek, A.; Homa, J.; Kauschke, E.; Plytycz, B. Characteristics of coelomocytes of the stubby earthworm, Allolobophora chlorotica (Sav.). Eur. J. Soil Biol. 2007, 43, S121–S126. [Google Scholar] [CrossRef]
- Smith, L.C.; Arizza, V.; Barela Hudgell, M.A.; Barone, G.; Bodnar, A.G.; Buckley, K.M.; Cunsolo, V.; Dheilly, N.M.; Franchi, N.; Fugmann, S.D.; et al. Echinodermata: The Complex Immune System in Echinoderms. In Advances in Comparative Immunology; Cooper, E.L., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 409–501. [Google Scholar]
- Chen, M.; Wang, F.; Xing, K.; Zhu, A.; Zhang, S. Immunology and Diseases. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2015; pp. 257–287. [Google Scholar]
- Matranga, V. Molecular aspects of immune reactions in Echinodermata. Prog. Mol. Subcell. Biol. 1996, 15, 235–247. [Google Scholar]
- Smith, L.C.; Ghosh, J.; Buckley, K.M.; Clow, L.A.; Dheilly, N.M.; Haug, T.; Henson, J.H.; Li, C.; Lun, C.M.; Majeske, A.J.; et al. Echinoderm Immunity. In Invertebrate Immunity; Söderhäll, K., Ed.; Springer: Boston, MA, USA, 2010; pp. 260–301. [Google Scholar]
- Desriac, F.; Le Chevalier, P.; Brillet, B.; Leguerinel, I.; Thuillier, B.; Paillard, C.; Fleury, Y. Exploring the hologenome concept in marine bivalvia: Haemolymph microbiota as a pertinent source of probiotics for aquaculture. FEMS Microbiol. Lett. 2014, 350, 107–116. [Google Scholar] [CrossRef]
- ElAhwany, A.M.D.; Ghozlan, H.A.; ElSharif, H.A.; Sabry, S.A. Phylogenetic diversity and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum: Antimicrobial activity of marine bacteria with Sarcophyton glaucum. J. Basic Microbiol. 2015, 55, 2–10. [Google Scholar] [CrossRef]
- León-Palmero, E.; Joglar, V.; Álvarez, P.A.; Martín-Platero, A.; Llamas, I.; Reche, I. Diversity and antimicrobial potential in sea anemone and holothurian microbiomes. PLoS ONE 2018, 13, e0196178. [Google Scholar] [CrossRef]
- Offret, C.; Jégou, C.; Mounier, J.; Fleury, Y.; Le Chevalier, P. New insights into the haemo- and coelo-microbiota with antimicrobial activities from Echinodermata and Mollusca. J. Appl. Microbiol. 2019, 126, 1023–1031. [Google Scholar] [CrossRef]
- Rizzo, C.; Giudice, A. Marine Invertebrates: Underexplored Sources of Bacteria Producing Biologically Active Molecules. Diversity 2018, 10, 52. [Google Scholar] [CrossRef]
- Ye, S.; Liu, M.; Wang, L.; Li, R.; Li, Q. Composition and Diversity of Intestinal Microbiota of Sea Cucumber Apostichopus japonicus from Different Habitats. Int. J. Agric. Biol. 2018, 20, 5. [Google Scholar]
- Adorian, T.J.; Jamali, H.; Farsani, H.G.; Darvishi, P.; Hasanpour, S.; Bagheri, T.; Roozbehfar, R. Effects of Probiotic Bacteria Bacillus on Growth Performance, Digestive Enzyme Activity and Hematological Parameters of Asian Sea Bass, Lates calcarifer (Bloch). Probiotics Antimicrob. Proteins 2019, 11, 248–255. [Google Scholar] [CrossRef]
