The Functional Mechanisms through Which Artificial Intelligence Influences the Innovation of Green Processes of Enterprises
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses
2.1. Artificial Intelligence and Green Process Innovation
2.2. The Moderating Effect of Intellectual Capital
2.2.1. The Moderating Effect of Human Capital
2.2.2. The Moderating Effect of Structural Capital
2.2.3. The Moderating Effect of Capital Employed
2.2.4. The Moderating Effect of Relational Capital
3. Methods
3.1. Data and Sample
3.2. Definition and Measurement of Variables
3.2.1. Explained Variable
3.2.2. Explanatory Variables
3.2.3. Moderating Variables
3.2.4. Control Variables
3.3. Models
4. Results
4.1. Descriptive Statistics
4.2. Correlation
4.3. Regression Results and Analysis
4.4. Robustness Test
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
5.3. Implications
5.3.1. Theoretical Implications
5.3.2. Practical Implications
- (1)
- From a business perspective, this study found that the application of AI technology can significantly improve the green process innovation of enterprises, which is conducive to increasing the attention of enterprises on the application of digital technology, providing a reference for the application of AI in green practices in the areas of cleantech and end-of-pipe treatment, and providing a digital reference for enterprises to improve their level of environmental protection governance. Enterprises and professionals should actively explore and implement practical applications of AI technology in green processes, form specialized teams, and establish systematic evaluation and monitoring mechanisms.
- (2)
- From the government’s point of view, this study provides direction for the relevant government departments formulating digital-technology-guided policies and norms. This is conducive to mitigating the current environmental challenges the international community is facing in achieving sustainable development. Governments can formulate relevant policies, such as tax incentives and increased subsidies, to encourage enterprises to adopt AI technologies for green process innovation. At the same time, governments should promote cooperation among government departments, research institutions, and enterprises to share data and resources and jointly develop green technology solutions.
- (3)
- From the research perspective, this study preliminarily confirms that digital technology can become an important force helping enterprises to cope with environmental challenges and playing an important role in their green practices. Scholars should further explore the relationships between technology and the environment, establish more systematic theoretical frameworks and methodologies, and provide a scientific basis for green technology innovation. At the same time, interdisciplinary research should pay attention to the social and environmental responsibilities of enterprises beyond economic development.
5.4. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S.S.; Guozhu, J.; Mubarik, S.; Khan, M.; Khan, E. Intellectual capital and business performance: The role of the absorptive capacity dimension. J. Intellect. Cap. 2019, 21, 23–39. [Google Scholar] [CrossRef]
- Ali, B.J.; Anwar, G. Intellectual capital: A modern model to measure value creation in a business. Int. J. Eng. Bus. Manag. 2021, 5, 31–43. [Google Scholar] [CrossRef]
- Ali, S.; Murtaza, G.; Hedvicakova, M.; Jiang, J.; Naeem, M. Intellectual capital and financial performance: A comparative study. Front. Psychol. 2022, 13, 967820. [Google Scholar] [CrossRef]
- Ali, W.; Wen, J.; Hussain, H.; Khan, N.A.; Younas, M.W.; Jamil, I. Does green intellectual capital affect green innovation adoption? Evidence from Manufacturing SMEs in Pakistan. J. Intellect. Cap. 2021, 22, 868–888. [Google Scholar] [CrossRef]
- Al-Jinini, D.K.; Dahiyat, S.E.; Bontis, N. Intellectual capital, entrepreneurial orientation, and technological innovation in small and medium-sized enterprises. Knowl. Process Manag. 2019, 26, 69–85. [Google Scholar] [CrossRef]
- Alves, I.; Lourenço, S.M. Subjective performance evaluation and managerial work outcomes. Bus. Res. 2023, 53, 127–157. [Google Scholar] [CrossRef]
- Alvino, F.; Di Vaio, A.; Hassan, R.; Palladino, R. Intellectual capital and sustainable development: A systematic literature review. J. Intellect. Cap. 2020, 22, 76–94. [Google Scholar] [CrossRef]
- Asutay, M.; Ubaidillah. Examining the impact of intellectual capital performance on Islamic banks’ financial performance in Islamic banks. J. Knowl. Econ. 2023, 15, 1231–1263. [Google Scholar] [CrossRef]
