Development of a Ready-to-Use Oxyresveratrol-Enriched Extract from Artocarpus lakoocha Roxb. Using Greener Solvents and Deep Eutectic Solvents for a Whitening Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Chemicals
2.2. Deep Eutectic Solvent Preparation and Physicochemical Characteristics
2.3. Isolation of Oxyresveratrol for High-Performance Liquid Chromatography Analysis
2.4. High-Performance Liquid Chromatography Analysis and Method Validation
2.5. Screening of Deep Eutectic Solvents for Oxyresveratrol Extraction
2.6. Optimization Conditions for Extraction
DES10: | (X1: 5 min (−1), 62.5 min (0), 120 min (1); X2: 35 °C (−1), 47 °C (0), 60 °C (1); X3: 3 (−1), 54 (0), 105 (1) |
DES17: | (X1: 5 min (−1), 62.5 min (0), 120 min (1); X2: 35 °C (−1), 47 °C (0), 60 °C (1); X3: 0 (−1), 32.5 (0), 65 (1) |
2.7. DPPH Radical Scavenging Assay
2.8. Mushroom Tyrosinase Inhibition Assay
2.9. Scanning Electron Microscopy
2.10. Data Analysis
3. Results
3.1. Deep Eutectic Solvent Preparation and Physicochemical Properties
3.2. High-Performance Liquid Chromatography and Method Validation for Oxyresveratrol Analysis
3.3. Screening Deep Eutectic Solvents for Oxyresveratrol Extraction
3.4. Response Surface Optimization of Extraction
3.4.1. Box–Behnken Design Fitting the Model
3.4.2. Effect of the Extraction Variables on the Oxyresveratrol Content Using Box Behnken Design
3.4.3. Verification of Predictive Model
3.5. Bioactivity Properties of Optimized Extracts
3.6. Scanning Electron Microscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gardner, S.; Sidisunthorn, P.; Anusarnsunthorn, V. A Field Guide to Forest Trees of Northern Thailand; Kobfai Publishing Project: Bangkok, Thailand, 2000. [Google Scholar]
- Saralamp, P.; Chuakul, W.; Temsiririrkkul, R.; Clayton, T. Medicinal Plants in Thailand; Amarin Printing and Publishing Public Co., Ltd.: Bangkok, Thailand, 1996; Volume 1. [Google Scholar]
- Chuanasa, T.; Phromjai, J.; Lipipun, V.; Likhitwitayawuid, K.; Suzuki, M.; Pramyothin, P.; Hattori, M.; Shiraki, K. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: Mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antivir. Res. 2008, 80, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Senapong, S.; Puripattanavong, J.; Teanpaisan, R. Anticandidal and antibiofilm activity of Artocarpus lakoocha extract. Songklanakarin J. Sci. Technol. 2014, 36, 451–457. [Google Scholar]
- Teanpaisan, R.; Senapong, S.; Puripattanavong, J. In vitro Antimicrobial and Antibiofilm Activity of Artocarpus Lakoocha (Moraceae) Extract against Some Oral Pathogens. Trop. J. Pharm. Res. 2014, 13, 1149. [Google Scholar] [CrossRef]
- Boonyaketgoson, S.; Rukachaisirikul, V.; Phongpaichit, S.; Trisuwan, K. Deoxybenzoin and flavan derivatives from the twigs of Artocarpus lakoocha. Phytochem. Lett. 2019, 31, 96–100. [Google Scholar] [CrossRef]
