Power Phase Apodization Study on Compensation Defocusing and Chromatic Aberration in the Imaging System
Abstract
:1. Introduction
2. Theoretical Analysis of Polynomial Phase Apodization
3. Chromatic Effect
4. Image Decoding
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dowski, E.R.; Cathey, W.T. Extended depth of field through wave-front coding. Appl. Opt. 1995, 34, 1859–1866. [Google Scholar] [CrossRef] [Green Version]
- Van der Gracht, J.; Dowski, E.R.; Taylor, M.G.; Deaver, D.M. Broadband behavior of an optical-digital focus-invariant system. Opt. Lett. 1996, 21, 919–921. [Google Scholar] [CrossRef]
- Wach, H.; Dowski, E.R.; Cathey, W.T. Control of chromatic focal shift through wavefront coding. Appl. Opt. 1998, 37, 5359–5367. [Google Scholar] [CrossRef]
- Pan, C.; Chen, J.; Zhang, R.; Zhuang, S. The extension ratio of depth of field by wavefront coding method. Opt. Express 2008, 16, 13364–13371. [Google Scholar] [CrossRef]
- Tucker, S.C.; Cathey, W.T.; Dowski, E.R. Extended depth of field and aberration control for inexpensive digital microscope systems. Opt. Express 1999, 4, 467–474. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Ye, Z.; Chen, Y.P.; Zhao, T.Y.; Yu, F.H. Ray aberrations analysis for phase plates illuminated by off-axis collimated beams. Opt. Express 2007, 15, 3031–3046. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Zheng, L.G.; Zhang, X.J. Image restoration of an off-axis three-mirror anastigmatic optical system with wavefront coding technology. Opt. Eng. 2008, 47, 8. [Google Scholar] [CrossRef]
- Wang, H.; Gan, F. High focal depth with a pure-phase apodizer. Appl. Opt. 2001, 40, 5658–5662. [Google Scholar] [CrossRef]
- Sherif, S.S.; Cathey, W.T.; Dowski, E.R. Phase plate to extend the depth of field of incoherent hybrid imaging systems. Appl. Opt. 2004, 43, 2709–2721. [Google Scholar] [CrossRef]
- Castro, A.; Ojeda-Castaneda, J. Asymmetric phase masks for extended depth of field. Appl. Opt. 2004, 43, 3474–3479. [Google Scholar] [CrossRef]
- Xu, Y.; Singh, J.; Sheppard, C.J.R.; Chen, N. Ultra long high resolution beam by multi-zone rotationally symmetrical complex pupil filter. Opt. Express 2007, 15, 6409–6413. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.; Javidi, B. Extension of depth of field using amplitude and phase modulation of the pupil function. Opt. Lett. 2008, 33, 757–759. [Google Scholar] [CrossRef]
- Khonina, S.N. Phase apodization of imaging system to increase the focal depth in coherent and incoherent cases. Comput. Opt. 2012, 36, 357–364. [Google Scholar]
- Lyu, Q.; Zhai, Z.; Sharp, M.; French, P. The extended depth of field microscope imaging system with the phase pupil mask. Proc. SPIE 2015, 9795. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V. Generalized apodization of an incoherent imaging system aimed for extending the depth of focus. Pattern Recognit. Image Anal. 2015, 25, 626–631. [Google Scholar] [CrossRef]
- Jacquinot, P.; Roizen-Dossier, B. Apodization. Prog. Opt. 1964, 3, 29–186. [Google Scholar]
- Kant, R. Superresolution and increased depth of focus: an inverse problem of vector diffraction. J. Mod. Opt. 2000, 47, 905–916. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Pelevina, E.A. Analysis of wave aberration influence on reducing the focal spot size in a high-aperture focusing system. J. Opt. 2011, 13, 095702. [Google Scholar] [CrossRef]
- Sun, C.-C.; Liu, C.-K. Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation. Opt. Lett. 2003, 28, 99–101. [Google Scholar] [CrossRef]
- Liu, Z.; Flores, A.; Wang, M.R.; Yang, J.J. Diffractive infrared lens with extended depth of focus. Opt. Eng. 2007, 46, 018002. [Google Scholar] [CrossRef]