- Awan, U.; Arnold, M.G.; Gölgeci, I. Enhancing green product and process innovation: Towards an integrated framework of knowledge acquisition and environmental investment. Bus. Strategy Environ. 2021, 30, 1283–1295. [Google Scholar] [CrossRef]
- Azam, T.; Songjiang, W.; Jamil, K.; Naseem, S.; Mohsin, M. Measuring Green Innovation through Total Quality Management and corporate social responsibility within SMEs: Green Theory under the lens. TQM J. 2023, 35, 1935–1959. [Google Scholar] [CrossRef]
- Baima, G.; Forliano, C.; Santoro, G.; Vrontis, D. Intellectual capital and business models: A systematic literature review exploring their linkages. J. Intellect. Cap. 2021, 22, 653–679. [Google Scholar] [CrossRef]
- Bamel, U.; Pereira, V.; Del Giudice, M.; Temouri, Y. Eextent and impact of intellectual Capital Research: A two decade analysis. J. Intellect. Cap. 2022, 23, 375–400. [Google Scholar] [CrossRef]
- Bananuka, J.; Tauringana, V.; Tumwebaze, Z. Intellectual capital and sustainability reporting practices in Uganda. J. Intellect. Cap. 2023, 24, 487–508. [Google Scholar] [CrossRef]
- Barak, M.; Sharma, R.K. Investigating the impact of intellectual capital on the sustainable financial performance of private sector banks in India. Sustainability 2023, 15, 1451. [Google Scholar] [CrossRef]
- Barney, J.B.; Ketchen, D.J.; Wright, M.; Barney, J.B.; Ketchen, D.J.; Wright, M. Ffuture of resource-based theory: Revitalization or decline? J. Manag. 2011, 37, 1299–1315. [Google Scholar] [CrossRef]
- Barrena-Martínez, J.; Cricelli, L.; Ferrándiz, E.; Greco, M.; Grimaldi, M. Joint forces: Towards the integration of intellectual capital theory and the open innovation paradigm. J. Bus. Res. 2020, 112, 261–270. [Google Scholar] [CrossRef]
- Begum, S.; Ashfaq, M.; Xia, E.; Awan, U. Does transformational leadership lead to green innovation? Rrole of Green Thinking and Creative Process Engagement. Bus. Strategy Environ. 2022, 31, 580–597. [Google Scholar] [CrossRef]
- Bellucci, M.; Marzi, G.; Orlando, B.; Ciampi, F. Journal of Intellectual Capital: A review of emerging themes and future trends. J. Intellect. Cap. 2021, 22, 744–767. [Google Scholar] [CrossRef]
- Bhatia, M.S. Green process innovation and operational performance: The roles of proactive environmental strategies, technological capabilities, and organizational learning. Bus. Strategy Environ. 2021, 30, 2845–2857. [Google Scholar] [CrossRef]
- Buenechea-Elberdin, M.; Sáenz, J.; Kianto, A. Intellectual capital-driven innovation: The influence of servitization degree. RD Manag. 2023, 54, 818–832. [Google Scholar] [CrossRef]
- Capozza, C.; Divella, M. Human Capital and Firm Innovation: Evidence from Emerging Economies. Econ. Innov. New Technol. 2019, 28, 741–757. [Google Scholar] [CrossRef]
- Castañer, X.; Oliveira, N. Collaboration, coordination, and cooperation among organizations: Establishing the distinctive meanings of these terms through a systematic literature review. J. Manag. 2020, 46, 965–1001. [Google Scholar] [CrossRef]
- Chang, L.; Taghizadeh-Hesary, F.; Mohsin, M. Role of artificial intelligence in green economic development: Joint determinants of natural resources and green total factor productivity. Resour. Policy 2023, 82, 103508. [Google Scholar] [CrossRef]
- Chotia, V.; Cheng, Y.; Agarwal, R.; Vishnoi, S.K. AI-enabled Green Business Strategy: Path to carbon neutrality via environmental performance and green process innovation. Technol. Forecast. Soc. Chang. 2024, 202, 123315. [Google Scholar] [CrossRef]
- Chowdhury, L.A.M.; Rana, T.; Azim, M.I. Intellectual capital efficiency and organizational performance: In the context of The pharmaceutical industry in Bangladesh. J. Intellect. Cap. 2019, 20, 784–806. [Google Scholar] [CrossRef]
- Collins, C.J. Expanding the Resource-Bbased View Model for Strategic Human Resource Management. Int. J. Hum. Resour. Manag. 2021, 32, 331–358. [Google Scholar] [CrossRef]
- Dauvergne, P. Is artificial intelligence greening global supply chains? Exposing the political economy of environmental costs. Rev. Int. Political Econ. 2022, 29, 696–718. [Google Scholar] [CrossRef]
- Delanoë, P.; Tchuente, D.; Colin, G. Methods and evaluation of the effective gain of artificial intelligence models for reducing CO2 emissions. J. Environ. Manag. 2023, 331, 117261. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Yu, K. Do corporate social responsibility reports convey value-relevant information? Evidence of Report Readability and Tone. J. Bus. Ethics 2021, 172, 253–274. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agendas for research, practice, and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Farooq, U.; Wen, J.; Tabash, M.I.; Fadoul, M. Environmental regulations and capital investment: Does green innovation allow to grow? Int. Rev. Econ. Fin. 2024, 89, 878–893. [Google Scholar] [CrossRef]