- Chi, C.; Liu, J.Y.; Fei, S.Z.; Zhang, C.; Chang, Y.Q.; Liu, X.L.; Wang, G.X. Effect of intestinal autochthonous probiotics isolated from the gut of sea cucumber (Apostichopus japonicus) on immune response and growth of A. japonicus. Fish Shellfish Immunol. 2014, 38, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Hai, N.V. The use of probiotics in aquaculture. J. Appl. Microbiol. 2015, 119, 917–935. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Liu, Q.; Cao, J.; Xu, Y.; Pei, Z.; Fan, H.; Yuan, Y.; Shen, X.; Li, C. A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats. Food Chem. Toxicol. 2020, 135, 110886. [Google Scholar] [CrossRef] [PubMed]
- Leroy, G.; Parizadeh, L.; Cuny, H.; Offret, C.; Protat, M.; Bazire, A.; Rodrigues, S.; Le Chevalier, P.; Brillet, B.; Gonzalez-Araya, R.; et al. Pseudoalteromonas Strains as Biofilm Control Agents in Ostrea edulis Aquaculture: Reducing Biofilm Biovolume While Preserving Microbial Diversity. Microorganisms 2025, 13, 63. [Google Scholar] [CrossRef]
- Desriac, F.; Defer, D.; Bourgougnon, N.; Brillet, B.; Le Chevalier, P.; Fleury, Y. Bacteriocin as weapons in the marine animal-associated bacteria warfare: Inventory and potential applications as an aquaculture probiotic. Mar. Drugs 2010, 8, 1153–1177. [Google Scholar] [CrossRef]
- Offret, C.; Rochard, V.; Laguerre, H.; Mounier, J.; Huchette, S.; Brillet, B.; Le Chevalier, P.; Fleury, Y. Protective Efficacy of a Pseudoalteromonas Strain in European Abalone; Haliotis tuberculata; Infected with Vibrio harveyi ORM4. Probiotics Antimicrob. Proteins 2019, 11, 239–247. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, L.; Wan, J.; Sun, Z.; Wang, Y.; Sun, H. Effects of potential probiotic Bacillus cereus EN25 on growth; immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus. Fish. Shellfish Immunol. 2016, 49, 237–242. [Google Scholar] [CrossRef]
- Enomoto, M.; Nakagawa, S.; Sawabe, T. Microbial Communities Associated with Holothurians: Presence of Unique Bacteria in the Coelomic Fluid. Microbes Environ. 2012, 27, 300–305. [Google Scholar] [CrossRef]
- Apprill, A. Marine Animal Microbiomes: Toward Understanding Host–Microbiome Interactions in a Changing Ocean. Front. Mar. Sci. 2017, 4, 222. [Google Scholar] [CrossRef]
- Bush, A.; Compson, Z.G.; Monk, W.A.; Porter, T.M.; Steeves, R.; Emilson, E.; Gagne, N.; Hajibabaei, M.; Roy, M.; Baird, D.J. Studying Ecosystems with DNA Metabarcoding: Lessons from Biomonitoring of Aquatic Macroinvertebrates. Front. Ecol. Evol. 2019, 7, 434. [Google Scholar] [CrossRef]
- Ruppert, K.M.; Kline, R.J.; Rahman, M.S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods; monitoring; and applications of global DNA. Glob. Ecol. Conserv. 2019, 17, e00547. [Google Scholar] [CrossRef]
- Sogin, M.L.; Morrison, H.G.; Huber, J.A.; Welch, D.M.; Huse, S.M.; Neal, P.R.; Arrieta, J.M.; Herndl, G.J. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 2006, 103, 12115–12120. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, U.; Hopke, J.; Horn, M.; Friedrich, A.B.; Wagner, M.; Hacker, J.; Moore, B.S. Molecular Evidence for a Uniform Microbial Community in Sponges from Different Oceans. Appl. Environ. Microbiol. 2002, 68, 4431–4440. [Google Scholar] [CrossRef]