- Boonyaketgoson, S.; Du, Y.; Valenciano Murillo, A.L.; Cassera, M.B.; Kingston, D.G.I.; Trisuwan, K. Flavanones from the Twigs and Barks of Artocarpus lakoocha Having Antiplasmodial and Anti-TB Activities. Chem. Pharm. Bull. 2020, 68, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009, 285, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Nesa, M.; Munira, S.; Bristy, A.; Islam, M.; Chayan, H.; Rashid, M. Cytotoxic, anti-inflammatory, analgesic, CNS depressant, antidiarrhoeal activities of the methanolic extract of the Artocarpus Lakoocha leaves. World J. Pharm. Sci. 2015, 3, 167–174. [Google Scholar]
- Wongon, M.; Limpeanchob, N. Inhibitory effect of Artocarpus lakoocha Roxb and oxyresveratrol on α-glucosidase and sugar digestion in Caco-2 cells. Heliyon 2020, 6, e03458. [Google Scholar] [CrossRef] [PubMed]
- Tanjung, S.A.; Silalahi, J.; Reveny, J. Wound Healing Activity of Nanoemulgel Containing Artocarpus lakoocha Roxb. Extract on Burns Model in Rat. Open Access Maced. J. Med. Sci. 2022, 10, 725–733. [Google Scholar] [CrossRef]
- Likhitwitayawuid, K. Stilbenes with tyrosinase inhibitory activity. Curr. Sci. 2008, 94, 44–52. [Google Scholar]
- Ahamad, T.; Khan, M.; Ansari, W.; Khan, M. Antioxidant, and anticancer activities of selected indian medicinal plant viz., Artocarpus lakoocha, Kigelia pinnata, and Amaranthus viridis. Era’s J. Med. Res. 2020, 7, 46–51. [Google Scholar] [CrossRef]
- Singhatong, S. Antioxidant and toxicity activities of Artocarpus lakoocha Roxb. heartwood extract. J. Med. Plants Res. 2010, 4, 947–953. [Google Scholar]
- Tengamnuay, P.; Pengrungruangwong, K.; Pheansri, I.; Likhitwitayawuid, K. Artocarpus lakoocha heartwood extract as a novel cosmetic ingredient: Evaluation of the in vitro anti-tyrosinase and in vivo skin whitening activities. Int. J. Cosmet. Sci. 2006, 28, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Sritularak, B.; De-Eknamkul, W.; Likhitwitayawuid, K. Tyrosinase inhibitors from Artocarpus lakoocha. Thai J. Pharm. 1998, 22, 149–155. [Google Scholar]
- Likhitwitayawuid, K. Oxyresveratrol: Sources, Productions, Biological Activities, Pharmacokinetics, and Delivery Systems. Molecules 2021, 26, 4212. [Google Scholar] [CrossRef] [PubMed]
- Palanuvej, C.; Issaravanich, S.; Tunsaringkarn, T.; Rungsiyothin, A.; Vipunngeun, N.; Ruangrungsi, N.; Likhitwitayawuid, K. Pharmacognostic Study of Artocarpus lakoocha Heartwood. J. Health Res. 2018, 21, 257–262. [Google Scholar]
- Jiratanakittiwat, K.; Satirapipathkul, C.; Charnvanich, D. The Influences of Extraction on the Quantity of Oxyresveratrol from Artocarpus lakoocha Roxb. Int. J. Biosci. Biochem. Bioinform. 2020, 10, 110–116. [Google Scholar] [CrossRef]
- Natakankitkul, S.; Chareonmuang, N.; Panyakhong, T.; Wangkananon, W. Cosmeceutical development of oxyresveratrol from mahad (Artocarpus lakoocha roxb.). Thai J. Pharm. Sci. 2013, 38, 225–228. [Google Scholar]
- Reimann, E. Natürliche polyhydroxystilbene. Die synthese von oxyresveratrol, piceatannol und rhapontigenin. Tetrahedron Lett. 1970, 11, 4051–4053. [Google Scholar] [CrossRef]
- Ferreira, C.; Sarraguça, M. A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest. Pharmaceuticals 2024, 17, 124. [Google Scholar] [CrossRef]
- Lomba, L.; García, C.B.; Ribate, M.P.; Giner, B.; Zuriaga, E. Applications of Deep Eutectic Solvents Related to Health, Synthesis, and Extraction of Natural Based Chemicals. Appl. Sci. 2021, 11, 10156. [Google Scholar] [CrossRef]