- Gupta, J.; Rathore, P.; Kashiramka, S. Impact of intellectual capital on the financial performance of innovation-driven pharmaceutical firms: Empirical evidence from India. J. Knowl. Econ. 2023, 14, 1052–1076. [Google Scholar] [CrossRef]
- Habib, A.M.; Dalwai, T. Do the efficiency of a firm’s intellectual capital and working capital management affect its performance? J. Knowl. Econ. 2023, 15, 3202–3238. [Google Scholar] [CrossRef]
- Haefner, N.; Wincent, J.; Parida, V.; Gassmann, O. Artificial intelligence and innovation management: Review, framework, and research agenda✰. Technol. Forecast. Soc. Chang. 2021, 162, 120392. [Google Scholar] [CrossRef]
- Hanelt, A.; Bohnsack, R.; Marz, D.; Antunes Marante, C. A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change. J. Manag. Stud. 2021, 58, 1159–1197. [Google Scholar] [CrossRef]
- He, Q.; Ribeiro-Navarrete, S.; Botella-Carrubi, D. A matter of motivation: Impact of enterprises’ digital transformation on green innovation. Rev. Manag. Sci. 2023, 18, 1489–1518. [Google Scholar] [CrossRef]
- He, X.; Jiang, S. Does Gender Diversity Affect Green Innovation? Bus. Strategy Environ. 2019, 28, 1341–1356. [Google Scholar] [CrossRef]
- He, Z.; Kuai, L.; Wang, J. Driving mechanism model of enterprise green strategy evolution under digital technology empowerment: A case study of Zhejiang enterprises. Bus. Strategy Environ. 2023, 32, 408–429. [Google Scholar] [CrossRef]
- Huang, C.; Chang, X.; Wang, Y.; Li, N. Do Major customers encourage innovation and sustainable development? Empirical evidence of green corporate green innovation in China. Bus. Strategy Environ. 2023, 32, 163–184. [Google Scholar] [CrossRef]
- Javaid, H.M.; Ain, Q.U.; D’Ecclesia, R. Female directors in the boardroom and intellectual capital performance: Does the “critical mass” matter? Financ. Innov. 2023, 9, 74. [Google Scholar] [CrossRef]
- Jin, X.; Lei, X.; Wu, W. Can digital investment improve corporate environmental performance? Empirical Evidence from China. J. Clean. Prod. 2023, 414, 137669. [Google Scholar] [CrossRef]
- Jirakraisiri, J.; Badir, Y.F.; Frank, B. Translating green strategic intent into green process innovation performance: The role of green intellectual capital. J. Intellect. Cap. 2021, 22, 43–67. [Google Scholar] [CrossRef]
- Kengatharan, N. Productivity and Firm Performance. Int. J. Manpow. 2019, 40, 1056–1074. [Google Scholar] [CrossRef]
- Khan, S.J.; Kaur, P.; Jabeen, F.; Dhir, A. Green process innovation: Where we are and where we are going. Bus. Strategy Environ. 2021, 30, 3273–3296. [Google Scholar] [CrossRef]
- Kong, D.; Liu, B. Digital Technology and corporate social responsibility: Evidence from China. Emerg. Mark. Fin. Trade 2023, 59, 2967–2993. [Google Scholar] [CrossRef]
- Kweh, Q.L.; Ting, I.W.K.; Hanh, L.T.M.; Zhang, C. Intellectual capital, government presence, and firm performance of publicly listed companies in Malaysia. Int. J. Learn. Intellect. Cap. 2019, 16, 193. [Google Scholar] [CrossRef]
- Lentjušenkova, O.; Lapiņa, I. Iintegrated process-based approach to intellectual capital management. Bus. Process Manag. J. 2020, 26, 1833–1850. [Google Scholar] [CrossRef]
- Li, C.; Xu, Y.; Zheng, H.; Wang, Z.; Han, H.; Zeng, L. Artificial intelligence, resource reallocation, and corporate innovation efficiency: Evidence from China’s listed companies. Resour. Policy 2023, 81, 103324. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Sarfarz, M.; Ozturk, I. Enhancing firms’ green innovation and sustainable performance through the mediating role of green product innovation and the moderating role of employees’ green behavior. Econ. Res. Ekon. Istraživanja 2023, 36, 2142263. [Google Scholar] [CrossRef]
- Li, H.; Lu, J. Temperature change and industrial green innovation: Cost increase or responsibility forcing. J. Environ. Manag. 2023, 325, 116492. [Google Scholar] [CrossRef]
- Li, W.; Yan, T.; Li, Y.; Yan, Z. Earnings management and CSR report tone: Evidence from China. Corp. Soc. Responsib. Environ. Manag. 2023, 30, 1883–1902. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Wang, J.; Li, C. Intellectual capital, knowledge sharing, and innovation performance: Evidence from the Chinese construction industry. Sustainability 2019, 11, 2713. [Google Scholar] [CrossRef]
- Liu, H.; Zafar, M.W.; Sinha, A.; Khan, I. The path to a sustainable environment: Do environmental taxes and governance matter? Sustain. Dev. 2023, 31, 2278–2290. [Google Scholar] [CrossRef]