- Kennedy, J.; Marchesi, J.R.; Dobson, A.D.W. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl. Microbiol. Biotechnol. 2007, 75, 11–20. [Google Scholar] [CrossRef]
- Ainsworth, T.D.; Thurber, R.V.; Gates, R.D. The future of coral reefs: A microbial perspective. Trends Ecol. Evol. 2010, 25, 233–240. [Google Scholar] [CrossRef]
- Rosenberg, E.; Koren, O.; Reshef, L.; Efrony, R.; Zilber-Rosenberg, I. The role of microorganisms in coral health; disease and evolution. Nat. Rev. Microbiol. 2007, 5, 355–362. [Google Scholar] [CrossRef]
- López-Legentil, S. Temporal stability of bacterial symbionts in a temperate ascidian. Front. Microbiol. 2015, 6, 11. [Google Scholar] [CrossRef]
- Stabili, L.; Gravili, C.; Pizzolante, G.; Lezzi, M.; Tredici, S.M.; De Stefano, M.; Boero, F.; Alifano, P. Aglaophenia octodonta (Cnidaria, Hydrozoa) and the Associated Microbial Community: A Cooperative Alliance? Microb. Ecol. 2018, 76, 258–271. [Google Scholar] [CrossRef]
- Pierce, M.L.; Ward, J.E.; Holohan, B.A.; Zhao, X.; Hicks, R.E. The influence of site and season on the gut and pallial fluid microbial communities of the eastern oyster; Crassostrea virginica (Bivalvia, Ostreidae): Community-level physiological profiling and genetic structure. Hydrobiologia 2016, 765, 97–113. [Google Scholar] [CrossRef]
- Rossbach, S.; Cardenas, A.; Perna, G.; Duarte, C.M.; Voolstra, C.R. Tissue-Specific Microbiomes of the Red Sea Giant Clam Tridacna maxima Highlight Differential Abundance of Endozoicomonadaceae. Front. Microbiol. 2019, 10, 2661. [Google Scholar] [CrossRef]
- Gao, F.; Li, F.; Tan, J.; Yan, J.; Sun, H. Bacterial Community Composition in the Gut Content and Ambient Sediment of Sea Cucumber Apostichopus japonicus Revealed by 16S rRNA Gene Pyrosequencing. PLoS ONE 2014, 9, e100092. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, X.; Chen, M.; Li, W.; Zhang, P. Comparison of intestinal microbiota and activities of digestive and immune-related enzymes of sea cucumber Apostichopus japonicus in two habitats. J. Ocean. Limnol. 2018, 36, 990–1001. [Google Scholar] [CrossRef]
- Laport, M.S.; Bauwens, M.; Collard, M.; George, I. Phylogeny and Antagonistic Activities of Culturable Bacteria Associated with the Gut Microbiota of the Sea Urchin (Paracentrotus lividus). Curr. Microbiol. 2018, 75, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Jackson, E.W.; Pepe-Ranney, C.; Debenport, S.J.; Buckley, D.H.; Hewson, I. The Microbial Landscape of Sea Stars and the Anatomical and Interspecies Variability of Their Microbiome. Front. Microbiol. 2018, 9, 1829. [Google Scholar] [CrossRef]
- Lloyd, M.M.; Pespeni, M.H. Microbiome shifts with onset and progression of Sea Star Wasting Disease revealed through time course sampling. Sci. Rep. 2018, 8, 16476. [Google Scholar] [CrossRef]
- Nakagawa, S.; Saito, H.; Tame, A.; Hirai, M.; Yamaguchi, H.; Sunata, T.; Aida, M.; Muto, H.; Sawayama, S.; Takaki, Y. Microbiota in the coelomic fluid of two common coastal starfish species and characterization of an abundant Helicobacter-related taxon. Sci. Rep. 2017, 7, 8764. [Google Scholar] [CrossRef]