- Duan, L.; Dou, L.-L.; Guo, L.; Li, P.; Liu, E.H. Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products. ACS Sustain. Chem. Eng. 2016, 4, 2405–2411. [Google Scholar] [CrossRef]
- Mansur, A.R.; Song, N.-E.; Jang, H.W.; Lim, T.-G.; Yoo, M.; Nam, T.G. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts. Food Chem. 2019, 293, 438–445. [Google Scholar] [CrossRef]
- Nadeem, M.; Ubaid, N.; Qureshi, T.M.; Munir, M.; Mehmood, A. Effect of ultrasound and chemical treatment on total phenol, flavonoids, and antioxidant properties on carrot-grape juice blend during storage. Ultrason. Sonochem. 2018, 45, 1–6. [Google Scholar] [CrossRef]
- Boudesocque-Delaye, L.; Ardeza, I.M.; Verger, A.; Grard, R.; Théry-Koné, I.; Perse, X.; Munnier, E. Natural Deep Eutectic Solvents as a Novel Bio-Based Matrix for Ready-to-Use Natural Antioxidants-Enriched Ingredients: Extraction and Formulation Optimization. Cosmetics 2024, 11, 17. [Google Scholar] [CrossRef]
- Komaikul, J.; Mangmool, S.; Putalun, W.; Kitisripanya, T. Preparation of Readily-to-Use Stilbenoids Extract from Morus alba Callus Using a Natural Deep Eutectic Solvent. Cosmetics 2021, 8, 91. [Google Scholar] [CrossRef]
- Bindes, M.M.M.; Reis, M.H.M.; Cardoso, V.L.; Boffito, D.C. Ultrasound-assisted extraction of bioactive compounds from green tea leaves and clarification with natural coagulants (chitosan and Moringa oleífera seeds). Ultrason. Sonochem. 2019, 51, 111–119. [Google Scholar] [CrossRef]
- Yuniarti, E.; Saputri, F.; Mun’im, A. Research Paper Natural Deep Eutectic Solvent Extraction and Evaluation of Caffeine and Chlorogenic Acid from Green Coffee Beans of Coffea canephora. Indian J. Pharm. Sci. 2020, 81, 1062. [Google Scholar]
- Hayler, H.J.; Perkin, S. The eutectic point in choline chloride and ethylene glycol mixtures. Chem. Commun. 2022, 58, 12728–12731. [Google Scholar] [CrossRef]
- Mulia, K.; Fauzia, F.; Krisanti, E.A. Polyalcohols as Hydrogen-Bonding Donors in Choline Chloride-Based Deep Eutectic Solvents for Extraction of Xanthones from the Pericarp of Garcinia mangostana L. Molecules 2019, 24, 636. [Google Scholar] [CrossRef]
- Jablonský, M.; Jančíková, V. Comparison of the acidity of systems based on choline chloride and lactic acid. J. Mol. Liq. 2023, 380, 121731. [Google Scholar] [CrossRef]
- Naik, P.K.; Kundu, D.; Bairagya, P.; Banerjee, T. Phase behavior of water-menthol based deep eutectic solvent-dodecane system. Chem. Thermodyn. Therm. Anal. 2021, 3–4, 100011. [Google Scholar] [CrossRef]
- Sut, S.; Faggian, M.; Baldan, V.; Poloniato, G.; Castagliuolo, I.; Grabnar, I.; Perissutti, B.; Brun, P.; Maggi, F.; Voinovich, D.; et al. Natural Deep Eutectic Solvents (NADES) to Enhance Berberine Absorption: An In Vivo Pharmacokinetic Study. Molecules 2017, 22, 1921. [Google Scholar] [CrossRef]
- Li, Z.; Lee, P.I. Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives. Int. J. Pharm. 2016, 505, 283–288. [Google Scholar] [CrossRef]
- Liu, W.; Wang, F. p-Toluenesulfonic Acid-based Deep Eutectic Solvent as Transesterification Catalyst for Biodiesel Production. J. Oleo Sci. 2018, 67, 1163–1169. [Google Scholar] [CrossRef]
