A Comprehensive Review of Essential Oil–Nanotechnology Synergy for Advanced Dermocosmetic Delivery
Abstract
:1. Introduction
2. Nanoparticles in Dermocosmetic Applications
3. Challenges of Essential Oils and Potential Solutions
Essential Oil | Properties | Application | Ref. |
---|---|---|---|
Lavender, tea tree, and lemon | Antimicrobial activity | Cosmetic preservative systems | [132] |
Menthol | Menthol exhibits various biological activities, including antibacterial, antifungal, antipruritic, anticancer, and analgesic effects, as well as acting as an effective fumigant | Medicinal products for its cooling and biological effects | [133] |
Thymus vulgaris L. (Thyme) | Hepatoprotective properties and to have effectiveness as expectorant agent, anti-acne agent, and as fungicidal and antiviral drug | Dermocosmetic and pharmaceuticals products | [134,135,136] |
Citronella | Various activities such as antimicrobial, anthelmintic, antioxidant, anticonvulsant, antitrypanosomal, and wound healing properties, in addition to its mosquito repellent action | Pharmaceuticals, biomedical applications, cosmetics, food, veterinary, and agriculture applications | [137,138] |
Rosemary (Rosmarinus officinalis L.) | Antioxidant, anti-inflammatory, antimicrobial, memory enhancement, digestive aid, hair and scalp health, pain relief, etc. | Gels, shampoos, soaps, rosemary water, cleansing milk, deodorant, anti-wrinkle cream, aftershave lotion, hydrating facial cream, cream for the eye contour area, etc. | [139,140,141,142] |
Lavender (Lavandula angustifolia L.) | Antimicrobial, anti-inflammatory, healing, relaxing and calming, antioxidant, and analgesic properties | Dermocosmetic and pharmaceuticals products | [143,144] |
Tagetes minuta, Euphorbia granulata and Galinsoga parviflora | Anti-inflammatory, antimicrobial, antiviral, and antioxidant properties | Dermocosmetic and pharmaceuticals products | [145] |
Argan oil nanocapsules containing naproxen | Moisturizing, anti-aging, nourishing, anti-inflammatory, wound healing, hair care, UV protection, and antimicrobial properties | Cosmetic and transdermal local applications | [146,147,148] |
4. Addressing Skin Aging with Nanomaterials and Essential Oils
5. Essential Oils and Nanoparticles for Advanced Dermocosmetic Delivery Systems
5.1. Precision Delivery Enabled by Nanoemulsions
5.2. Sustained Release Dynamics
5.3. Current Scientific Landscape and Futuristic Trajectories
6. Sustainability Considerations in Nanotechnology-Based Dermocosmetic Formulations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zamora Carballo, I. Development of a Range of Products for Acne Treatment on Sensitive Skin and Preliminary Design of Its Manufacturing Process. 2022. Available online: http://hdl.handle.net/2445/188069 (accessed on 25 February 2024).
- Ngoc, L.T.N.; Moon, J.-Y.; Lee, Y.-C. Plant Extract-Derived Carbon Dots as Cosmetic Ingredients. Nanomaterials 2023, 13, 2654. [Google Scholar] [CrossRef] [PubMed]
- Shinde, D.B.; Pawar, R.; Vitore, J.; Kulkarni, D.; Musale, S.S.; Giram, P. Natural and Synthetic Functional Materials for Broad Spectrum Applications in Antimicrobials, Antivirals and Cosmetics. Polym. Adv. Technol. 2021, 32, 4204–4222. [Google Scholar] [CrossRef]
- Romes, N.B.; Abdul Wahab, R.; Abdul Hamid, M. The Role of Bioactive Phytoconstituents-Loaded Nanoemulsions for Skin Improvement: A Review. Biotechnol. Biotechnol. Equip. 2021, 35, 711–730. [Google Scholar] [CrossRef]
- Cunha, C.; Ribeiro, H.M.; Rodrigues, M.; Araujo, A.R.T.S. Essential Oils Used in Dermocosmetics: Review about Its Biological Activities. J. Cosmet. Dermatol. 2022, 21, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Mihranyan, A.; Ferraz, N.; Strømme, M. Current Status and Future Prospects of Nanotechnology in Cosmetics. Prog. Mater. Sci. 2012, 57, 875–910. [Google Scholar] [CrossRef]
- Santos, A.C.; Morais, F.; Simões, A.; Pereira, I.; Sequeira, J.A.D.; Pereira-Silva, M.; Veiga, F.; Ribeiro, A. Nanotechnology for the Development of New Cosmetic Formulations. Expert Opin. Drug Deliv. 2019, 16, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.K.; Dey, A.; Singhvi, G.; Pandey, M.M.; Singh, V.; Kesharwani, P. Emerging Trends of Nanotechnology in Advanced Cosmetics. Colloids Surf. B Biointerfaces 2022, 214, 112440. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Sandhu, K.; Chockalingam, S. Chapter 10—Nanotechnology-Based Healthcare Engineering Products and Recent Patents—An Update. In Emerging Nanotechnologies for Medical Applications; Ahmad, N., Packirisamy, G., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2023; pp. 273–296. ISBN 978-0-323-91182-5. [Google Scholar]
- Nandhini, J.; Karthikeyan, E.; Rajeshkumar, S. Nanomaterials for Wound Healing: Current Status and Futuristic Frontier. Biomed. Technol. 2024, 6, 26–45. [Google Scholar] [CrossRef]
- Gupta, V.; Mohapatra, S.; Mishra, H.; Farooq, U.; Kumar, K.; Ansari, M.J.; Aldawsari, M.F.; Alalaiwe, A.S.; Mirza, M.A.; Iqbal, Z. Nanotechnology in Cosmetics and Cosmeceuticals—A Review of Latest Advancements. Gels 2022, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Rohilla, S.; Rohilla, A.; Narwal, S.; Dureja, H.; Bhagwat, D.P. Global Trends of Cosmeceutical in Nanotechnology: A Review. Pharm. Nanotechnol. 2023, 11, 410–424. [Google Scholar] [CrossRef] [PubMed]
- Ayumi, N.S.; Sahudin, S.; Hussain, Z.; Hussain, M.; Samah, N.H.A. Polymeric Nanoparticles for Topical Delivery of Alpha and Beta Arbutin: Preparation and Characterization. Drug Deliv. Transl. Res. 2019, 9, 482–496. [Google Scholar] [CrossRef] [PubMed]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Alias, A.H.D.; Abdul Razak, N.Q.; Md Yusoff, M.H.; Chin, K.-H.; Kamal, M.L.; Uyup, N.H.; Abdullah, S.; Ridzuan, N.S.; Saaid, M.; Shafie, M.H. Antioxidant and Antimicrobial Activities of Essential Oils Extracted from Bamboo (Bambusa vulgaris) Leaves and Its Application in Skincare Products: A Review. Biocatal. Agric. Biotechnol. 2023, 54, 102930. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Vijayarani, K.; Vanajothi, R. Elucidating the Role of Essential Oils in Pharmaceutical and Industrial Applications. In Essential Oils; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2023; pp. 185–205. ISBN 978-1-119-82961-4. [Google Scholar]
- Padalia, R.C.; Verma, D.K.; Arora, C.; Mahish, P.K. Essential Oils: Sources, Production and Applications; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2023; ISBN 978-3-11-079160-0. [Google Scholar]
- Kashyap, N.; Kumari, A.; Raina, N.; Zakir, F.; Gupta, M. Prospects of Essential Oil Loaded Nanosystems for Skincare. Phytomedicine Plus 2022, 2, 100198. [Google Scholar] [CrossRef]
- Tamrakar, D.G.; Thakur, S.S. Nanotechnology’s Application in Cosmetics: Dermatology and Skin Care Items. Migr. Lett. 2023, 20, 1–18. [Google Scholar] [CrossRef]