- Haug, T.; Kjuul, A.K.; Styrvold, O.B.; Sandsdalen, E.; Olsen, Ø.M.; Stensvåg, K. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea); Cucumaria frondosa (Holothuroidea); and Asterias rubens (Asteroidea). J. Invertebr. Pathol. 2002, 81, 94–102. [Google Scholar] [CrossRef]
- Kim, T.Y.; Lee, J.J.; Kim, B.S.; Choi, S.H. Whole-Body Microbiota of Sea Cucumber (Apostichopus japonicus) from South Korea for Improved Seafood Management. J. Microbiol. Biotechnol. 2017, 27, 1753–1762. [Google Scholar] [CrossRef]
- Taberlet, P.; Bonin, A.; Zinger, L.; Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring; Oxford University Press: Oxford, UK, 2018; 268p. [Google Scholar]
- Boyer, F.; Mercier, C.; Bonin, A.; Le Bras, Y.; Taberlet, P.; Coissac, E. OBITools: A Unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 2015, 16, 176–182. [Google Scholar] [CrossRef]
- Escudié, F.; Auer, L.; Bernard, M.; Mariadassou, M.; Cauquil, L.; Vidal, K.; Maman, S.; Hernandez-Raquet, G.; Combes, S.; Pascal, G. FROGS: Find Rapidly OTUs With Galaxy Solution. Bioinformatics 2018, 34, 1287–1294. [Google Scholar] [CrossRef]
- Mahé, F.; Rognes, T.; Quince, C.; de Vargas, C.; Dunthorn, M. Swarm: Robust and fast clustering method for amplicon-based studies. PeerJ 2014, 2, e593. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012; R-Proj Org. 2018. [Google Scholar]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, Z.; et al. vegan: Community Ecology Package; 2019. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 30 January 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis [Internet], 2nd ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Oksanen, J. Ordination of boreal heath-like vegetation with principal component analysis; correspondence analysis and multidimensional scaling. Vegetatio 1983, 52, 181–189. [Google Scholar] [CrossRef]
- Anderson, M.J.; Ellingsen, K.E.; McArdle, B.H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 2006, 9, 683–693. [Google Scholar] [CrossRef]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Minchin, P.R. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 1987, 69, 89–107. [Google Scholar] [CrossRef]
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online [Internet]; American Cancer Society: New York, NY, USA, 2017; pp. 1–15. [Google Scholar]
- Shetty, S.A.; Hugenholtz, F.; Lahti, L.; Smidt, H.; de Vos, W.M. Intestinal microbiome landscaping: Insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiol. Rev. 2017, 41, 182–199. [Google Scholar] [CrossRef]
- Galkiewicz, J.P.; Kellogg, C.A. Cross-Kingdom Amplification Using Bacteria-Specific Primers: Complications for Studies of Coral Microbial Ecology. Appl. Environ. Microbiol. 2008, 74, 7828–7831. [Google Scholar] [CrossRef] [PubMed]
- Hogg, J.C.; Lehane, M.J. Identification of Bacterial Species Associated with the Sheep Scab Mite (Psoroptes ovis) by Using Amplified Genes Coding for 16S rRNA. Appl. Environ. Microbiol. 1999, 65, 4227–4229. [Google Scholar] [CrossRef] [PubMed]