- Liu, H.Y. The role of the state in influencing work conditions in China’s Internet industry: Policy, evidence, and implications for industrial relations. J. Ind. Relat. 2023, 65, 3–21. [Google Scholar] [CrossRef]
- Liu, X.; Cifuentes-Faura, J.; Zhao, S.; Wang, L. Government environmental attention and carbon emissions governance: Firm-level evidence from China. Econ. Anal. Policy 2023, 80, 121–142. [Google Scholar] [CrossRef]
- Madhavaram, S.; Appan, R.; Manis, K.T.; Browne, G.J. Building capabilities for software development and firm competitiveness: The role of intellectual capital and intra-firm relational capital. Inf. Manag. 2023, 60, 103744. [Google Scholar] [CrossRef]
- Martín-de Castro, G.; Díez-Vial, I.; Delgado-Verde, M. Intellectual capital and the firm: Evolution and research trends. J. Intellect. Cap. 2019, 20, 555–580. [Google Scholar] [CrossRef]
- Mishra, S.; Ewing, M.T.; Cooper, H.B. Artificial intelligence focus and firm performance. J. Acad. Mark. Sci. 2022, 50, 1176–1197. [Google Scholar] [CrossRef]
- Mubarik, M.S.; Bontis, N.; Mubarik, M.; Mahmood, T. Intellectual Capital and Supply Chain Resilience. J. Intellect. Cap. 2022, 23, 713–738. [Google Scholar] [CrossRef]
- Nadeem, M.; Dumay, J.; Massaro, M. If this can be measured it, it can manage it: A case of intellectual capital. Aust. Acc. Rev. 2019, 29, 395–407. [Google Scholar] [CrossRef]
- Nahapiet, J.; Ghoshal, S. Social capital, intellectual capital, and organizational advantage. Acad. Manag. Rev. 1998, 23, 242–266. [Google Scholar] [CrossRef]
- Nejjari, Z.; Aamoum, H. Iimpact of intellectual capital on profitability, market value, productivity, and return on equity: Empirical evidence from Moroccan ICT firms. J. Knowl. Econ. 2023, 14, 1734–1748. [Google Scholar] [CrossRef]
- Ning, J.; Jiang, X.; Luo, J. Relationship between enterprise digitalization and green innovation: A Mediated Moderation Model. J. Innov. Knowl. 2023, 8, 100326. [Google Scholar] [CrossRef]
- Onumah, J.; Duho, K.C.T. Impact of intellectual capital on bank efficiency in emerging markets: Evidence from Ghana. Int. J. Bank. Acc. Fin. 2020, 11, 435–460. [Google Scholar] [CrossRef]
- Opazo-Basáez, M.; Monroy-Osorio, J.C.; Marić, J. Evaluating the Effect of Green Technological Innovations on Organizational and Environmental Performance: A Treble Innovation Approach. Technovation 2024, 129, 102885. [Google Scholar] [CrossRef]
- Pan, D.; Yu, Y.; Hong, W.; Chen, S. Do campaign-style environmental regulations induce green economic growth? Evidence from China’s central environmental protection inspection policy. Energy Environ. 2023, 35, 2382–2406. [Google Scholar] [CrossRef]
- Peng, X.-Y.; Fu, Y.-H.; Zou, X.-Y. Gender Equality and Green Development: A Qualitative Survey. Innov. Green. Dev. 2024, 3, 100089. [Google Scholar] [CrossRef]
- Petushkova, V.V. China’s experience and prospects for sustainable development. Her. Russ. Acad. Sci. 2022, 92, 207–215. [Google Scholar] [CrossRef]
- Pulic, A. The VAICTM is an accounting tool for IC management. Int. J. Technol. Manag. 2000, 20, 702–714. [Google Scholar] [CrossRef]
- Reed, K.K.; Lubatkin, M.; Srinivasan, N. Proposing and Testing an intellectual capital-based View of a Firm. J. Manag. Stud. 2006, 43, 867–893. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ashfaq, K.; Bresciani, S.; Giacosa, E.; Mueller, J. Nexus between intellectual capital, interorganizational learning, industrial Internet of Things technology, and innovation performance: A resource-based perspective. J. Intellect. Cap. 2023, 24, 509–534. [Google Scholar] [CrossRef]
- Sajons, G.B. Estimating the causal effect of measured endogenous variables: A tutorial on experimentally randomized instrumental variables. Leadersh. Q. 2020, 31, 101348. [Google Scholar] [CrossRef]
- Salvi, A.; Vitolla, F.; Giakoumelou, A.; Raimo, N.; Rubino, M. Intellectual capital disclosure in integrated reports: Effect on firm value. Soc. Chang. 2020, 160, 120228. [Google Scholar] [CrossRef]
- Scafarto, V.; Dalwai, T.; Ricci, F.; della Corte, G. Digitalization and firms’ financial performance in healthcare: The Mediating Role of Intellectual Capital Efficiency. Sustainability 2023, 15, 4031. [Google Scholar] [CrossRef]
- Schiederig, T.; Tietze, F.; Herstatt, C. Green innovation in technology and innovation management–an exploratory literature review. RD Manag. 2012, 42, 180–192. [Google Scholar] [CrossRef]
- Secundo, G.; Ndou, V.; Vecchio, P.D.; De Pascale, G. Sustainable development, intellectual capital, and technology policies: Structured literature review and future research agenda. Soc. Chang. 2020, 153, 119917. [Google Scholar] [CrossRef]