- Beasley, D.G.; Meyer, T.A. Characterization of the UVA Protection Provided by Avobenzone, Zinc Oxide, and Titanium Dioxide in Broad-Spectrum Sunscreen Products. Am. J. Clin. Dermatol. 2010, 11, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Smijs, T.G.; Pavel, S. Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreens: Focus on Their Safety and Effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Jangid, N.K.; Khan, A.U. Biogenic Synthesis of ZnO Nanoparticles from Evolvulus Alsinoides Plant Extract. J. Umm Al-Qura Univ. Appl. Sci. 2023, 10, 51–57. [Google Scholar] [CrossRef]
- Ait-Touchente, Z.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A.; Lebaz, N.; Fessi, H.; Elaissari, A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. Nanomaterials 2023, 13, 1688. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Cao, G.; Li, K.; Zhang, R.; Li, X. Nanocomposites for the Delivery of Bioactive Molecules in Tissue Repair: Vital Structural Features, Application Mechanisms, Updated Progress and Future Perspectives. J. Mater. Chem. B 2020, 8, 10271–10289. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.L.; dos Santos, W.M.; de Sousa, A.L.M.D.; de Albuquerque Wanderley Sales, V.; Nóbrega, F.P.; de Oliveira, M.V.G.; Rolim-Neto, P.J. Lipid Nanoparticles as a Skin Wound Healing Drug Delivery System: Discoveries and Advances. Curr. Pharm. Des. 2020, 26, 4536–4550. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Jurado, F.; Franco-Vega, A.; Ramírez-Corona, N.; Palou, E.; López-Malo, A. Essential Oils: Antimicrobial Activities, Extraction Methods, and Their Modeling. Food Eng. Rev. 2015, 7, 275–297. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Muyima, N.Y.O.; Zulu, G.; Bhengu, T.; Popplewell, D. The Potential Application of Some Novel Essential Oils as Natural Cosmetic Preservatives in an Aqueous Cream Formulation. Flavour Fragr. J. 2002, 17, 258–266. [Google Scholar] [CrossRef]
- Voon, H.C.; Bhat, R.; Rusul, G. Flower Extracts and Their Essential Oils as Potential Antimicrobial Agents for Food Uses and Pharmaceutical Applications. Compr. Rev. Food Sci. Food Saf. 2012, 11, 34–55. [Google Scholar] [CrossRef]
- Wongsukkasem, N.; Soynark, O.; Suthakitmanus, M.; Chongdiloet, E.; Chairattanapituk, C.; Vattanikitsiri, P.; Hongratanaworakit, T.; Tadtong, S. Antiacne-Causing Bacteria, Antioxidant, Anti-Tyrosinase, Anti-Elastase and Anti-Collagenase Activities of Blend Essential Oil Comprising Rose, Bergamot and Patchouli Oils. Nat. Prod. Commun. 2018, 13, 1934578X1801300529. [Google Scholar] [CrossRef]
- Butnariu, M. Plants as Source of Essential Oils and Perfumery Applications. In Bioprospecting of Plant Biodiversity for Industrial Molecules; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 261–292. ISBN 978-1-119-71801-7. [Google Scholar]
- Wilson, R. Aromatherapy: Essential Oils for Vibrant Health and Beauty; Penguin: London, UK, 2002; ISBN 978-1-58333-130-9. [Google Scholar]
- Sarkic, A.; Stappen, I. Essential Oils and Their Single Compounds in Cosmetics—A Critical Review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef]
- Dwivedi, S.; Ahmad, I.Z. Role of Nanotechnology in the Development of Photoprotective Formulations. In Photoprotective Green Pharmacology: Challenges, Sources and Future Applications; Kannaujiya, V.K., Sinha, R.P., Rahman, M.A., Sundaram, S., Eds.; Springer Nature: Singapore, 2023; pp. 201–222. ISBN 978-981-9907-49-6. [Google Scholar]
- Al-Ouqaili, M.T.S.; Saleh, R.O.; Amin, H.I.M.; Jawhar, Z.H.; Akbarizadeh, M.R.; Naderifar, M.; Issa, K.D.; Gavilán, J.C.O.; Nobre, M.A.L.; Jalil, A.T.; et al. Synthesize of Pluronic-Based Nanovesicular Formulation Loaded with Pistacia Atlantica Extract for Improved Antimicrobial Efficiency. Arab. J. Chem. 2023, 16, 104704. [Google Scholar] [CrossRef]
- Shukla, S.; Mhaske, A.; Shukla, R. Nanocarriers for the Delivery of Cosmeceuticals. In Nanotechnology Based Delivery of Phytoconstituents and Cosmeceuticals; Pooja, D., Kulhari, H., Eds.; Springer Nature: Singapore, 2024; pp. 305–328. ISBN 978-981-9953-14-1. [Google Scholar]
- Salvioni, L.; Morelli, L.; Ochoa, E.; Labra, M.; Fiandra, L.; Palugan, L.; Prosperi, D.; Colombo, M. The Emerging Role of Nanotechnology in Skincare. Adv. Colloid Interface Sci. 2021, 293, 102437. [Google Scholar] [CrossRef] [PubMed]
- Omidian, H.; Mfoafo, K. Exploring the Potential of Nanotechnology in Pediatric Healthcare: Advances, Challenges, and Future Directions. Pharmaceutics 2023, 15, 1583. [Google Scholar] [CrossRef] [PubMed]
- Nordin, U.U.M.; Ahmad, N.; Salim, N.; Yusof, N.S.M. Lipid-Based Nanoparticles for Psoriasis Treatment: A Review on Conventional Treatments, Recent Works, and Future Prospects. RSC Adv. 2021, 11, 29080–29101. [Google Scholar] [CrossRef] [PubMed]
- Mahant, S.; Rao, R.; Souto, E.B.; Nanda, S. Analytical Tools and Evaluation Strategies for Nanostructured Lipid Carrier-Based Topical Delivery Systems. Expert Opin. Drug Deliv. 2020, 17, 963–992. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Charro, M.B. Recent Advances on Transdermal Iontophoretic Drug Delivery and Non-Invasive Sampling. J. Drug Deliv. Sci. Technol. 2009, 19, 75–88. [Google Scholar] [CrossRef]
- Tuan-Mahmood, T.-M.; McCrudden, M.T.C.; Torrisi, B.M.; McAlister, E.; Garland, M.J.; Singh, T.R.R.; Donnelly, R.F. Microneedles for Intradermal and Transdermal Drug Delivery. Eur. J. Pharm. Sci. 2013, 50, 623–637. [Google Scholar] [CrossRef]
- Milan, P.B.; Kargozar, S.; Joghataie, M.T.; Samadikuchaksaraei, A. Chapter 11—Nanoengineered Biomaterials for Skin Regeneration. In Nanoengineered Biomaterials for Regenerative Medicine; Mozafari, M., Rajadas, J., Kaplan, D., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 265–283. ISBN 978-0-12-813355-2. [Google Scholar]
- Bellu, E.; Medici, S.; Coradduzza, D.; Cruciani, S.; Amler, E.; Maioli, M. Nanomaterials in Skin Regeneration and Rejuvenation. Int. J. Mol. Sci. 2021, 22, 7095. [Google Scholar] [CrossRef] [PubMed]
- Hussein, Y.; Kamoun, E.A.; Loutfy, S.A.; Amin, R.; El-Fakharany, E.M.; Taha, T.H.; Amer, M. Physically and Chemically-Crosslinked L-Arginine-Loaded Polyvinyl Alcohol- Hyaluronic Acid- Cellulose Nanocrystals Hydrogel Membranes for Wound Healing: Influence of Crosslinking Methods on Biological Performance of Membranes In-Vitro. J. Umm Al-Qura Univ. Appl. Sci. 2023, 9, 304–316. [Google Scholar] [CrossRef]
- Raszewska-Famielec, M.; Flieger, J. Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions—An Overview of Dermo-Cosmetic and Dermatological Products. Int. J. Mol. Sci. 2022, 23, 15980. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Lochhead, R.Y.; Maibach, H.I.; Yamashita, Y. Cosmetic Science and Technology: Theoretical Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-802054-8. [Google Scholar]
- Janus, M. Application of Titanium Dioxide; BoD—Books on Deman: Norderstedt, Germany, 2017; ISBN 978-953-51-3429-9. [Google Scholar]
- Chauhan, R.; Kumar, A.; Tripathi, R.; Kumar, A. Advancing of Zinc Oxide Nanoparticles for Cosmetic Applications. In Handbook of Consumer Nanoproducts; Mallakpour, S., Hussain, C.M., Eds.; Springer: Singapore, 2021; pp. 1–16. ISBN 9789811564536. [Google Scholar]