- Stackebrandt, E.; Goodfellow, M. Nucleic Acid Techniques in Bacterial Systematics; Wiley: Chichester, NY, USA, 1991. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Dithuge, C.D.; Oliver, K.I.; Bezuidt, O.K.I.; Cavan, E.L.; Froneman, W.P.; Thomalla, S.J.; Makhalanyane, T.P. Bacteria and Archaea Regulate Particulate Organic Matter Export in Suspended and Sinking Marine Particle Fractions. mSphere 2023, 8, e00420-22. [Google Scholar] [CrossRef]
- Stevens, H.; Stübner, M.; Simon, M.; Brinkhoff, T. Phylogeny of Proteobacteria and Bacteroidetes from oxic habitats of a tidal flat ecosystem. FEMS Microbiol. Ecol. 2005, 54, 351–365. [Google Scholar] [CrossRef]
- Sunagawa, S.; Coelho, L.P.; Chaffron, S.; Kultima, J.R.; Labadie, K.; Salazar, G.; Djahanschiri, B.; Zeller, G.; Mende, D.R.; Alberti, A.; et al. Structure and function of the global ocean microbiome. Science 2015, 348, 1261359. [Google Scholar] [CrossRef]
- Zhou, Z.; Tran, P.Q.; Kieft, K.; Anantharaman, K. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. ISME J. 2020, 14, 2060–2077. [Google Scholar] [CrossRef]
- Faddetta, T.; Ardizzone, F.; Faillaci, F.; Reina, C.; Palazzotto, E.; Strati, F.; De Filippo, C.; Spinelli, G.; Puglia, A.M.; Gallo, G.; et al. Composition and geographic variation of the bacterial microbiota associated with the coelomic fluid of the sea urchin Paracentrotus lividus. Sci. Rep. 2020, 10, 21443. [Google Scholar] [CrossRef]
- Erwin, P.; Pineda, M.C.; Webster, N.; Turon, X.; Lopez-Legentil, S. Down under the tunic: Bacterial biodiversity hotspots and widespread ammonia-oxidizing archaea in coral reef ascidians. ISME J. 2014, 8, 575–588. [Google Scholar] [CrossRef]
- Pérez-Pantoja, D.; Donoso, R.; Agulló, L.; Córdova, M.; Seeger, M.; Pieper, D.H.; González, B. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ. Microbiol. 2012, 14, 1091–1117. [Google Scholar] [CrossRef]
- Bowman, J.P. Bioactive Compound Synthetic Capacity and Ecological Significance of Marine Bacterial Genus Pseudoalteromonas. Mar. Drugs 2007, 5, 220–241. [Google Scholar] [CrossRef] [PubMed]
- Desriac, F.; Jégou, C.; Balnois, E.; Brillet, B.; Le Chevalier, P.; Fleury, Y. Antimicrobial Peptides from Marine Proteobacteria. Mar. Drugs 2013, 11, 3632–3660. [Google Scholar] [CrossRef] [PubMed]
- Loch, T.P.; Faisal, M. Emerging flavobacterial infections in fish: A review. J. Adv. Res. 2015, 6, 283–300. [Google Scholar] [CrossRef]
- DAinsworth, T.; Krause, L.; Bridge, T.; Torda, G.; Raina, J.B.; Zakrzewski, M.; Gates, R.D.; Padilla-Gamiño, J.L.; Spalding, L.H.; Smith, C.; et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015, 9, 2261–2274. [Google Scholar] [CrossRef]
- Gobet, A.; Mest, L.; Perennou, M.; Dittami, S.M.; Caralp, C.; Coulombet, C.; Huchette, S.; Roussel, S.; Michel, G.; Leblanc, C. Seasonal and algal diet-driven patterns of the digestive microbiota of the European abalone Haliotis tuberculata; a generalist marine herbivore. Microbiome 2018, 6, 60. [Google Scholar] [CrossRef]
- Mariadassou, M.; Pichon, S.; Ebert, D. Microbial ecosystems are dominated by specialist taxa. Ecol. Lett. 2015, 18, 974–982. [Google Scholar] [CrossRef]
- Reveillaud, J.; Maignien, L.; Eren, A.M.; Huber, J.A.; Apprill, A.; Sogin, M.L.; Vanreusel, A. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 2014, 8, 1198–1209. [Google Scholar] [CrossRef]