- Shahzad, U.; Ghaemi Asl, M.; Panait, M.; Sarker, T.; Apostu, S.A. Emerging interaction of Artificial Intelligence with basic materials and oil and gas companies: A comparative look at Islamic versus conventional markets. Resour. Policy 2023, 80, 103197. [Google Scholar] [CrossRef]
- Shaver, J.M. Causal identification through a cumulative body of research in the study of strategies and organizations. J. Manag. 2020, 46, 1244–1256. [Google Scholar] [CrossRef]
- Skhvediani, A.; Koklina, A.; Kudryavtseva, T.; Maksimenko, D. Iimpact of intellectual capital on the performance of Russian manufacturing companies. Risks 2023, 11, 76. [Google Scholar] [CrossRef]
- Soewarno, N.; Tjahjadi, B. Measures that matter: An empirical investigation of intellectual capital and financial performance of banking firms in Indonesia. J. Intellect. Cap. 2020, 21, 1085–1106. [Google Scholar] [CrossRef]
- Sohel Rana, M.; Hossain, S.Z. Intellectual capital, firm performance, and sustainable growth: A study of DSE-listed nonfinancial companies in Bangladesh. Sustainability 2023, 15, 7206. [Google Scholar] [CrossRef]
- Sokolov, D.; Zavyalova, E. Human Resource Management Systems and Intellectual Capital: Is this Relationship Universal for Knowledge-Intensive Firms? Int. J. Manpow. 2021, 42, 683–701. [Google Scholar] [CrossRef]
- Su, H.; Qu, X.; Tian, S.; Ma, Q.; Li, L.; Chen, Y. Artificial intelligence empowerment: The impact of R&D investment on green radical innovation in high-tech enterprises. Syst. Res. Behav. Sci. 2022, 39, 489–502. [Google Scholar] [CrossRef]
- Suki, N.M.; Suki, N.M.; Sharif, A.; Afshan, S.; Rexhepi, G. Importance of green innovation in business sustainability: Identifying the key roles of green intellectual capital and green SCM. Bus. Strategy Environ. 2023, 32, 1542–1558. [Google Scholar] [CrossRef]
- Sun, G.; Fang, J.; Li, T.; Ai, Y. Effects of climate–policy uncertainty on green innovation in Chinese enterprises. Int. Rev. Financ. Anal. 2024, 91, 102960. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Xing, Z. Do international trade diversification, intellectual capital, and renewable energy transitions ensure effective natural resource management in the BRICST region? Resour. Policy 2023, 81, 103429. [Google Scholar] [CrossRef]
- Švarc, J.; Lažnjak, J. The role of national intellectual capital in the digital transformation of EU countries. Another Digit. Divid. JIC 2021, 22, 768–791. [Google Scholar] [CrossRef]
- Takalo, S.K.; Tooranloo, H.S. Green innovation: A systematic literature review. J. Clean. Prod. 2021, 279, 122474. [Google Scholar] [CrossRef]
- Tang, M.; Liu, Y.; Hu, F.; Wu, B. Effect of digital transformation on enterprises’ green innovation: Empirical evidence from listed companies in China. Energy Econ. 2023, 128, 107135. [Google Scholar] [CrossRef]
- Tariq, A.; Ehsan, S.; Badir, Y.F.; Memon, M.A.; Khan Sumbal, M.S.U. Does green process innovation affect a Firm’s financial risk? The moderating role of slack resources and competitive intensity. Eur. J. Innov. Manag. 2023, 26, 1168–1185. [Google Scholar] [CrossRef]
- Teng, Z.; Guo, C.; Zhao, Q.; Mubarik, M.S. Antecedents of green process innovation adoption: An AHP analysis of China’s Gas sector. Resour. Policy 2023, 85, 103959. [Google Scholar] [CrossRef]
- Tian, H.; Li, Y.; Zhang, Y. Digital and intelligent empowerment: Can big data capability drive green process innovation of manufacturing enterprises? J. Clean. Prod. 2022, 377, 134261. [Google Scholar] [CrossRef]
- Tian, H.; Zhao, L.; Yunfang, L.; Wang, W. Can enterprise green technology innovation performance achieve “corner overtaking” by using artificial intelligence?—Evidence from Chinese manufacturing enterprises. Soc. Chang. 2023, 194, 122732. [Google Scholar] [CrossRef]
- Tsou, H.-T.; Chen, J.-S. How does digital technology usage benefit firm performance? Digital transformation strategy and organisational innovation as mediators. Technol. Anal. Strateg. Manag. 2023, 35, 1114–1127. [Google Scholar] [CrossRef]
- Ullah, A.; Pinglu, C.; Ullah, S.; Qian, N.; Zaman, M. Impact of intellectual capital efficiency on financial stability in banks: Insights from an emerging economy. Int. J. Fin. Econ. 2023, 28, 1858–1871. [Google Scholar] [CrossRef]
- Ushie, A.M.; Jiang, X.; Ali, A.; Nwoba, A.C.; Hossain, S.F.A. Green innovation in emerging economies: The role of managerial ties and market learning. Bus. Strategy Environ. 2023, 32, 3513–3528. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef]
- Wamba-Taguimdje, S.-L.; Fosso Wamba, S.; Kala Kamdjoug, J.R.; Tchatchouang Wanko, C.E. Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Bus. Process Manag. J. 2020, 26, 1893–1924. [Google Scholar] [CrossRef]