- Saini; Devi, R. Photoprotection of Skin against Ultraviolet Radiations by Sunscreen. Int. J. Pharm. Biol. Arch. 2018, 9, 9–15. [Google Scholar]
- Mascarenhas-Melo, F.; Mathur, A.; Murugappan, S.; Sharma, A.; Tanwar, K.; Dua, K.; Singh, S.K.; Mazzola, P.G.; Yadav, D.N.; Rengan, A.K.; et al. Inorganic Nanoparticles in Dermopharmaceutical and Cosmetic Products: Properties, Formulation Development, Toxicity, and Regulatory Issues. Eur. J. Pharm. Biopharm. 2023, 192, 25–40. [Google Scholar] [CrossRef]
- Amina, S.J.; Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020, 15, 9823–9857. [Google Scholar] [CrossRef] [PubMed]
- Elahi, N.; Kamali, M.; Baghersad, M.H. Recent Biomedical Applications of Gold Nanoparticles: A Review. Talanta 2018, 184, 537–556. [Google Scholar] [CrossRef] [PubMed]
- Voliani, V.; Signore, G.; Nifosi, R.; Ricci, F.; Luin, S.; Beltram, F. Smart Delivery and Controlled Drug Release with Gold Nanoparticles: New Frontiers in Nanomedicine. Recent Pat. Nanomed. 2012, 2, 34–44. [Google Scholar] [CrossRef]
- Vaiserman, A.; Koliada, A.; Zayachkivska, A.; Lushchak, O. Nanodelivery of Natural Antioxidants: An Anti-Aging Perspective. Front. Bioeng. Biotechnol. 2020, 7, 447. [Google Scholar] [CrossRef] [PubMed]
- Kaur, I.P.; Agrawal, R. Nanotechnology: A New Paradigm in Cosmeceuticals. Recent Pat. Drug Deliv. Formul. 2007, 1, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Fernandes, A.R.; Martins-Gomes, C.; Coutinho, T.E.; Durazzo, A.; Lucarini, M.; Souto, S.B.; Silva, A.M.; Santini, A. Nanomaterials for Skin Delivery of Cosmeceuticals and Pharmaceuticals. Appl. Sci. 2020, 10, 1594. [Google Scholar] [CrossRef]
- Kyriakoudi, A.; Spanidi, E.; Mourtzinos, I.; Gardikis, K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. Plants 2021, 10, 1238. [Google Scholar] [CrossRef] [PubMed]
- Sezer, A.D. Application of Nanotechnology in Drug Delivery; BoD—Books on Demand: Norderstedt, Germany, 2014; ISBN 978-953-51-1628-8. [Google Scholar]
- Khoo, Z.C.; Kavin, T.; Jia, H.; Karthivashan, G.; Vigneswari, S.; Santhanam, R. Drug Delivery Approaches to Improve the Efficiency of Phytoderivatives against UV Induced Damage—A Review. J. Drug Deliv. Sci. Technol. 2023, 87, 104793. [Google Scholar] [CrossRef]
- D’Souza, A.; Shegokar, R. Nanostructured Lipid Carriers (NLCs) for Drug Delivery: Role of Liquid Lipid (Oil). Curr. Drug Deliv. 2021, 18, 249–270. [Google Scholar] [CrossRef] [PubMed]
- López-Hortas, L.; Torres, M.D.; Falqué, E.; Domínguez, H. Chapter 7—Organic UV Filter Loaded Nanocarriers with Broad Spectrum Photoprotection. In Nanocosmetics; Nanda, A., Nanda, S., Nguyen, T.A., Rajendran, S., Slimani, Y., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 127–140. ISBN 978-0-12-822286-7. [Google Scholar]
- Garcês, A.; Amaral, M.H.; Sousa Lobo, J.M.; Silva, A.C. Formulations Based on Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for Cutaneous Use: A Review. Eur. J. Pharm. Sci. 2018, 112, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Almeida, A.J.; Müller, R.H. Lipid Nanoparticles (SLN®, NLC®) for Cutaneous Drug Delivery:Structure, Protection and Skin Effects. J. Biomed. Nanotechnol. 2007, 3, 317–331. [Google Scholar] [CrossRef]
- Souto, E.B.; Jäger, E.; Jäger, A.; Štěpánek, P.; Cano, A.; Viseras, C.; de Melo Barbosa, R.; Chorilli, M.; Zielińska, A.; Severino, P.; et al. Lipid Nanomaterials for Targeted Delivery of Dermocosmetic Ingredients: Advances in Photoprotection and Skin Anti-Aging. Nanomaterials 2022, 12, 377. [Google Scholar] [CrossRef] [PubMed]
- Felippim, E.C.; Marcato, P.D.; Maia Campos, P.M.B.G. Development of Photoprotective Formulations Containing Nanostructured Lipid Carriers: Sun Protection Factor, Physical-Mechanical and Sensorial Properties. AAPS PharmSciTech 2020, 21, 311. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kuhad, A.; Bhandari, R. Novel Nanotechnological Approaches for Treatment of Skin-Aging. J. Tissue Viability 2022, 31, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-Z.; Tsai, Y.-Y.; Chang, L.-S.; Chen, Y.-J. Evaluation of Gallic Acid-Coated Gold Nanoparticles as an Anti-Aging Ingredient. Pharmaceuticals 2021, 14, 1071. [Google Scholar] [CrossRef]
- Khabir, Z.; Holmes, A.M.; Lai, Y.-J.; Liang, L.; Deva, A.; Polikarpov, M.A.; Roberts, M.S.; Zvyagin, A.V. Human Epidermal Zinc Concentrations after Topical Application of ZnO Nanoparticles in Sunscreens. Int. J. Mol. Sci. 2021, 22, 12372. [Google Scholar] [CrossRef] [PubMed]
- Jagajjanani Rao, K.; Paria, S. Anti- Malassezia Furfur Activity of Natural Surfactant Mediated in Situ Silver Nanoparticles for a Better Antidandruff Shampoo Formulation. RSC Adv. 2016, 6, 11064–11069. [Google Scholar] [CrossRef]
- Fatima, Q.A.; Ahmed, N.; Siddiqui, B.; Rehman, A.U.; Haq, I.U.; Khan, G.M.; Elaissari, A. Enhanced Antimicrobial Activity of Silver Sulfadiazine Cosmetotherapeutic Nanolotion for Burn Infections. Cosmetics 2022, 9, 93. [Google Scholar] [CrossRef]
- Tavano, L.; de Cindio, B.; Picci, N.; Ioele, G.; Muzzalupo, R. Drug Compartmentalization as Strategy to Improve the Physico-Chemical Properties of Diclofenac Sodium Loaded Niosomes for Topical Applications. Biomed. Microdevices 2014, 16, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Rancan, F.; Gao, Q.; Graf, C.; Troppens, S.; Hadam, S.; Hackbarth, S.; Kembuan, C.; Blume-Peytavi, U.; Rühl, E.; Lademann, J.; et al. Skin Penetration and Cellular Uptake of Amorphous Silica Nanoparticles with Variable Size, Surface Functionalization, and Colloidal Stability. ACS Nano 2012, 6, 6829–6842. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, M.; Hussain, F.; Ahamed, J.; Srinivasan, B.; Sambantham, M.T.; Al-Keridis, L.A.; AL-mekhlafi, F.A. Green Synthesizes and Characterization of Copper-Oxide Nanoparticles by Thespesia populnea against Skin-Infection Causing Microbes. J. King Saud Univ.-Sci. 2022, 34, 101885. [Google Scholar] [CrossRef]
- Ebada, H.M.K.; Nasra, M.M.A.; Elnaggar, Y.S.R.; Abdallah, O.Y. Novel Rhein–Phospholipid Complex Targeting Skin Diseases: Development, in Vitro, Ex Vivo, and in Vivo Studies. Drug Deliv. Transl. Res. 2021, 11, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Sahlevani, S.F.; Pandiyarajan, T.; Arulraj, A.; Valdés, H.; Sanhueza, F.; Contreras, D.; Gracia-Pinilla, M.A.; Mangalaraja, R.V. Tailored Engineering of Rod-Shaped Core@shell ZnO@CeO2 Nanostructures as an Optical Stimuli-Responsive in Sunscreen Cream. Mater. Today Commun. 2024, 38, 107959. [Google Scholar] [CrossRef]
- Leignadier, J.; Drago, M.; Lesouhaitier, O.; Barreau, M.; Dashi, A.; Worsley, O.; Attia-Vigneau, J. Lysine-Dendrimer, a New Non-Aggressive Solution to Rebalance the Microbiota of Acne-Prone Skin. Pharmaceutics 2023, 15, 2083. [Google Scholar] [CrossRef] [PubMed]
- Rapalli, V.K.; Kaul, V.; Waghule, T.; Gorantla, S.; Sharma, S.; Roy, A.; Dubey, S.K.; Singhvi, G. Curcumin Loaded Nanostructured Lipid Carriers for Enhanced Skin Retained Topical Delivery: Optimization, Scale-up, in-Vitro Characterization and Assessment of Ex-Vivo Skin Deposition. Eur. J. Pharm. Sci. 2020, 152, 105438. [Google Scholar] [CrossRef]