- Lerman, G.M.; Levy, U. Effect of radial polarization and apodization on spot size under tight focusing conditions. Opt. Express 2008, 16, 4567–4581. [Google Scholar] [CrossRef]
- Khonina, S.N. Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions. Opt. Engineer. 2013, 52, 091711. [Google Scholar] [CrossRef]
- Liu, X.; Cai, X.; Chang, S.; Grover, C.P. Cemented doublet lens with an extended focal depth. Opt. Express 2005, 13, 552–557. [Google Scholar] [CrossRef]
- Yun, M.; Lee, E.-H. Focal shift and extended focal depth with tunable pupil filter. J. Mod. Opt. 2008, 55, 2857–2863. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Porfirev, A.P. Dynamic focal shift and extending depth of focus based on the masking of the illuminating beam and using an adjustable axicon. J. Opt. Soc. Am. A 2019, 36, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Siu, G.G.; Cheng, L.; Chiu, D.S. Improved side-lobe suppression in asymmetric apodization. J. Phys. D Appl. Phys. 1994, 27, 459–463. [Google Scholar] [CrossRef]
- Khonina, S.N.; Volotovsky, S.G. Minimization of light or dark focal spot size with controllable growth of side lobes in focusing systems with the high numerical aperture. Comput. Opt. 2011, 35, 438–451. [Google Scholar]
- Reddick, R.C.; Warmark, R.J.; Ferrel, T.L. New form of scanning optical microscopy. Phys. Rev. B 1989, 39, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, M.; Zapata-Rodriguez, C.J.; Martinez-Corral, M. Asymmetric apodization in confocal scanning systems. Appl. Opt. 1998, 37, 8206–8214. [Google Scholar] [CrossRef]
- Hecht, B.; Sick, B.; Wild, U.P.; Deckert, V.; Zenobi, R.; Martin, O.J.F.; Pohl, D.W. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys. 2000, 112, 7761–7774. [Google Scholar] [CrossRef]
- Boruah, B.R.; Neil, M.A.A. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam. Rev. Sci. Instrum. 2009, 80, 013705. [Google Scholar] [CrossRef] [PubMed]
- Fürhapter, S.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express 2005, 13, 689–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Situ, G.; Warber, M.; Pedrini, G.; Osten, W. Phase contrast enhancement in microscopy using spiral phase filtering. Opt. Commun. 2010, 283, 1273. [Google Scholar] [CrossRef]
- Maurer, C.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 2011, 5, 81–101. [Google Scholar] [CrossRef]
- Asakura, T.; Ueno, T. Apodization for increasing two-point resolution by the sparrow criterion under the partially coherent illumination. Nouvelle Revue d’Optique 1974, 5, 349–359. [Google Scholar] [CrossRef]
- Reddy, A.N.K.; Sagar, D.K.; Khonina, S.N. Complex pupil masks for aberrated imaging of closely spaced objects. Opt. Spectrosc. 2017, 123, 940–949. [Google Scholar] [CrossRef]
- Reddy, A.N.K.; Khonina, S.N. Apodization for improving the two-point resolution of coherent optical systems with defect of focus. Appl. Phys. B 2018, 124, 229. [Google Scholar] [CrossRef]
- Raveh, I.; Mendlovic, D.; Zalevsky, Z.; Lohmann, A.W. Digital method for defocus correction: experimental results. Opt. Eng. 1999, 38, 1620–1626. [Google Scholar] [CrossRef]
- Cathey, W.T.; Dowski, E.R. New paradigm for imaging systems. Appl. Opt. 2002, 41, 6080–6092. [Google Scholar] [CrossRef]
- Asif, M.S.; Ayremlou, A.; Sankaranarayanan, A.; Veeraraghavan, A.; Baraniuk, R.G. FlatCam: Thin, lensless cameras using coded aperture and computation. IEEE Trans. Comput. Imaging 2017, 3, 384–397. [Google Scholar] [CrossRef]
- Sitzmann, V.; Diamond, S.; Peng, Y.; Dun, X.; Boyd, S.; Heidrich, W.; Heide, F.; Wetzstein, G. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph. 2018, 37, 114. [Google Scholar] [CrossRef] [Green Version]