- Wang, A.; Si, L.; Hu, S. Can the penalty mechanism of mandatory environmental regulations promote green innovation? Evidence from China’s enterprise data. Energy Econ. 2023, 125, 106856. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Li, H.; Yang, C. Analyzing the impact of low-carbon city Pilot policy on enterprises’ labor demand: Evidence from China. Energy Econ. 2023, 124, 106676. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Li, J.; Wang, Z. Green process innovation, green product innovation and its economic performance improvement paths: A survey and structural model. J. Environ. Manag. 2021, 297, 113282. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Su, X.; Wang, H.; Zou, R. Intellectual capital and technological dynamic capability: Evidence from Chinese enterprises. J. Intellect. Cap. 2019, 20, 453–471. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, S.; Liang, H.; Wang, N.; Xiang, E. Intellectual capital and firm performance: The mediating role of innovation speed and quality. Int. J. Hum. Resour. Manag. 2021, 32, 1222–1250. [Google Scholar] [CrossRef]
- Wu, K.; Fu, Y.; Kong, D. Does the digital transformation of enterprises affect stock price crash risk? Fin. Res. Lett. 2022, 48, 102888. [Google Scholar] [CrossRef]
- Xie, X.; Han, Y.; Hoang, T.T. Can green process innovation improve both financial and environmental performance? The roles of TMT heterogeneity and ownership. Soc. Chang. 2022, 184, 122018. [Google Scholar] [CrossRef]
- Xie, X.; Huo, J.; Zou, H. Green process innovation, green product innovation, and corporate financial performance: A content analysis method. J. Bus. Res. 2019, 101, 697–706. [Google Scholar] [CrossRef]
- Xie, X.; Zhu, Q.; Wang, R. Turning green subsidies into sustainability: How green process innovation improves firms’ green Image. Bus. Strategy Environ. 2019, 28, 1416–1433. [Google Scholar] [CrossRef]
- Xu, A.; Zhu, Y.; Wang, W. Micro green technology innovation effects of green finance Pilot policy—From the perspectives of action points and green value. J. Bus. Res. 2023, 159, 113724. [Google Scholar] [CrossRef]
- Xu, J.; Liu, F. The impact of intellectual capital on firm performance: A modified and extended VAIC Model. JOC 2020, 12, 161–176. [Google Scholar] [CrossRef]
- Xu, J.; Shang, Y.; Yu, W.; Liu, F. Intellectual capital, technological innovation and firm performance: Evidence from China’s manufacturing sector. Sustainability 2019, 11, 5328. [Google Scholar] [CrossRef]
- Xu, Q.; Li, X.; Guo, F. Digital transformation and environmental performance: Evidence from Chinese resource-based enterprises. Corp. Soc. Responsib. Environ. Manag. 2023, 30, 1816–1840. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, Q.; Zhang, X.; Li, C. Can digital transformation promote green technology innovation? Sustainability 2022, 14, 7497. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Liu, Y. The effect of manufacturing intelligence on green innovation performance in China. Soc. Chang. 2022, 178, 121569. [Google Scholar] [CrossRef]
- Yang, J.Y.; Roh, T. Open for green innovation: From the perspective of green process and green consumer innovation. Sustainability 2019, 11, 3234. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, D. Influence of COVID-19 on asymmetric cost behavior and intellectual capital efficiency: A comparison of Australian and Chinese listed firms. Asia Pac. J. Acc. Econ. 2023, 31, 477–493. [Google Scholar] [CrossRef]
- Yin, K.; Cai, F.; Huang, C. How does artificial intelligence development affect green technology innovation in China? Evidence from dynamic Panel data analysis. Environ. Sci. Pollut. Res. Int. 2023, 30, 28066–28090. [Google Scholar] [CrossRef]
- Yin, S.; Yu, Y. An adoption-implementation framework of digital green knowledge to improve the performance of digital green innovation practices for Industry 5.0. J. Clean. Prod. 2022, 363, 132608. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, J.Z.; Cao, Y.; Kazancoglu, Y. Intelligent transformation of the manufacturing industry for Industry 4.0: Seizing financial benefits from supply chain relationship capital through enterprise green management. Soc. Chang. 2021, 172, 120999. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; Zhou, P. Role of digitalization in energy storage technological innovation: Evidence from China. Renew. Sustain. Energy Rev. 2023, 171, 113014. [Google Scholar] [CrossRef]
- Zhao, J. Coupling open innovation: Network position, knowledge integration ability, and innovation performance. J. Knowl. Econ. 2023, 14, 1538–1558. [Google Scholar] [CrossRef]