- Bikkad, M.L.; Nathani, A.H.; Mandlik, S.K.; Shrotriya, S.N.; Ranpise, N.S. Halobetasol Propionate-Loaded Solid Lipid Nanoparticles (SLN) for Skin Targeting by Topical Delivery. J. Liposome Res. 2014, 24, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Karthik, L.; Kirthi, A.V.; Ranjan, S.; Srinivasan, V.M. Biological Synthesis of Nanoparticles and Their Applications; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-55578-7. [Google Scholar]
- Salas, M.F.R.; Porras, P.C.; Vargas, M.J.C.; Molina, J.A.P.; Rojas, M.C.; Redondo, G.L.M. Nanotechnological Applications in Dermocosmetics. Eur. J. Pharm. Res. 2023, 3, 1–7. [Google Scholar] [CrossRef]
- Rathod, S.; Shinde, K.; Shinde, N.; Aloorkar, N. Cosmeceuticals and Nanotechnology in Beauty Care Products. RJTCS 2021, 12, 93–101. [Google Scholar] [CrossRef]
- Dini, I. Contribution of Nanoscience Research in Antioxidants Delivery Used in Nutricosmetic Sector. Antioxidants 2022, 11, 563. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Aggarwal, R.; Raina, N.; Khan, A. Vitamin-Loaded Nanocarriers as Nutraceuticals in Healthcare Applications. In Nanomedicine for Bioactives: Healthcare Applications; Rahman, M., Beg, S., Kumar, V., Ahmad, F.J., Eds.; Springer: Singapore, 2020; pp. 451–470. ISBN 9789811516641. [Google Scholar]
- Caritá, A.C.; Fonseca-Santos, B.; Shultz, J.D.; Michniak-Kohn, B.; Chorilli, M.; Leonardi, G.R. Vitamin C: One Compound, Several Uses. Advances for Delivery, Efficiency and Stability. Nanomed. Nanotechnol. Biol. Med. 2020, 24, 102117. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, S.; Wang, J.; Chen, Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front. Nutr. 2021, 8, 783831. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xie, X.; Chen, H.; Hou, X.; He, Y.; Shen, J.; Shi, J.; Feng, N. Advances in Next-Generation Lipid-Polymer Hybrid Nanocarriers with Emphasis on Polymer-Modified Functional Liposomes and Cell-Based-Biomimetic Nanocarriers for Active Ingredients and Fractions from Chinese Medicine Delivery. Nanomed. Nanotechnol. Biol. Med. 2020, 29, 102237. [Google Scholar] [CrossRef] [PubMed]
- Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-Based Nanocapsules for Drug Delivery. Int. J. Pharm. 2010, 385, 113–142. [Google Scholar] [CrossRef] [PubMed]
- Attama, A.A.; Umeyor, C.E. The Use of Solid Lipid Nanoparticles for Sustained Drug Release. Ther. Deliv. 2015, 6, 669–684. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, Y.; Muro, C.; Illescas, J.; Riera, F. Chapter 5—Polymer Nanoparticles for the Release of Complex Molecules. In Materials for Biomedical Engineering; Holban, A.-M., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 135–163. ISBN 978-0-12-818433-2. [Google Scholar]
- Vogt, A.; Wischke, C.; Neffe, A.T.; Ma, N.; Alexiev, U.; Lendlein, A. Nanocarriers for Drug Delivery into and through the Skin—Do Existing Technologies Match Clinical Challenges? J. Control. Release 2016, 242, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Lalotra, A.S.; Singh, V.; Khurana, B.; Agrawal, S.; Shrestha, S.; Arora, D. A Comprehensive Review on Nanotechnology-Based Innovations in Topical Drug Delivery for the Treatment of Skin Cancer. Curr. Pharm. Des. 2020, 26, 5720–5731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tsai, P.-C.; Ramezanli, T.; Michniak-Kohn, B.B. Polymeric Nanoparticles-Based Topical Delivery Systems for the Treatment of Dermatological Diseases. WIREs Nanomed. Nanobiotechnol. 2013, 5, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Paiva-Santos, A.C.; Mascarenhas-Melo, F.; Coimbra, S.C.; Pawar, K.D.; Peixoto, D.; Chá-Chá, R.; Araujo, A.R.; Cabral, C.; Pinto, S.; Veiga, F. Nanotechnology-Based Formulations toward the Improved Topical Delivery of Anti-Acne Active Ingredients. Expert Opin. Drug Deliv. 2021, 18, 1435–1454. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-Q.; Yang, X.; Wu, X.-F.; Fan, Y.-B. Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Front. Bioeng. Biotechnol. 2021, 9, 646554. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.D.; Stotland, M.; Ellis, J.I. The Safety of Nanosized Particles in Titanium Dioxide– and Zinc Oxide–Based Sunscreens. J. Am. Acad. Dermatol. 2009, 61, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Limsakul, S.; Mahatnirunkul, T.; Phromma, C.; Chomtong, T.; Cholnakasem, N.; Yimklan, S.; Ruankham, P.; Siyasukh, A.; Chimupala, Y. Novel Physical Sunscreen from One-Dimensional TiO2 Nanowire: Synthesis, Characterization and the Effects of Morphologies and Particle Size for Use as a Physical Sunscreen. Nano-Struct. Nano-Objects 2023, 35, 101027. [Google Scholar] [CrossRef]
- Wawrzynczak, A.; Feliczak-Guzik, A.; Nowak, I. Chapter 2—Nanosunscreens: From Nanoencapsulated to Nanosized Cosmetic Active Forms. In Nanobiomaterials in Galenic Formulations and Cosmetics; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 25–46. ISBN 978-0-323-42868-2. [Google Scholar]
- Lammari, N.; Louaer, O.; Meniai, A.H.; Elaissari, A. Encapsulation of Essential Oils via Nanoprecipitation Process: Overview, Progress, Challenges and Prospects. Pharmaceutics 2020, 12, 431. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R.; Pietrasik, D.; Walasek-Janusz, M. Essential Oils in the Treatment of Various Types of Acne—A Review. Plants 2023, 12, 90. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Alotaibi, B.M. Essential Oils of Some Medicinal Plants and Their Biological Activities: A Mini Review. J. Umm Al-Qura Univ. Appl. Sci. 2023, 9, 40–49. [Google Scholar] [CrossRef]
- Barradas, T.N.; de Holanda e Silva, K.G. Nanoemulsions of Essential Oils to Improve Solubility, Stability and Permeability: A Review. Env. Chem. Lett. 2021, 19, 1153–1171. [Google Scholar] [CrossRef]
- Al-Maqtari, Q.A.; Rehman, A.; Mahdi, A.A.; Al-Ansi, W.; Wei, M.; Yanyu, Z.; Phyo, H.M.; Galeboe, O.; Yao, W. Application of Essential Oils as Preservatives in Food Systems: Challenges and Future Prospectives—A Review. Phytochem. Rev. 2022, 21, 1209–1246. [Google Scholar] [CrossRef]
- Zuzarte, M.; Salgueiro, L. Essential Oils Chemistry. In Bioactive Essential Oils and Cancer; de Sousa, D.P., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–61. ISBN 978-3-319-19144-7. [Google Scholar]
- Sell, C. Chemistry of Essential Oils. In Handbook of Essential Oils; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-1-351-24646-0. [Google Scholar]
- Carvalho, I.T.; Estevinho, B.N.; Santos, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products—A review. Int. J. Cosmet. Sci. 2016, 38, 109–119. [Google Scholar] [CrossRef] [PubMed]
- El-Bassossy, T.A.I.; Abdelgawad, A.A.M.; Abo-Zaid, M.A.; Amin, A.H.; El-Agamy, S.A.; Elazab, K.M.; Ismail, A.H. Evaluation of the Immunomodulatory, Antioxidant, and Histopathological Effects of Cymbopogon Schoenanthus Essential Oil Extract on Kidney and Spleen in BALB/C Mice. J. Umm Al-Qura Univ. Appl. Sci. 2023, 9, 411–422. [Google Scholar] [CrossRef]