- Manurung, R.; Simanjuntak, G.; Perez, R.; Syahputra, A.; Alhamdi, M.; Siregar, H.D.; Zuhri, R. Production of Choline Chloride-Based Deep Eutectic Solvent with Hydrogen Bond Donor D-Glucose and Ethylene Glycol. IOP Conf. Ser. Mater. Sci. Eng. 2019, 505, 012134. [Google Scholar] [CrossRef]
- Jeong, K.M.; Zhao, J.; Jin, Y.; Heo, S.R.; Han, S.Y.; Yoo, D.E.; Lee, J. Highly efficient extraction of anthocyanins from grape skin using deep eutectic solvents as green and tunable media. Arch. Pharm. Res. 2015, 38, 2143–2152. [Google Scholar] [CrossRef]
- Ghaffari, F.; Zafarani-Moattar, M.T.; Shekaari, H. Aqueous biphasic systems created with choline chloride-fructose natural deep eutectic solvents and polypropylene glycol 400 and usage of these systems for extraction of some commonly used drugs. Fluid Phase Equilibria 2022, 555, 113348. [Google Scholar] [CrossRef]
- Lan, D.; Wang, X.; Zhou, P.; Hollmann, F.; Wang, Y. Deep eutectic solvents as performance additives in biphasic reactions. RSC Adv. 2017, 7, 40367–40370. [Google Scholar] [CrossRef]
- Carolina Gipiela Corrêa Dias, M.; Oliveira Farias, F.; Cazelato Gaioto, R.; Kaspchak, E.; Conceição da Costa, M.; Igarashi-Mafra, L.; Mafra, M.R. Thermophysical characterization of deep eutectic solvents composed by D-sorbitol, xylitol or D(+)xylose as hydrogen bond donors. J. Mol. Liq. 2022, 354, 118801. [Google Scholar] [CrossRef]
- Chen, Q.; He, N.; Fan, J.; Song, F. Physical Properties of Betaine-1,2-Propanediol-Based Deep Eutectic Solvents. Polymers 2022, 14, 1783. [Google Scholar] [CrossRef] [PubMed]
- Krisanti, E.; Saputra, K.; Arif, M.; Mulia, K. Formulation and characterization of betaine-based deep eutectic solvent for extraction phenolic compound from spent coffee grounds. AIP Conf. Proc. 2019, 2175, 020040. [Google Scholar]
- Aroso, I.M.; Paiva, A.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents from choline chloride and betaine—Physicochemical properties. J. Mol. Liq. 2017, 241, 654–661. [Google Scholar] [CrossRef]
- Yusuf, B.; Astati, S.; Ardana, M.; Herman, H.; Ibrahim, A.; Rijai, L.; Nainu, F.; Ahmad, I. Optimizing Natural Deep Eutectic Solvent Citric Acid-Glucose Based Microwave-Assisted Extraction of Total Polyphenols Content from Eleutherine bulbosa (Mill.) Bulb. Indones. J. Chem. 2021, 21, 797. [Google Scholar] [CrossRef]
- Guinet, Y.; Paccou, L.; Hédoux, A. Analysis of xylitol—Citric acid system forming deep eutectic solvent: Application for dissolving poorly water-soluble drugs. A combination of calorimetric and Raman investigations. J. Mol. Liq. 2020, 318, 114317. [Google Scholar] [CrossRef]
- Knudsen, C.; Bavishi, K.; Viborg, K.; Drew, D.; Simonsen, H.; Motawia, M.; Møller, B.; Laursen, T. Stabilization of dhurrin biosynthetic enzymes from Sorghum bicolor using a natural deep eutectic solvent. Phytochemistry 2019, 170, 112214. [Google Scholar] [CrossRef]
- Santana, A.P.R.; Andrade, D.F.; Guimarães, T.G.S.; Amaral, C.D.B.; Oliveira, A.; Gonzalez, M.H. Synthesis of natural deep eutectic solvents using a mixture design for extraction of animal and plant samples prior to ICP-MS analysis. Talanta 2020, 216, 120956. [Google Scholar] [CrossRef]