- Zhao, Q.; Xu, W.; Ji, Y. Predicting financial distress of Chinese listed companies using machine learning: To what extent does textual disclosure matter? Int. Rev. Financ. Anal. 2023, 89, 102770. [Google Scholar] [CrossRef]
- Zhao, X.; Qian, Y. Does digital technology promote green innovation performance? J. Knowl. Econ. 2023, 15, 7568–7587. [Google Scholar] [CrossRef]
Variable | Type | Question |
---|---|---|
Green Process Innovation (GPCI) | Clean Technological Innovation | Q1: Aim to reduce the consumption of resources and energy and improve resource energy efficiency |
Q2: Consider environmental issues in the processes of production planning and control | ||
Q3: Use recycled materials, recycling techniques, and environmental technologies | ||
End-of-pipe Technological Innovation | Q4: Use pollution control equipment | |
Q5: Adopt pollution control projects or technologies |
Artificial Intelligence | Business Intelligence | Image Understanding |
---|---|---|
Investment decision support system | Intelligent data analysis | Intelligent robot |
Machine learning | Deep learning | Semantic search |
Biometric identification technology | Face recognition | Speech recognition |
Authentication of identity | Autonomous driving | Natural language processing |
Type | Variables | Symbol | Definitions |
---|---|---|---|
Dependent variable | Green process innovation | GPCI | Text analysis and evaluation of CSR report |
Independent variable | Artificial intelligence | AI | The logarithm of the frequency of AI terms in corporate annual reports |
Moderating variables | Human capital efficiency | HCE | HCE = VA/HC |
Structural capital efficiency | SCE | SCE = SC/VA | |
Capital employed efficiency | CEE | CEE = VA/CE | |
Relational capital efficiency | RCE | RCE = RC/VA | |
Control variables | Size of firm | Size | Logarithm of total assets |
Listed years | ListAge | Years the enterprise has been listed | |
Return on asset | ROA | Net profit/average balance of total assets | |
Size of board | Board | Logarithm of the number of board members | |
Sex ratio of board | Sex | Number of female directors/number of board members | |
Environmental regulation | ISO14001 | 1 for ISO14001-certified and 0 otherwise |
Variable | N | Mean | SD | Min | Median | Max |
---|---|---|---|---|---|---|
GPCI | 5681 | 0.70 | 0.418 | 0.000 | 0.800 | 1.600 |
AI | 5681 | 0.24 | 0.523 | 0.000 | 0.000 | 2.197 |
HCE | 5681 | 3.01 | 1.982 | 1.103 | 2.378 | 9.693 |
SCE | 5681 | 0.55 | 0.219 | 0.033 | 0.579 | 0.932 |
CEE | 5681 | 0.17 | 0.110 | 0.027 | 0.139 | 0.571 |
RCE | 5681 | 0.22 | 0.180 | 0.002 | 0.173 | 0.771 |
Size | 5681 | 23.15 | 1.388 | 20.523 | 23.032 | 26.994 |
Board | 5681 | 2.16 | 0.202 | 1.609 | 2.197 | 2.708 |
ListAge | 5681 | 2.45 | 0.771 | 0.000 | 2.708 | 3.367 |
ISO14001 | 5681 | 0.38 | 0.485 | 0.000 | 0.000 | 1.000 |
ROA | 5681 | 0.05 | 0.049 | −0.100 | 0.040 | 0.227 |
Sex | 5681 | 0.15 | 0.127 | 0.000 | 0.111 | 0.500 |
GPCI | AI | HCE | SCE | CEE | RCE | Size | Board | ListAge | ISO14001 | ROA | Sex | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GPCI | 1 | |||||||||||
AI | 0.106 *** | 1 | ||||||||||
HCE | 0.025 * | −0.113 *** | 1 | |||||||||
SCE | 0.031 ** | −0.095 *** | 0.824 *** | 1 | ||||||||
CEE | 0.068 *** | 0.028 ** | 0.186 *** | 0.248 *** | 1 | |||||||
RCE | −0.007 | −0.003 | −0.071 *** | 0.017 | 0.431 *** | 1 | ||||||
Size | 0.244 *** | 0.036 *** | 0.183 *** | 0.158 *** | −0.244 *** | −0.199 *** | 1 | |||||
Board | 0.068 *** | −0.018 | −0.032 ** | −0.035 *** | −0.059 *** | −0.052 *** | 0.213 *** | 1 | ||||
ListAge | −0.014 | −0.064 *** | 0.053 *** | 0.006 | −0.181 *** | −0.018 | 0.337 *** | 0.104 *** | 1 | |||
ISO14001 | 0.148 *** | 0.036 *** | −0.125 *** | −0.104 *** | 0.064 *** | −0.018 | −0.171 *** | −0.025 * | −0.162 *** | 1 | ||
ROA | 0.069 *** | 0.01 | 0.332 *** | 0.345 *** | 0.606 *** | −0.125 *** | −0.104 *** | −0.012 | −0.186 *** | 0.053 *** | 1 | |
Sex | 0.012 | −0.011 | 0.054 *** | 0.060 *** | 0.061 *** | 0.055 *** | −0.159 *** | −0.101 *** | −0.058 *** | 0.055 *** | 0.074 *** | 1 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
GPCI | GPCI | GPCI | GPCI | GPCI | |
AI | 0.0266 ** | 0.0297 ** | 0.0291 ** | 0.0255 ** | 0.0264 ** |
(2.3023) | (2.5782) | (2.4791) | (2.2542) | (2.2993) | |
HCE | 0.0021 | ||||
(0.2946) | |||||
AI × HCE | 0.0088 * | ||||
(1.9227) | |||||
SCE | −0.0059 | ||||
(−0.0975) | |||||
AI × SCE | 0.0727 * | ||||
(1.7618) | |||||
CEE | 0.0646 | ||||
(0.4436) | |||||
AI × CEE | 0.2533 ** | ||||
(2.3417) | |||||
RCE | 0.1533 | ||||
(1.5704) | |||||
AI × RCE | 0.1204 * | ||||
(1.9089) | |||||
Size | 0.0679 *** | 0.0673 *** | 0.0678 *** | 0.0663 *** | 0.0687 *** |
(3.3383) | (3.2859) | (3.2807) | (3.2478) | (3.3795) | |