- Yang, S.; Liu, L.; Han, J.; Tang, Y. Encapsulating Plant Ingredients for Dermocosmetic Application: An Updated Review of Delivery Systems and Characterization Techniques. Int. J. Cosmet. Sci. 2020, 42, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, M.; Mehdizadeh, L. Chapter 13—Chemistry of Essential Oils and Factors Influencing Their Constituents. In Soft Chemistry and Food Fermentation; Grumezescu, A.M., Holban, A.M., Eds.; Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2017; pp. 379–419. ISBN 978-0-12-811412-4. [Google Scholar]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Mamusa, M.; Resta, C.; Sofroniou, C.; Baglioni, P. Encapsulation of Volatile Compounds in Liquid Media: Fragrances, Flavors, and Essential Oils in Commercial Formulations. Adv. Colloid Interface Sci. 2021, 298, 102544. [Google Scholar] [CrossRef] [PubMed]
- Jugreet, B.S.; Suroowan, S.; Rengasamy, R.K.; Mahomoodally, M.F. Chemistry, Bioactivities, Mode of Action and Industrial Applications of Essential Oils. Trends Food Sci. Technol. 2020, 101, 89–105. [Google Scholar] [CrossRef]
- Weisany, W.; Yousefi, S.; Tahir, N.A.; Golestanehzadeh, N.; McClements, D.J.; Adhikari, B.; Ghasemlou, M. Targeted Delivery and Controlled Released of Essential Oils Using Nanoencapsulation: A Review. Adv. Colloid Interface Sci. 2022, 303, 102655. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Vitorino, C.; Salgueiro, L.; Girão, H. Plant Nanovesicles for Essential Oil Delivery. Pharmaceutics 2022, 14, 2581. [Google Scholar] [CrossRef] [PubMed]
- Lammari, N.; Louaer, O.; Meniai, A.H.; Fessi, H.; Elaissari, A. Plant Oils: From Chemical Composition to Encapsulated Form Use. Int. J. Pharm. 2021, 601, 120538. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Badri, W.; Dumas, E.; Ghnimi, S.; Elaissari, A.; Saurel, R.; Gharsallaoui, A. Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview. Appl. Sci. 2021, 11, 5778. [Google Scholar] [CrossRef]
- Attia, M.S.; Abdel-Mottaleb, M.S.A.; Mohamed, E.H. Chapter 23—Smart Nanovesicles for Drug Delivery. In Systems of Nanovesicular Drug Delivery; Nayak, A.K., Hasnain, M.S., Aminabhavi, T.M., Torchilin, V.P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 367–385. ISBN 978-0-323-91864-0. [Google Scholar]
- Wu, P.; Wu, W.; Zhang, S.; Han, J.; Liu, C.; Yu, H.; Chen, X.; Chen, X. Therapeutic Potential and Pharmacological Significance of Extracellular Vesicles Derived from Traditional Medicinal Plants. Front. Pharmacol. 2023, 14, 1272241. [Google Scholar] [CrossRef] [PubMed]
- de Matos, S.P.; Teixeira, H.F.; de Lima, Á.A.N.; Veiga-Junior, V.F.; Koester, L.S. Essential Oils and Isolated Terpenes in Nanosystems Designed for Topical Administration: A Review. Biomolecules 2019, 9, 138. [Google Scholar] [CrossRef]
- Pateiro, M.; Gómez, B.; Munekata, P.E.S.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021, 26, 1547. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sain, S.; Mahur, S.; Choudhary, B.; Saini, P.; Kumar, A. Efficacy of Antimicrobial Substances in Food Safety and Quality: Recent Advances and Future Trends. In Antimicrobials in Food Science and Technology; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-326894-9. [Google Scholar]
- Sherry, M.; Charcosset, C.; Fessi, H.; Greige-Gerges, H. Essential Oils Encapsulated in Liposomes: A Review. J. Liposome Res. 2013, 23, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Dima, Ş.; Dima, C.; Iordăchescu, G. Encapsulation of Functional Lipophilic Food and Drug Biocomponents. Food Eng. Rev. 2015, 7, 417–438. [Google Scholar] [CrossRef]
- Orefice, N.S.; Di Raimo, R.; Mizzoni, D.; Logozzi, M.; Fais, S. Purposing Plant-Derived Exosomes-like Nanovesicles for Drug Delivery: Patents and Literature Review. Expert Opin. Ther. Pat. 2023, 33, 89–100. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.; Gil-Izquierdo, Á.; García-Viguera, C.; Domínguez-Perles, R. Nanoparticles and Controlled Delivery for Bioactive Compounds: Outlining Challenges for New “Smart-Foods” for Health. Foods 2018, 7, 72. [Google Scholar] [CrossRef]
- Tang, T.-T.; Wang, B.; Lv, L.-L.; Liu, B.-C. Extracellular Vesicle-Based Nanotherapeutics: Emerging Frontiers in Anti-Inflammatory Therapy. Theranostics 2020, 10, 8111–8129. [Google Scholar] [CrossRef] [PubMed]
- Buschmann, D.; Mussack, V.; Byrd, J.B. Separation, Characterization, and Standardization of Extracellular Vesicles for Drug Delivery Applications. Adv. Drug Deliv. Rev. 2021, 174, 348–368. [Google Scholar] [CrossRef] [PubMed]
- Maes, C.; Bouquillon, S.; Fauconnier, M.-L. Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. Molecules 2019, 24, 2539. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Moon, J.-Y. Bionanotechnology in Pharmaceuticals. In Introduction to Bionanotechnology; Lee, Y.-C., Moon, J.-Y., Eds.; Springer: Singapore, 2020; pp. 149–170. ISBN 9789811512933. [Google Scholar]
- Kunicka-Styczyńska, A.; Sikora, M.; Kalemba, D. Antimicrobial Activity of Lavender, Tea Tree and Lemon Oils in Cosmetic Preservative Systems. J. Appl. Microbiol. 2009, 107, 1903–1911. [Google Scholar] [CrossRef] [PubMed]
- Kamatou, G.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A Simple Monoterpene with Remarkable Biological Properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.S.; Tewari, D.; Sureda, A.; Suntar, I.; Belwal, T.; Battino, M.; Nabavi, S.M.; Nabavi, S.F. The Evidence of Health Benefits and Food Applications of Thymus vulgaris L. Trends Food Sci. Technol. 2021, 117, 218–227. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.d.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, Thyme, and Other Plant Sources: Health and Potential Uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef] [PubMed]
- Ridaoui, K.; Ziyadi, S.; Abdou, A.; Ousaid, F.E.-Z.; Moutaouakkil, A.; Elamrani, A.; Dakir, M.; Kabine, M. Purification, Chemical Characterization and Evaluation of the Antioxidant Potential of Carvacrol from Thymus Vulgaris. J. Essent. Oil Bear. Plants 2024, 27, 251–262. [Google Scholar] [CrossRef]
- Sharma, R.; Rao, R.; Kumar, S.; Mahant, S.; Khatkar, S. Therapeutic Potential of Citronella Essential Oil: A Review. Curr. Drug Discov. Technol. 2019, 16, 330–339. [Google Scholar] [CrossRef]
- Martins, I.M.; Barreiro, M.F.; Coelho, M.; Rodrigues, A.E. Microencapsulation of Essential Oils with Biodegradable Polymeric Carriers for Cosmetic Applications. Chem. Eng. J. 2014, 245, 191–200. [Google Scholar] [CrossRef]
- González-Minero, F.J.; Bravo-Díaz, L.; Ayala-Gómez, A. Rosmarinus officinalis L. (Rosemary): An Ancient Plant with Uses in Personal Healthcare and Cosmetics. Cosmetics 2020, 7, 77. [Google Scholar] [CrossRef]
- Damianova, S.; Tasheva, S.; Stoyanova, A.; Damianov, D. Investigation of Extracts from Rosemary (Rosmarinus officinalis L.) for Application in Cosmetics. J. Essent. Oil Bear. Plants 2010, 13, 1–11. [Google Scholar] [CrossRef]