- Hayyan, A.; Mjalli, F.S.; AlNashef, I.M.; Al-Wahaibi, Y.M.; Al-Wahaibi, T.; Hashim, M.A. Glucose-based deep eutectic solvents: Physical properties. J. Mol. Liq. 2013, 178, 137–141. [Google Scholar] [CrossRef]
- Dai, Y.; Jin, R.; Verpoorte, R.; Lam, W.; Cheng, Y.C.; Xiao, Y.; Xu, J.; Zhang, L.; Qin, X.M.; Chen, S. Natural deep eutectic characteristics of honey improve the bioactivity and safety of traditional medicines. J. Ethnopharmacol. 2020, 250, 112460. [Google Scholar] [CrossRef]
- Morelli, D.C.; Bernardi, G.; Morés, L.; Pierri, M.E.; Carasek, E. A green-high throughput–extraction method based on hydrophobic natural deep eutectic solvent for the determination of emerging contaminants in water by high performance liquid chromatography—Diode array detection. J. Chromatogr. A 2020, 1626, 461377. [Google Scholar] [CrossRef]
- Bergua, F.; Castro, M.; Lafuente, C.; Artal, M. Thymol+l-menthol eutectic mixtures: Thermophysical properties and possible applications as decontaminants. J. Mol. Liq. 2022, 368, 120789. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.A.Z.; Marrucho, I.M. Menthol-based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. ACS Sustain. Chem. Eng. 2015, 3, 2469–2477. [Google Scholar] [CrossRef]
- Likhitwitayawuid, K.; Sritularak, B.; Benchanak, K.; Lipipun, V.; Mathew, J.; Schinazi, R.F. Phenolics with antiviral activity from Millettia erythrocalyx and Artocarpus lakoocha. Nat. Prod. Res. 2005, 19, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Guideline, I. Validation of Analytical Procedures Q2 (R1); ICH: Geneva, Switzerland, 2022. [Google Scholar]
- Sridhar, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC(50) using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Strzępek-Gomółka, M.; Gaweł-Bęben, K.; Angelis, A.; Antosiewicz, B.; Sakipova, Z.; Kozhanova, K.; Głowniak, K.; Kukula-Koch, W. Identification of Mushroom and Murine Tyrosinase Inhibitors from Achillea biebersteinii Afan. Extract. Molecules 2021, 26, 964. [Google Scholar] [CrossRef] [PubMed]
- Toyen, D.; Wimolmala, E.; Sombatsompop, N.; Markpin, T.; Saenboonruang, K. Sm2O3/UHMWPE composites for radiation shielding applications: Mechanical and dielectric properties under gamma irradiation and thermal neutron shielding. Radiat. Phys. Chem. 2019, 164, 108366. [Google Scholar] [CrossRef]
- Skarpalezos, D.; Detsi, A. Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources. Appl. Sci. 2019, 9, 4169. [Google Scholar] [CrossRef]
- Xu, Q.; Qin, L.Y.; Ji, Y.N.; Leung, P.K.; Su, H.N.; Qiao, F.; Yang, W.W.; Shah, A.A.; Li, H.M. A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability. Electrochim. Acta 2019, 293, 426–431. [Google Scholar] [CrossRef]
- Nakhle, L.; Kfoury, M.; Mallard, I.; Landy, D.; Greige-gerges, H. Microextraction of bioactive compounds using deep eutectic solvents: A review. Environ. Chem. Lett. 2021, 19, 3747–3759. [Google Scholar] [CrossRef]
- Tang, B.; Li, S.; Zhang, H.; Row, K. Deep Eutectic Solvent-Based HS-SME Coupled with GC for the Analysis of Bioactive Terpenoids in Chamaecyparis obtusa Leaves. Chromatographia 2013, 77, 373–377. [Google Scholar] [CrossRef]