- Nedashkovskaya, O.I.; Suzuki, M.; Vancanneyt, M.; Cleenwerck, I.; Zhukova, N.V.; Vysotskii, M.V.; Mikhailov, V.V.; Swings, J. Salegentibacter holothuriorum sp. nov., isolated from the edible holothurian Apostichopus japonicus. Int. J. Syst. Evol. Microbiol. 2004, 54 Pt 4, 1107–1110. [Google Scholar] [CrossRef]
- Björk, J.R.; O’Hara, R.B.; Ribes, M.; Coma, R.; Montoya, J.M. The dynamic core microbiome: Structure, dynamics and stability. Ecology 2017. [Google Scholar] [CrossRef]
- Carrier, T.J.; Reitzel, A.M. Convergent shifts in host-associated microbial communities across environmentally elicited phenotypes. Nat. Commun. 2018, 9, 952. [Google Scholar] [CrossRef]
- Parfrey, L.W.; Knight, R. Spatial and temporal variability of the human microbiota. Clin. Microbiol. Infect. 2012, 18, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, D.; Refaey, M.M.; Xu, W. High Spatial and Temporal Variations of Microbial Community along the Southern Catfish Gastrointestinal Tract: Insights into Dynamic Food Digestion. Front. Microbiol. 2017, 8, 1531. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Wang, M.; Ti, J.; Wu, Y.; Chen, F. Bacterial community composition in the rhizosphere of maize cultivars widely grown in different decades. Biol. Fertil. Soils 2017, 53, 221–229. [Google Scholar] [CrossRef]
- Avendaño-Herrera, R.; Toranzo, A.; Magarinos, B. Tenacibaculosis infection in marine fish caused by Tenacibaculum maritimum: A review. Dis. Aquat. Organ. 2006, 71, 255–266. [Google Scholar] [CrossRef]
- Bowman, J.P. The Marine Clade of the Family Flavobacteriaceae: The Genera Aequorivita, Arenibacter, Cellulophaga, Croceibacter, Formosa, Gelidibacter, Gillisia, Maribacter, Mesonia, Muricauda, Polaribacter, Psychroflexus, Psychroserpens, Robiginitalea, Salegentibacter, Tenacibaculum, Ulvibacter, Vitellibacter and Zobellia. In the Prokaryotes: Volume 7, Proteobacteria: Delta, Epsilon Subclass; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 677–694. [Google Scholar]
- Waśkiewicz, A.; Irzykowska, L. Flavobacterium spp.—Characteristics, Occurrence, and Toxicity. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 938–942. [Google Scholar]
- Mann, A.J.; Hahnke, R.L.; Huang, S.; Werner, J.; Xing, P.; Barbeyron, T.; Huettel, B.; Stüber, K.; Reinhardt, R.; Harder, J.; et al. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl. Environ. Microbiol. 2013, 79, 6813–6822. [Google Scholar] [CrossRef]
- Risely, A. Applying the core microbiome to understand host–microbe systems. J. Anim. Ecol. 2020, 89, 1549–1558. [Google Scholar] [CrossRef]
- Aguirre de Cárcer, D. The human gut pan-microbiome presents a compositional core formed by discrete phylogenetic units. Sci. Rep. 2018, 8, 14069. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, X. Core Gut Microbiota of Shrimp Function as a Regulator to Maintain Immune Homeostasis in Response to WSSV Infection. Microbiol. Spectr. 2022, 10, e0246521. [Google Scholar] [CrossRef]