- Montenegro, L.; Pasquinucci, L.; Zappalà, A.; Chiechio, S.; Turnaturi, R.; Parenti, C. Rosemary Essential Oil-Loaded Lipid Nanoparticles: In Vivo Topical Activity from Gel Vehicles. Pharmaceutics 2017, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Fatimazahra, M.; Jamila, C.; Achraf, A.; Maaghloud, F.E.; Nour-eddine, C.; Mohamed, D. Eucalyptol from Rosmarinus officinalis L. as an Antioxidant and Antibacterial Agent against Poultry-Isolated Bacterial Strains: In Vitro and in Silico Study. Chem. Afr. 2024. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Raza, M.A.; Rasheed, A.; Hussain, M.; Nayik, G.A.; Ansari, M.J. Chapter 4—Lavender Essential Oil: Nutritional, Compositional, and Therapeutic Insights. In Essential Oils; Nayik, G.A., Ansari, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 85–101. ISBN 978-0-323-91740-7. [Google Scholar]
- Cavanagh, H.M.A.; Wilkinson, J.M. Lavender Essential Oil: A Review. Aust. Infect. Control 2005, 10, 35–37. [Google Scholar] [CrossRef]
- Al-Robai, S.A.; Ahmed, A.A.; Ahmed, A.A.E.; Zabin, S.A.; Mohamed, H.A.; Alghamdi, A.A.A. Phenols, Antioxidant and Anticancer Properties of Tagetes Minuta, Euphorbia Granulata and Galinsoga Parviflora: In Vitro and In Silico Evaluation. J. Umm Al-Qura Univ. Appl. Sci. 2023, 9, 15–28. [Google Scholar] [CrossRef]
- Rosset, V.; Ahmed, N.; Zaanoun, I.; Stella, B.; Fessi, H.; Elaissari, A. Elaboration of Argan Oil Nanocapsules Containing Naproxen for Cosmetic and Transdermal Local Application. J. Colloid Sci. Biotechnol. 2012, 1, 218–224. [Google Scholar] [CrossRef]
- Qiraouani Boucetta, K.; Charrouf, Z.; Aguenaou, H.; Derouiche, A.; Bensouda, Y. The Effect of Dietary and/or Cosmetic Argan Oil on Postmenopausal Skin Elasticity. Clin. Interv. Aging 2015, 10, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, D.; Charrouf, Z. Argan Oil and Other Argan Products: Use in Dermocosmetology. Eur. J. Lipid Sci. Technol. 2011, 113, 403–408. [Google Scholar] [CrossRef]
- Das, M.K. Nanocosmeceuticals: Innovation, Application, and Safety; Academic Press: Cambridge, MA, USA, 2022; ISBN 978-0-323-91078-1. [Google Scholar]
- Kottner, J.; Beeckman, D.; Vogt, A.; Blume-Peytavi, U. Chapter 11—Skin Health and Integrity. In Innovations and Emerging Technologies in Wound Care; Gefen, A., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 183–196. ISBN 978-0-12-815028-3. [Google Scholar]
- Bonté, F.; Girard, D.; Archambault, J.-C.; Desmoulière, A. Skin Changes During Ageing. In Biochemistry and Cell Biology of Ageing: Part II Clinical Science; Harris, J.R., Korolchuk, V.I., Eds.; Subcellular Biochemistry; Springer: Singapore, 2019; pp. 249–280. ISBN 9789811336812. [Google Scholar]
- Lyman, M. The Remarkable Life of the Skin: An Intimate Journey across Our Surface; Random House: New York, NY, USA, 2019; ISBN 978-1-4735-5535-8. [Google Scholar]
- Zhang, T.; Luo, X.; Xu, K.; Zhong, W. Peptide-Containing Nanoformulations: Skin Barrier Penetration and Activity Contribution. Adv. Drug Deliv. Rev. 2023, 203, 115139. [Google Scholar] [CrossRef] [PubMed]
- Borgheti-Cardoso, L.N.; Viegas, J.S.R.; Silvestrini, A.V.P.; Caron, A.L.; Praça, F.G.; Kravicz, M.; Bentley, M.V.L.B. Nanotechnology Approaches in the Current Therapy of Skin Cancer. Adv. Drug Deliv. Rev. 2020, 153, 109–136. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Hmar, E.B.L.; Pathak, H.; Sharma, H.K. 6—An Overview on Nanocarriers. In Nanocarriers for Drug-Targeting Brain Tumors; Kumar, L., Pathak, Y.Y., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 145–204. ISBN 978-0-323-90773-6. [Google Scholar]
- Nair, A.; Mallya, R.; Suvarna, V.; Khan, T.A.; Momin, M.; Omri, A. Nanoparticles—Attractive Carriers of Antimicrobial Essential Oils. Antibiotics 2022, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.; Manaa, E.G.; Osama, N.; Aborehab, N.M.; Ragab, M.F.; Haggag, Y.A.; Ibrahim, M.T.; Hamdan, D.I. Coriander (Coriandrum sativum L.) Essential Oil and Oil-Loaded Nano-Formulations as an Anti-Aging Potentiality via TGFβ/SMAD Pathway. Sci. Rep. 2022, 12, 6578. [Google Scholar] [CrossRef] [PubMed]
- Veiga, E.; Ferreira, L.; Correia, M.; Pires, P.C.; Hameed, H.; Araújo, A.R.T.S.; Cefali, L.C.; Mazzola, P.G.; Hamishehkar, H.; Veiga, F.; et al. Anti-Aging Peptides for Advanced Skincare: Focus on Nanodelivery Systems. J. Drug Deliv. Sci. Technol. 2023, 89, 105087. [Google Scholar] [CrossRef]
- Tampucci, S.; Guazzelli, L.; Burgalassi, S.; Carpi, S.; Chetoni, P.; Mezzetta, A.; Nieri, P.; Polini, B.; Pomelli, C.S.; Terreni, E.; et al. pH-Responsive Nanostructures Based on Surface Active Fatty Acid-Protic Ionic Liquids for Imiquimod Delivery in Skin Cancer Topical Therapy. Pharmaceutics 2020, 12, 1078. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Giovannini, G.; Zhang, S.; Altenried, S.; Zuber, F.; Chen, Q.; Boesel, L.F.; Ren, Q. pH-Responsive Silica Nanoparticles for the Treatment of Skin Wound Infections. Acta Biomater. 2022, 145, 172–184. [Google Scholar] [CrossRef]
- Solaiman, S.M.; Algie, J.; Bakand, S.; Sluyter, R.; Sencadas, V.; Lerch, M.; Huang, X.-F.; Konstantinov, K.; Barker, P.J. Nano-Sunscreens—A Double-Edged Sword in Protecting Consumers from Harm: Viewing Australian Regulatory Policies through the Lenses of the European Union. Crit. Rev. Toxicol. 2019, 49, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Gottardo, S.; Mech, A.; Drbohlavová, J.; Małyska, A.; Bøwadt, S.; Riego Sintes, J.; Rauscher, H. Towards Safe and Sustainable Innovation in Nanotechnology: State-of-Play for Smart Nanomaterials. NanoImpact 2021, 21, 100297. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. J. Control. Release 2017, 252, 28–49. [Google Scholar] [CrossRef] [PubMed]
- Banasaz, S.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Encapsulation of Lipid-Soluble Bioactives by Nanoemulsions. Molecules 2020, 25, 3966. [Google Scholar] [CrossRef]
- Prakash, A.; Baskaran, R.; Paramasivam, N.; Vadivel, V. Essential Oil Based Nanoemulsions to Improve the Microbial Quality of Minimally Processed Fruits and Vegetables: A Review. Food Res. Int. 2018, 111, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Davidov-Pardo, G.; McClements, D.J. Resveratrol Encapsulation: Designing Delivery Systems to Overcome Solubility, Stability and Bioavailability Issues. Trends Food Sci. Technol. 2014, 38, 88–103. [Google Scholar] [CrossRef]
- Katouzian, I.; Jafari, S.M. Nano-Encapsulation as a Promising Approach for Targeted Delivery and Controlled Release of Vitamins. Trends Food Sci. Technol. 2016, 53, 34–48. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef] [PubMed]
- Ahadian, S.; Finbloom, J.A.; Mofidfar, M.; Diltemiz, S.E.; Nasrollahi, F.; Davoodi, E.; Hosseini, V.; Mylonaki, I.; Sangabathuni, S.; Montazerian, H.; et al. Micro and Nanoscale Technologies in Oral Drug Delivery. Adv. Drug Deliv. Rev. 2020, 157, 37–62. [Google Scholar] [CrossRef] [PubMed]