- Zhang, Q.; Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Kalhor, P.; Ghandi, K. Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. Molecules 2019, 24, 4012. [Google Scholar] [CrossRef]
- Abbott, A.P. Model for the conductivity of ionic liquids based on an infinite dilution of holes. Chemphyschem 2005, 6, 2502–2505. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Gray, S. Design of improved deep eutectic solvents using hole theory. Chemphyschem 2006, 7, 803–806. [Google Scholar] [CrossRef]
- Oomen, W.W.; Begines, P.; Mustafa, N.R.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvent Extraction of Flavonoids of Scutellaria baicalensis as a Replacement for Conventional Organic Solvents. Molecules 2020, 25, 617. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Row, K.H. Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci. 2016, 39, 3505–3520. [Google Scholar] [CrossRef]
- Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Muhammad, G.; Khan, M.N.; Mofijur, M.; Lv, Y.; Xiong, W.; Xu, J. Choline chloride-based deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass. J. Clean. Prod. 2021, 309, 127445. [Google Scholar] [CrossRef]
- Santos, L.B.; Assis, R.S.; Barreto, J.A.; Bezerra, M.A.; Novaes, C.G.; Lemos, V.A. Deep eutectic solvents in liquid-phase microextraction: Contribution to green chemistry. TrAC Trends Anal. Chem. 2022, 146, 116478. [Google Scholar] [CrossRef]
- Arriffin, N.; Jamil, S.; Basar, N.; Khamis, S.; Abdullah, A.S.; Lathiff, S.M. Phytochemical Studies and Antioxidant Activities of Artocarpus scortechinii King. Rec. Nat. Prod. 2017, 10, 299–303. [Google Scholar]
Groups | DESs No. | Hydrogen Bond Acceptor (HBA) | Hydrogen Bond Donor (HBD) | Co-Solvent | Molar Ratio (HBA/HBD/Co-Solvent) | Solubility Property | Reference |
---|---|---|---|---|---|---|---|
G1;ChChl-glycol | DES1 | Choline chloride | Ethylene glycol | - | 1:2 | Hydrophilic | [31] |
DES2 | Choline chloride | 1,3-Propanediol | - | 1:3 | Hydrophilic | [32] | |
G2;ChChl-acid | DES3 | Choline chloride | Lactic acid | Water | 3:1:2 | Hydrophilic | [33] |
DES4 | Choline chloride | Lactic acid | - | 1:1 | Hydrophilic | [33] | |
DES5 | Choline chloride | Lactic acid | - | 1:2 | Hydrophilic | [33] | |
DES6 | Choline chloride | Lactic acid | - | 1:3 | Hydrophilic | [33] | |
DES7 | Choline chloride | Malic acid | Water | 2:1:1 | Hydrophilic | [34] | |
DES8 | Choline chloride | Malic acid | Water | 1:1:1.2 | Hydrophilic | [34] | |
DES9 | Choline chloride | Malic acid | Water | 1:1:3 | Hydrophilic | [34] | |
DES10 | Choline chloride | Citric acid | Water | 2:1:3 | Hydrophilic | [35] | |
DES11 | Choline chloride | Glycolic acid, Oxalic acid | - | 1:1.7:0.3 | Hydrophilic | [36] | |
DES12 | Choline chloride | P-Toluene sulfonic acid | - | 1:1 | Hydrophilic | [37] | |
G3;ChChl-sugar | DES13 | Choline chloride | Glucose | Water | 2:1:3 | Hydrophilic | [38] |
DES14 | Choline chloride | Maltose | Water | 4:1:6 | Hydrophilic | [39] | |
DES15 | Choline chloride | Fructose | - | 2:1 | Hydrophilic | [40] | |
DES16 | Choline chloride | Sorbitol | - | 1:1 | Hydrophilic | [41] | |