- Astudillo-García, C.; Bell, J.J.; Webster, N.S.; Glasl, B.; Jompa, J.; Montoya, J.M.; Taylor, M.W. Evaluating the core microbiota in complex communities: A systematic investigation: Core microbiota in complex communities. Environ. Microbiol. 2017, 19, 1450–1462. [Google Scholar] [CrossRef]
- Hernandez-Agreda, A.; Gates, R.D.; Ainsworth, T.D. Defining the Core Microbiome in Corals’ Microbial Soup. Trends Microbiol. 2017, 25, 125–140. [Google Scholar] [CrossRef]
- Lemanceau, P.; Blouin, M.; Muller, D.; Moënne-Loccoz, Y. Let the Core Microbiota Be Functional. Trends Plant Sci. 2017, 22, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Lowe, B.A.; Marsh, T.L.; Isaacs-Cosgrove, N.; Kirkwood, R.N.; Kiupel, M.; Mulks, M.H. Defining the “core microbiome” of the microbial communities in the tonsils of healthy pigs. BMC Microbiol. 2012, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Barreras, R.; Tosado, E.; Godoy-Vitorino, F. Trophic niches reflect compositional differences in microbiota among Caribbean sea urchins. PeerJ 2021, 9, e12084. [Google Scholar] [CrossRef]
- Bordenstein, S.R.; Theis, K.R. Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes. PLOS Biol. 2015, 13, e1002226. [Google Scholar] [CrossRef]
- Yvin, M.; Mühle, E.; Chesneau, O.; Laguerre, H.; Brillet, B.; Fleury, Y.; Jégou, C.; Kämpfer, P.; Lipski, A.; Criscuolo, A.; et al. Pseudoalteromonas holothuriae sp. nov., isolated from the sea cucumber Holothuria forskali. Int. J. Syst. Evol. Microbiol. 2025, 75, 006601. [Google Scholar] [CrossRef]
- Deng, H.; He, C.; Zhou, Z.; Liu, C.; Tan, K.; Wang, N.; Jiang, B.; Gao, X.; Liu, W. Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus. Aquaculture 2009, 287, 18–27. [Google Scholar] [CrossRef]
- Gao, X.Y.; Liu, Y.; Miao, L.L.; Li, E.W.; Hou, T.T.; Liu, Z.P. Mechanism of anti-Vibrio activity of marine probiotic strain Bacillus pumilus H2; and characterization of the active substance. AMB Express 2017, 7, 23. [Google Scholar] [CrossRef]
- Ramirez-Gomez, F.; Garcia-Arraras, J. Echinoderm immunity. Invertebr. Surviv. J. 2010, 7, 211–220. [Google Scholar]
Chao1’s Richness | Shannon’s Diversity | |||
---|---|---|---|---|
Variables | Chi-Squared | p-Value | Chi-Squared | p-Value |
species | 12.072 | 0.00714 * | 8.8245 | 0.03172 * |
date of sampling | 122.4 | <2.2 × 10−16 * | 90.096 | <2.2 × 10−16 * |
species + date of sampling | 137.37 | <2.2 × 10−16 * | 112.04 | <2.2 × 10−16 * |
Variables | F | R2 | p-Value | |
---|---|---|---|---|
Species | 4.1 | 0.05454 | 0.001 | * |
Date of sampling/ | ||||
H. forskali | 6.8796 | 0.2693 | 0.001 | * |
M. glacialis | 5.9295 | 0.25489 | 0.001 | * |
S. granularis | 5.002 | 0.21133 | 0.001 | * |
H. forskali | M. glacialis | S. granularis | Echinoderms | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Families | Abundance (%) | Nb. OTUs | Families | Abundance (%) | Nb. OTUs | Families | Abundance (%) | Nb. OTUs | Families | Abundance (%) | Nb. OTUs |
Flavobacteriaceae | 0.34% | 260 | Francisellaceae | 0.29% | 49 | Diplorickettsiaceae | 0.55% | 78 | Francisellaceae | 1.19% | 69 |
Chitinophagaceae | 0.31% | 36 | Diplorickettsiaceae | 0.27% | 57 | Legionellaceae | 0.43% | 76 | Flavobacteriaceae | 0.96% | 464 |