Board | 0.0312 | 0.0321 | 0.0321 | 0.0324 | 0.0337 |
(0.5850) | (0.6018) | (0.6003) | (0.6099) | (0.6338) | |
ListAge | 0.0524 * | 0.0530 * | 0.0521 * | 0.0488 | 0.0513 * |
(1.7308) | (1.7488) | (1.7185) | (1.6137) | (1.6916) | |
ISO14001 | 0.0724 *** | 0.0727 *** | 0.0729 *** | 0.0727 *** | 0.0718 *** |
(4.9078) | (4.9211) | (4.9389) | (4.9364) | (4.8773) | |
ROA | 0.1509 | 0.1320 | 0.1656 | 0.1106 | 0.2775 * |
(1.0315) | (0.7400) | (0.9148) | (0.5658) | (1.6664) | |
Sex | 0.0135 | 0.0133 | 0.0119 | 0.0133 | 0.0141 |
(0.1936) | (0.1911) | (0.1716) | (0.1917) | (0.2028) | |
Constant | −1.0987 ** | −1.0942 ** | −1.0935 ** | −1.0653 ** | −1.1602 ** |
(−2.4093) | (−2.3982) | (−2.3942) | (−2.3234) | (−2.5262) | |
Firm FE | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES |
N | 5681 | 5681 | 5681 | 5681 | 5681 |
R-squared | 0.0885 | 0.0889 | 0.0907 | 0.0960 | 0.0969 |
Hypothesis | Result | |
---|---|---|
H1 | Artificial intelligence has a positive impact on corporate green process innovation. | Supported |
H2 | Human capital promotes the positive impact of AI on corporate green process innovation. | Supported |
H3 | Structural capital promotes the positive impact of AI on corporate green process innovation. | Supported |
H4 | The capital employed promotes AI’s positive impact on corporate green process innovation. | Supported |
H5 | Relational capital promotes the positive impact of AI on corporate green process innovation. | Supported |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
GPCI | GPCI | GPCI | GPCI | GPCI | |
AI1 | 0.5845 *** | 0.6935 *** | 0.6718 *** | 0.5272 ** | 0.5559 ** |
(2.5851) | (2.9781) | (2.8887) | (2.4233) | (2.5256) | |
HCE | 0.0014 | ||||
(0.1998) | |||||
AI1 × HCE | 0.2210 * | ||||
(1.8950) | |||||
SCE | 0.0100 | ||||
(0.1619) | |||||
AI1 × SCE | 1.9241 ** | ||||
(2.2646) | |||||
CEE | 0.0675 | ||||
(0.4489) | |||||
AI1 × CEE | 4.1293 * | ||||
(1.8860) | |||||
RCE | 0.1408 | ||||
(1.3936) | |||||
AI1 × RCE | 2.3199 * | ||||
(1.8776) | |||||
Size | 0.0633 *** | 0.0629 *** | 0.0627 *** | 0.0624 *** | 0.0642 *** |
(3.1135) | (3.0658) | (3.0377) | (3.0434) | (3.1463) | |
Board | 0.0341 | 0.0356 | 0.0358 | 0.0352 | 0.0358 |
(0.6320) | (0.6590) | (0.6632) | (0.6539) | (0.6649) | |
ListAge | 0.0464 | 0.0476 | 0.0478 | 0.0459 | 0.0458 |
(1.5025) | (1.5430) | (1.5502) | (1.4854) | (1.4777) | |
ISO14001 | 0.0711 *** | 0.0715 *** | 0.0714 *** | 0.0712 *** | 0.0703 *** |
(4.7803) | (4.8028) | (4.7984) | (4.7930) | (4.7450) | |
ROA | 0.1409 | 0.1351 | 0.1297 | 0.0914 | 0.2580 |
(0.9758) | (0.7650) | (0.7224) | (0.4642) | (1.5581) | |
Sex | 0.0202 | 0.0206 | 0.0190 | 0.0199 | 0.0191 |
(0.2854) | (0.2914) | (0.2684) | (0.2828) | (0.2699) | |
Firm FE | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES |
Observations | 5672 | 5672 | 5672 | 5672 | 5672 |
R-squared | 0.0944 | 0.0949 | 0.0949 | 0.0993 | 0.1000 |
Variable | (1) | (2) |
---|---|---|
AI | GPCI | |
AIt−1 | 0.3369 *** | |
(9.1681) | ||
AI | 0.0858 ** | |
(1.9990) | ||
Size | 0.0364 | 0.0696 *** |
(1.2525) | (2.9200) | |
Board | −0.0443 | 0.0132 |
(−0.5387) | (0.2369) | |
ListAge | 0.1732 ** | 0.0165 |
(2.4010) | (0.3276) | |
ISO14001 | −0.0012 | 0.0592 *** |
(−0.0560) | (3.3893) | |
ROA | −0.2308 | 0.1035 |
(−1.0492) | (0.5999) | |
Sex | −0.0488 | −0.1405 * |
(−0.4853) | (−1.8220) | |
Constant | −1.0483 | −0.9410 * |
(−1.5099) | (−1.7689) | |
Firm FE | YES | YES |
Year FE | YES | YES |
N | 3834 | 3834 |
R-squared | 0.181 | 0.094 |
Underidentification test p-value | 0.000 | |
Cragg–Donald Wald F statistic | 351.522 | |
Kleibergen–Paap rk Wald F statistic | 98.851 | |
10% maximal instrumental variable size | 16.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, X.; Sun, F.; Li, X. The Functional Mechanisms through Which Artificial Intelligence Influences the Innovation of Green Processes of Enterprises. Systems 2024, 12, 378. https://doi.org/10.3390/systems12090378
Wang J, Wang X, Sun F, Li X. The Functional Mechanisms through Which Artificial Intelligence Influences the Innovation of Green Processes of Enterprises. Systems. 2024; 12(9):378. https://doi.org/10.3390/systems12090378
Chicago/Turabian StyleWang, Jue, Xiao Wang, Feng Sun, and Xinyu Li. 2024. "The Functional Mechanisms through Which Artificial Intelligence Influences the Innovation of Green Processes of Enterprises" Systems 12, no. 9: 378. https://doi.org/10.3390/systems12090378
APA StyleWang, J., Wang, X., Sun, F., & Li, X. (2024). The Functional Mechanisms through Which Artificial Intelligence Influences the Innovation of Green Processes of Enterprises. Systems, 12(9), 378. https://doi.org/10.3390/systems12090378