- Mishbahurroyan1, N.; Winarno, N.F.R.; Nafis, S.I.; Valdino, Y.; Listyorini, N. Nanorobots in Targeted Drug Delivery System—A General Review. Liaison J. Eng. 2023, 3, 13–27. [Google Scholar]
- Sharma, K.; Mishra, V.; Ranjan, K.R.; Yadav, N.; Sharma, M. A Methodological Approach of Plant Essential Oils and Their Isolated Bioactive Components for Antiviral Activities. In Essential Oils; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2023; pp. 1–29. ISBN 978-1-119-82961-4. [Google Scholar]
- Zeng, L.; Gowda, B.H.J.; Ahmed, M.G.; Abourehab, M.A.S.; Chen, Z.-S.; Zhang, C.; Li, J.; Kesharwani, P. Advancements in Nanoparticle-Based Treatment Approaches for Skin Cancer Therapy. Mol. Cancer 2023, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Sousa, F.; Ferreira, D.; Reis, S.; Costa, P. Current Insights on Antifungal Therapy: Novel Nanotechnology Approaches for Drug Delivery Systems and New Drugs from Natural Sources. Pharmaceuticals 2020, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Prabahar, K.; Udhumansha, U.; Elsherbiny, N.; Qushawy, M. Microneedle Mediated Transdermal Delivery of β-Sitosterol Loaded Nanostructured Lipid Nanoparticles for Androgenic Alopecia. Drug Deliv. 2022, 29, 3022–3034. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Variyar, P.S. 15—Nanoencapsulation of Essential Oils for Sustained Release: Application as Therapeutics and Antimicrobials. In Encapsulations; Grumezescu, A.M., Ed.; Nanotechnology in the Agri-Food Industry; Academic Press: Cambridge, MA, USA, 2016; pp. 641–672. ISBN 978-0-12-804307-3. [Google Scholar]
- AbouAitah, K.; Lojkowski, W. Nanomedicine as an Emerging Technology to Foster Application of Essential Oils to Fight Cancer. Pharmaceuticals 2022, 15, 793. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, R.; Fu, Y.; Kao, W.J. Release Mechanisms and Applications of Drug Delivery Systems for Extended-Release. Expert Opin. Drug Deliv. 2020, 17, 1289–1304. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.H.-L.; Tran, T.T.-D.; Park, J.B.; Lee, B.-J. Controlled Release Systems Containing Solid Dispersions: Strategies and Mechanisms. Pharm. Res. 2011, 28, 2353–2378. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Jung, H.; Li, X. Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. AAPS J. 2015, 17, 1327–1340. [Google Scholar] [CrossRef] [PubMed]
- Reis-Mansur, M.C.P.P.; Firmino Gomes, C.C.; Nigro, F.; Ricci-Júnior, E.; de Freitas, Z.M.F.; dos Santos, E.P. Nanotechnology as a Tool for Optimizing Topical Photoprotective Formulations Containing Buriti Oil (Mauritia flexuosa) and Dry Aloe Vera Extracts: Stability and Cytotoxicity Evaluations. Pharmaceuticals 2023, 16, 292. [Google Scholar] [CrossRef] [PubMed]
- Chifiriuc, M.C.; Kamerzan, C.; Lazar, V. Chapter 12—Essential Oils and Nanoparticles: New Strategy to Prevent Microbial Biofilms. In Nanostructures for Antimicrobial Therapy; Ficai, A., Grumezescu, A.M., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 279–291. ISBN 978-0-323-46152-8. [Google Scholar]
- Su, X.; Li, B.; Chen, S.; Wang, X.; Song, H.; Shen, B.; Zheng, Q.; Yang, M.; Yue, P. Pore Engineering of Micro/Mesoporous Nanomaterials for Encapsulation, Controlled Release and Variegated Applications of Essential Oils. J. Control. Release 2024, 367, 107–134. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, M.; Leone, A.; Ambrosone, A. Plant-Derived Nano and Microvesicles for Human Health and Therapeutic Potential in Nanomedicine. Pharmaceutics 2021, 13, 498. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020, 181, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Park, J.; Sohn, Y.; Oh, C.-E.; Park, J.-H.; Yuk, J.-M.; Yeon, J.-H. Stability of Plant Leaf-Derived Extracellular Vesicles According to Preservative and Storage Temperature. Pharmaceutics 2022, 14, 457. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Lai, H.; Hurtado, J.; Stahnke, J.; Leuzinger, K.; Dent, M. Agroinfiltration as an Effective and Scalable Strategy of Gene Delivery for Production of Pharmaceutical Proteins. Adv. Tech. Biol. Med. 2013, 1, 103. [Google Scholar] [CrossRef]
- Dad, H.A.; Gu, T.-W.; Zhu, A.-Q.; Huang, L.-Q.; Peng, L.-H. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol. Ther. 2021, 29, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 286. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Nanoemulsions versus Microemulsions: Terminology, Differences, and Similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- von der Kammer, F.; Legros, S.; Hofmann, T.; Larsen, E.H.; Loeschner, K. Separation and Characterization of Nanoparticles in Complex Food and Environmental Samples by Field-Flow Fractionation. TrAC Trends Anal. Chem. 2011, 30, 425–436. [Google Scholar] [CrossRef]
- Logozzi, M.; Di Raimo, R.; Mizzoni, D.; Fais, S. The Potentiality of Plant-Derived Nanovesicles in Human Health—A Comparison with Human Exosomes and Artificial Nanoparticles. Int. J. Mol. Sci. 2022, 23, 4919. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.-P.; He, S.-N.; Li, Y.-L.; Feng, D.-L.; Lu, X.-Y.; Du, Y.-Z.; Yu, H.-Y.; Hu, F.-Q.; Yuan, H. Preparation and Characteristics of Lipid Nanoemulsion Formulations Loaded with Doxorubicin. Int. J. Nanomed. 2013, 8, 3141–3150. [Google Scholar] [CrossRef]
- Zucker, D.; Marcus, D.; Barenholz, Y.; Goldblum, A. Liposome Drugs’ Loading Efficiency: A Working Model Based on Loading Conditions and Drug’s Physicochemical Properties. J. Control. Release 2009, 139, 73–80. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, L.; Li, H.; Miao, F.; Zhang, Z.; Hu, C.; Yu, W.; Tang, Q.; Shao, G. Application of Lipid Nanovesicle Drug Delivery System in Cancer Immunotherapy. J. Nanobiotechnol. 2022, 20, 214. [Google Scholar] [CrossRef] [PubMed]
- Shkryl, Y.; Tsydeneshieva, Z.; Degtyarenko, A.; Yugay, Y.; Balabanova, L.; Rusapetova, T.; Bulgakov, V. Plant Exosomal Vesicles: Perspective Information Nanocarriers in Biomedicine. Appl. Sci. 2022, 12, 8262. [Google Scholar] [CrossRef]
- Hutchison, J.E. The Road to Sustainable Nanotechnology: Challenges, Progress and Opportunities. ACS Sustain. Chem. Eng. 2016, 4, 5907–5914. [Google Scholar] [CrossRef]
- Morocho-Jácome, A.L.; dos Santos, B.B.; de Carvalho, J.C.M.; de Almeida, T.S.; Rijo, P.; Velasco, M.V.R.; Rosado, C.; Baby, A.R. Microalgae as a Sustainable, Natural-Oriented and Vegan Dermocosmetic Bioactive Ingredient: The Case of Neochloris Oleoabundans. Cosmetics 2022, 9, 9. [Google Scholar] [CrossRef]
- Chin, J.; Jiang, B.C.; Mufidah, I.; Persada, S.F.; Noer, B.A. The Investigation of Consumers’ Behavior Intention in Using Green Skincare Products: A Pro-Environmental Behavior Model Approach. Sustainability 2018, 10, 3922. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Falé, Z.; Santos, L. Sustainability in Skin Care: Incorporation of Avocado Peel Extracts in Topical Formulations. Molecules 2022, 27, 1782. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.S.; Saluja, V. Green Manufacturing in Apparel Industry: Future Trends and Scope. In Proceedings of the Advances in Modelling and Optimization of Manufacturing and Industrial Systems; Singh, R.P., Tyagi, M., Walia, R.S., Davim, J.P., Eds.; Springer Nature: Singapore, 2023; pp. 413–426. [Google Scholar]