DES17 | Choline chloride | Xylose | - | 1:1 | Hydrophilic | [42] | |
DES18 | Choline chloride | Xylitol | Water | 1:1:1.2 | Hydrophilic | [42] | |
DES19 | Choline chloride | Xylitol | Water | 1:1:4.75 | Hydrophilic | [42] | |
G4;ChChl-urea | DES20 | Choline chloride | Urea | Water | 1:2:3 | Hydrophilic | [41] |
G5;Betaine-glycol | DES21 | Betaine | 1,3-Propanediol | - | 1:5 | Hydrophilic | [43] |
DES22 | Betaine | 1,2-Butanediol | - | 1:7 | Hydrophilic | [44] | |
G6;Betaine-acid | DES23 | Betaine | Tartaric acid | Water | 1:1:1 | Hydrophilic | [45] |
G7;Sugar-acid | DES24 | Citric acid | Glucose | Water | 1:1:2.75 | Hydrophilic | [46] |
DES25 | Citric acid | Xylitol | Water | 1:1:2.75 | Hydrophilic | [47] | |
DES26 | Tartaric acid | Glucose | Water | 1:1:4.25 | Hydrophilic | [48] | |
DES27 | Malic acid | Xylitol | Water | 1:1:1.2 | Hydrophilic | [49] | |
G8;Sugar-sugar | DES28 | Fructose | Glucose | Water | 1:1:11 | Hydrophilic | [50] |
G9;Natural | DES29 | Honey | - | - | Hydrophilic | [51] | |
G10;Hydrophobic | DES30 | Camphor | Thymol | - | 1:1 | Hydrophobic | [52] |
DES31 | Menthol | Thymol | - | 1:1 | Hydrophobic | [52] | |
DES32 | Lauric acid | Menthol | - | 1:2 | Hydrophobic | [53] | |
DES33 | Lactic acid | Menthol | - | 1:1 | Hydrophobic | [54] |
Validation Parameter | Value |
---|---|
Linearity | 1.00–20.00 µg/mL |
Correlation coefficient (R2) | 0.9998 |
Linear equation | y = 123,761x − 13,184 |
LOD | 0.0025 µg/mL |
LOQ | 0.010 µg/mL |
Precision (%RSD); Inter day | 1.11 to 1.68% |
Precision (%RSD); Intra day | 0.86 to 2.42% |
Accuracy (%Recovery); Inter day | 100.11 to 102.33% |
Exp. | Independent Variables | Oxyresveratrol Contents (mg/kg DW) | ||||
---|---|---|---|---|---|---|
X1: Extraction Time (min) | X2: Temperature (°C) | X3: Molar Ratio of Water | DES10 | DES17 | ||
DES10 | DES17 | |||||
1 | 5.0 (−1) | 35.0 (−1) | 54.0 (0) | 32.5 (1) | 71.9246 | 50.4217 |
2 | 5.0 (−1) | 47.5 (0) | 3.0 (−1) | 0 (−1) | 80.1241 | 114.8703 |
3 | 5.0 (−1) | 47.5 (0) | 105.0 (1) | 65 (1) | 69.4065 | 77.4764 |
4 | 5.0 (−1) | 60.0 (1) | 54.0 (0) | 32.5 (1) | 61.4346 | 72.4134 |
5 | 62.5 (0) | 35.0 (−1) | 3.0 (−1) | 0 (−1) | 78.1610 | 106.1872 |
6 | 62.5 (0) | 35.0 (−1) | 105.0 (1) | 65 (1) | 71.5063 | 58.1077 |
7 | 62.5 (0) | 47.5 (0) | 54.0 (0) | 32.5 (1) | 79.4533 | 65.3372 |
8 | 62.5 (0) | 47.5 (0) | 54.0 (0) | 32.5 (1) | 71.2119 | 67.601 |
9 | 62.5 (0) | 47.5 (0) | 54.0 (0) | 32.5 (1) | 73.9160 | 69.8218 |
10 | 62.5 (0) | 60.0 (1) | 3.0 (−1) | 0 (−1) | 60.8940 | 109.6324 |
11 | 62.5 (0) | 60.0 (1) | 105.0 (1) | 65 (1) | 72.2889 | 68.1716 |
12 | 120.0 (1) | 35.0 (−1) | 54.0 (0) | 32.5 (1) | 70.0732 | 43.7554 |
13 | 120.0 (1) | 47.5 (0) | 3.0 (−1) | 0 (−1) | 69.3091 | 105.4751 |
14 | 120.0 (1) | 47.5 (0) | 105.0 (1) | 65 (1) | 77.1972 | 56.9957 |
15 | 120.0 (1) | 60.0 (1) | 54.0 (0) | 32.5 (1) | 59.0269 | 51.5038 |
Term | Df | ORV Content | |||||||
---|---|---|---|---|---|---|---|---|---|
DES10 | DES17 | ||||||||
Sum of Square | Mean Square | F-Value | p-Value | Sum of Square | Mean Square | F-Value | p-Value | ||
Model | 9 | 553.05 | 61.45 | 6.7 | 0.0248 | 7617.88 | 846.43 | 93.37 | <0.0001 |