Arenicellaceae | 0.22% | 13 | Hyphomonadaceae | 0.26% | 14 | Chitinophagaceae | 0.41% | 27 | Simkaniaceae | 0.78% | 88 |
Sphingobacteriaceae | 0.20% | 37 | Prevotellaceae | 0.24% | 11 | Spirochaetaceae | 0.38% | 3 | Fusobacteriaceae | 0.54% | 36 |
Legionellaceae | 0.17% | 46 | Legionellaceae | 0.22% | 53 | Hymenobacteraceae | 0.25% | 19 | Legionellaceae | 0.53% | 221 |
Hymenobacteraceae | 0.17% | 20 | Bacillaceae | 0.21% | 22 | Bdellovibrionaceae | 0.17% | 21 | Diplorickettsiaceae | 0.51% | 218 |
Sphingomonadaceae | 0.17% | 48 | Spirochaetaceae | 0.21% | 63 | Prevotellaceae | 0.14% | 14 | Spirosomaceae | 0.44% | 61 |
Orbaceae | 0.16% | 1 | Flavobacteriaceae | 0.20% | 59 | Flavobacteriaceae | 0.14% | 49 | Spirochaetaceae | 0.44% | 90 |
Diplorickettsiaceae | 0.16% | 35 | Fokiniaceae | 0.18% | 3 | Parachlamydiaceae | 0.13% | 39 | Sphingomonadaceae | 0.43% | 211 |
Rhodobacteraceae | 0.15% | 137 | Endozoicomonadaceae | 0.16% | 29 | Gemmatimonadaceae | 0.12% | 9 | Holosporaceae | 0.42% | 36 |
Bdellovibrionaceae | 0.15% | 32 | Nitrososphaeraceae | 0.15% | 2 | Sphingomonadaceae | 0.10% | 35 | Nocardioidaceae | 0.42% | 85 |
Rhizobiaceae | 0.13% | 477 | Ruminococcaceae | 0.15% | 10 | Bryobacteraceae | 0.10% | 4 | Rhodobacteraceae | 0.40% | 249 |
Cyclobacteriaceae | 0.12% | 23 | Prolixibacteraceae | 0.14% | 41 | Acetobacteraceae | 0.10% | 9 | Chitinophagaceae | 0.39% | 103 |
Micropepsaceae | 0.12% | 3 | Marinifilaceae | 0.14% | 34 | Spirosomaceae | 0.10% | 7 | Sphingobacteriaceae | 0.39% | 76 |
Nitrincolaceae | 0.12% | 11 | Chitinophagaceae | 0.12% | 21 | Cellvibrionaceae | 0.09% | 5 | Rickettsiaceae | 0.36% | 29 |
Total unshared | 8.6% | 39.2% | Total unshared | 7.2% | 34.4% | Total unshared | 8.7% | 32.5% | Total unshared | 24.2% | 87.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laguerre, H.; Noël, C.; Jégou, C.; Fleury, Y.; Le Chevalier, P. The Cœlomic Microbiota Among Three Echinoderms: The Black Sea Cucumber Holothuria forskali, the Sea Star Marthasterias glacialis, and the Sea Urchin Sphaerechinus granularis. Biology 2025, 14, 430. https://doi.org/10.3390/biology14040430
Laguerre H, Noël C, Jégou C, Fleury Y, Le Chevalier P. The Cœlomic Microbiota Among Three Echinoderms: The Black Sea Cucumber Holothuria forskali, the Sea Star Marthasterias glacialis, and the Sea Urchin Sphaerechinus granularis. Biology. 2025; 14(4):430. https://doi.org/10.3390/biology14040430
Chicago/Turabian StyleLaguerre, Hélène, Cyril Noël, Camille Jégou, Yannick Fleury, and Patrick Le Chevalier. 2025. "The Cœlomic Microbiota Among Three Echinoderms: The Black Sea Cucumber Holothuria forskali, the Sea Star Marthasterias glacialis, and the Sea Urchin Sphaerechinus granularis" Biology 14, no. 4: 430. https://doi.org/10.3390/biology14040430
APA StyleLaguerre, H., Noël, C., Jégou, C., Fleury, Y., & Le Chevalier, P. (2025). The Cœlomic Microbiota Among Three Echinoderms: The Black Sea Cucumber Holothuria forskali, the Sea Star Marthasterias glacialis, and the Sea Urchin Sphaerechinus granularis. Biology, 14(4), 430. https://doi.org/10.3390/biology14040430