- Sivakumar, V. Towards Environmental Protection and Process Safety in Leather Processing—A Comprehensive Analysis and Review. Process Saf. Environ. Prot. 2022, 163, 703–726. [Google Scholar] [CrossRef]
- Cao, M.; Diao, N.; Cai, X.; Chen, X.; Xiao, Y.; Guo, C.; Chen, D.; Zhang, X. Plant Exosome Nanovesicles (PENs): Green Delivery Platforms. Mater. Horiz. 2023, 10, 3879–3894. [Google Scholar] [CrossRef] [PubMed]
- Sahota, A. Sustainability: How the Cosmetics Industry Is Greening Up; John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 978-1-118-67648-6. [Google Scholar]
- Bom, S.; Jorge, J.; Ribeiro, H.M.; Marto, J. A Step Forward on Sustainability in the Cosmetics Industry: A Review. J. Clean. Prod. 2019, 225, 270–290. [Google Scholar] [CrossRef]
- Rocca, R.; Acerbi, F.; Fumagalli, L.; Taisch, M. Sustainability Paradigm in the Cosmetics Industry: State of the Art. Clean. Waste Syst. 2022, 3, 100057. [Google Scholar] [CrossRef]
- De, S.K.; Kawdia, P.; Gupta, D.; Pragya, N. Packaging Plastic Waste Management in the Cosmetic Industry. Manag. Environ. Qual. Int. J. 2023, 34, 820–842. [Google Scholar] [CrossRef]
- Dube, M.; Dube, S. Towards Sustainable Color Cosmetics Packaging. Cosmetics 2023, 10, 139. [Google Scholar] [CrossRef]
- Thakur, M.; Sharma, A.; Chandel, M.; Pathania, D. Chapter 9—Modern Applications and Current Status of Green Nanotechnology in Environmental Industry. In Green Functionalized Nanomaterials for Environmental Applications; Shanker, U., Hussain, C.M., Rani, M., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 259–281. ISBN 978-0-12-823137-1. [Google Scholar]
Type of Nanomaterial | Size (nm) | Characteristics | Application | Ref. |
---|---|---|---|---|
Gallic Acid/Au NPs | 30.30 ± 3.98 | GA–AuNPs exhibit antioxidant properties, as they are evaluated as an anti-aging antioxidant | An ingredient with anti-aging properties aimed at rejuvenating and repairing the skin | [69] |
Zinc oxide NPs | <30 | Zinc oxide nanoparticles primarily remain on the skin’s surface, releasing zinc ions that penetrate superficial layers without significant cytotoxicity concerns, aligning with recent FDA safety guidelines | Application in sunscreens, providing effective UV protection while minimizing skin penetration and cytotoxicity risks | [70] |
Silver NPS | ~40 nm and 13 | Silver nanoparticles demonstrated enhanced suspension stability against microbial contamination, suggesting their potential as an active ingredient in antidandruff shampoo formulations | Anti-Malassezia furfur activity | [71,72] |
Niosomal carriers | 460 | Vesicle size depended on the surfactant mixture’s hydrophile–lipophile balance, with drug incorporation influencing size and niosomes acting as effective enhancers for diclofenac sodium permeation across rabbit skin | Drug compartmentalization | [73] |
Silica NPs | 291 ± 9 to 42 ± 3 | These particles demonstrated size-dependent uptake by skin cells, with positively charged particles showing enhanced cellular internalization, especially the smallest ones | Pharmaceutics and cosmetics applications | [74] |
Copper oxide NPs | 61 to 69 | CuONPs exhibit potent antimicrobial properties against skin infection-causing microbes when combined with Thespesia populnea aqueous bark extract | Antimicrobial activity against skin-infection causing microbes | [75] |
Rhein-phospholipid complex | 196.6 ± 1.6 | The rhein–phospholipid complex exhibit nano-sized particles and possess a high negatively charged surface. These nanoparticles show enhanced solubility, significantly improved skin permeability, and deep penetration into the skin | Topical formulation for treating skin disorders. | [76] |
ZnO@CeO2 nanostructures | 15 to 70 | One-dimensional rod-like ZnO@CeO2 core@shell structures, synthesized with fine-tuned shell thicknesses with excellent optical absorption across both UV and visible regions | Optical stimuli-responsive in sunscreen cream | [77] |
Lysine-Dendrimer | - | Unique three-dimensional structure that significantly reduces inflammation linked to acne without affecting non-acneic Cutibacterium acnes or commensal skin bacteria | Restore the microbiota balance in skin prone to acne | [78] |
Curcumin loaded nanostructured lipid carriers | 96.2 | Curcumin-NLC are nanostructured lipid carriers (NLC) designed for topical delivery of curcumin, high entrapment efficiency (70.5 ± 1.65%), and significant improvement in skin permeation and retention compared to free curcumin formulations | Addressing persistent inflammatory conditions such as psoriasis and acne vulgaris caused by microbial activity | [79] |
Halobetasol propionate-loaded solid lipid NPs | 200 | The solid lipid nanoparticles loaded with halobetasol propionate (HP-SLN) demonstrate promise as a delivery system for controlled drug release and targeted administration to the skin | Carrier for controlled drug release and targeted delivery to the skin, aiming to minimize adverse effects associated with clinical use, such as irritation, pruritus, and stinging | [80] |
Characteristic | Plant Nanovesicles | Liposomes | Nanoemulsions | Ref. |
---|---|---|---|---|
Biocompatibility | High | High | Variable | [183] |
Targeting and delivery | Yes | Yes | Yes | [184] |
Stability | Moderate | Variable | Variable | [185] |
Scalability | Yes | Yes | Yes | [186] |
Sustainability | Yes | Depending on their source | Depending on their source | [187,188,189] |
Complexity of production | High | Moderate | Moderate | [190] |
Cost | Moderate | High | Moderate | [191] |
Drug loading capacity | Moderate | High | High | [192,193,194] |
Storage stability | Variable | Moderate | Moderate | [195] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achagar, R.; Ait-Touchente, Z.; El Ati, R.; Boujdi, K.; Thoume, A.; Abdou, A.; Touzani, R. A Comprehensive Review of Essential Oil–Nanotechnology Synergy for Advanced Dermocosmetic Delivery. Cosmetics 2024, 11, 48. https://doi.org/10.3390/cosmetics11020048
Achagar R, Ait-Touchente Z, El Ati R, Boujdi K, Thoume A, Abdou A, Touzani R. A Comprehensive Review of Essential Oil–Nanotechnology Synergy for Advanced Dermocosmetic Delivery. Cosmetics. 2024; 11(2):48. https://doi.org/10.3390/cosmetics11020048
Chicago/Turabian StyleAchagar, Redouane, Zouhair Ait-Touchente, Rafika El Ati, Khalid Boujdi, Abderrahmane Thoume, Achraf Abdou, and Rachid Touzani. 2024. "A Comprehensive Review of Essential Oil–Nanotechnology Synergy for Advanced Dermocosmetic Delivery" Cosmetics 11, no. 2: 48. https://doi.org/10.3390/cosmetics11020048
APA StyleAchagar, R., Ait-Touchente, Z., El Ati, R., Boujdi, K., Thoume, A., Abdou, A., & Touzani, R. (2024). A Comprehensive Review of Essential Oil–Nanotechnology Synergy for Advanced Dermocosmetic Delivery. Cosmetics, 11(2), 48. https://doi.org/10.3390/cosmetics11020048