X1 | 1 | 6.63 | 6.63 | 0.7232 | 0.4339 | 346.69 | 346.69 | 38.24 | 0.0016 |
X2 | 1 | 180.7 | 180.7 | 19.71 | 0.0068 | 180.28 | 180.28 | 19.89 | 0.0066 |
X3 | 1 | 0.4563 | 0.4563 | 0.0498 | 0.8323 | 262.98 | 262.98 | 29.01 | 0.003 |
X1X2 | 1 | 0.0774 | 0.0774 | 0.0084 | 0.9304 | 50.72 | 50.72 | 5.59 | 0.0643 |
X1X3 | 1 | 86.54 | 86.54 | 9.44 | 0.0277 | 30.72 | 30.72 | 3.39 | 0.125 |
X2X3 | 1 | 81.45 | 81.45 | 8.88 | 0.0308 | 10.95 | 10.95 | 1.21 | 0.3218 |
X12 | 1 | 32.67 | 32.67 | 3.56 | 0.1177 | 90.17 | 90.17 | 9.95 | 0.0253 |
X22 | 1 | 145.21 | 145.21 | 15.84 | 0.0105 | 243.53 | 243.53 | 26.86 | 0.0035 |
X32 | 1 | 16.65 | 16.65 | 1.82 | 0.2357 | 2507.42 | 2507.42 | 276.58 | <0.0001 |
Residual | 5 | 45.84 | 9.17 | 45.33 | 9.07 | ||||
Lack of Fit | 3 | 10.54 | 3.51 | 0.1991 | 0.8897 | 35.27 | 11.76 | 2.34 | 0.3136 |
Pure Error | 2 | 35.3 | 17.65 | 10.06 | 5.03 | ||||
Cor total | 14 | 598.9 | 7663.21 | ||||||
R2 | 0.9235 | 0.9941 | |||||||
Adj R2 | 0.7857 | 0.9834 | |||||||
Pred R2 | 0.5857 | 0.9234 | |||||||
Adequate precision | 8.0597 | 28.2882 |
Responses | DES10 | DES17 |
---|---|---|
Mean of predicted value (ORV content; mg/kg DW) | 82.672 | 115.714 |
Mean of experimental value (ORV content; mg/kg DW) | 81.225 ± 1.0167 | 110.485 ± 1.9072 |
Error in relation to predicted value (%) | 1.75 | 4.52 |
Samples | IC50 (µg/mL) | |
---|---|---|
DPPH Radical Scavenging Activity | Tyrosinase Inhibition | |
DES10 | 8.72 ± 0.241 a | 0.41 ± 0.011 b |
DES17 | 0.32 ± 0.004 c | 0.12 ± 0.003 c |
Ascorbic acid | 5.46 ± 0.197 b | ND |
Kojic acid | ND | 30.23 ± 0.122 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saesue, K.; Thanomrak, P.; Prompan, W.; Punan, W.; Khorana, N.; Juprasert, W.; Rungsang, T.; Thong-on, P.; Srivilai, J. Development of a Ready-to-Use Oxyresveratrol-Enriched Extract from Artocarpus lakoocha Roxb. Using Greener Solvents and Deep Eutectic Solvents for a Whitening Agent. Cosmetics 2024, 11, 58. https://doi.org/10.3390/cosmetics11020058
Saesue K, Thanomrak P, Prompan W, Punan W, Khorana N, Juprasert W, Rungsang T, Thong-on P, Srivilai J. Development of a Ready-to-Use Oxyresveratrol-Enriched Extract from Artocarpus lakoocha Roxb. Using Greener Solvents and Deep Eutectic Solvents for a Whitening Agent. Cosmetics. 2024; 11(2):58. https://doi.org/10.3390/cosmetics11020058
Chicago/Turabian StyleSaesue, Krittanon, Pornnapa Thanomrak, Wipawan Prompan, Warakhim Punan, Nantaka Khorana, Wasinee Juprasert, Tammanoon Rungsang, Pattravee Thong-on, and Jukkarin Srivilai. 2024. "Development of a Ready-to-Use Oxyresveratrol-Enriched Extract from Artocarpus lakoocha Roxb. Using Greener Solvents and Deep Eutectic Solvents for a Whitening Agent" Cosmetics 11, no. 2: 58. https://doi.org/10.3390/cosmetics11020058
APA StyleSaesue, K., Thanomrak, P., Prompan, W., Punan, W., Khorana, N., Juprasert, W., Rungsang, T., Thong-on, P., & Srivilai, J. (2024). Development of a Ready-to-Use Oxyresveratrol-Enriched Extract from Artocarpus lakoocha Roxb. Using Greener Solvents and Deep Eutectic Solvents for a Whitening Agent. Cosmetics, 11(2), 58. https://doi.org/10.3390/cosmetics11020058