- Hershko, E.; Weiss, L.E.; Michaeli, T.; Shechtman, Y. Multicolor localization microscopy and point-spread-function engineering by deep learning. Opt. Express 2019, 27, 6158–6183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Ren, J.S.J.; Liu, C.; Jia, J. Deep convolutional neural network for image deconvolution. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; pp. 1790–1798. [Google Scholar]
- Eilertsen, G.; Kronander, J.; Denes, G.; Mantiuk, R.; Unger, J. HDR image reconstruction from a single exposure using deep CNNs. ACM Trans. Graph. 2017, 36, 178. [Google Scholar] [CrossRef]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 2017, 3, 47–57. [Google Scholar] [CrossRef]
- Elmalem, S.; Giryes, R.; Marom, E. Learned phase coded aperture for the benefit of depth of field extension. Opt. Express 2018, 26, 15316–15331. [Google Scholar] [CrossRef]
- Marks, D.L.; Stack, R.A.; Brady, D.J. Three-dimensional tomography using a cubic-phase plate extended depth-of-field system. Opt. Lett. 1999, 24, 253–255. [Google Scholar] [CrossRef] [Green Version]
- Narayanswamy, R.; Johnson, G.E.; Silveira, P.E.X.; Wach, H.B. Extending the imaging volume for biometric iris recognition. Appl. Opt. 2005, 44, 701–712. [Google Scholar] [CrossRef]
- Silveira, P.E.X.; Narayanswamy, R. Signal-to-noise analysis of task-based imaging systems with defocus. Appl. Opt. 2006, 45, 2924–2934. [Google Scholar] [CrossRef]
- Simonov, A.N.; Vdovin, G.; Rombach, M.C. Cubic optical elements for an accommodative intraocular lens. Opt. Express 2006, 14, 7757–7775. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Skidanov, R.V.; Porfirev, A.P. Local foci of a parabolic binary diffraction lens. Appl. Opt. 2015, 54, 5680–5685. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principle of Optics, 7th ed.; Cambridge University: Cambridge, UK, 1999. [Google Scholar]
- Flores, A.; Wang, M.R.; Yang, J.J. Achromatic hybrid refractive–diffractive lens with extended depth of focus. Appl. Opt. 2004, 43, 5618–5630. [Google Scholar] [CrossRef]
- Ustinov, A.V.; Khonina, S.N. Generalized lens: Calculation of distribution on the optical axis. Comput. Opt. 2013, 37, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://en.wikipedia.org/wiki/Circle_of_confusion; http://www.rags-int-inc.com/PhotoTechStuff/DoF/ (accessed on 1 May 2021).
- Richardson, W.H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 1972, 2, 55–59. [Google Scholar] [CrossRef]
- Lucy, L.B. An iterative technique for the rectication of observed images. Astron. J. 1974, 79, 745–754. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khonina, S.N.; Volotovskiy, S.G.; Dzyuba, A.P.; Serafimovich, P.G.; Popov, S.B.; Butt, M.A. Power Phase Apodization Study on Compensation Defocusing and Chromatic Aberration in the Imaging System. Electronics 2021, 10, 1327. https://doi.org/10.3390/electronics10111327
Khonina SN, Volotovskiy SG, Dzyuba AP, Serafimovich PG, Popov SB, Butt MA. Power Phase Apodization Study on Compensation Defocusing and Chromatic Aberration in the Imaging System. Electronics. 2021; 10(11):1327. https://doi.org/10.3390/electronics10111327
Chicago/Turabian StyleKhonina, Svetlana N., Sergey G. Volotovskiy, Alexey P. Dzyuba, Pavel G. Serafimovich, Sergey B. Popov, and Muhammad A. Butt. 2021. "Power Phase Apodization Study on Compensation Defocusing and Chromatic Aberration in the Imaging System" Electronics 10, no. 11: 1327. https://doi.org/10.3390/electronics10111327
APA StyleKhonina, S. N., Volotovskiy, S. G., Dzyuba, A. P., Serafimovich, P. G., Popov, S. B., & Butt, M. A. (2021). Power Phase Apodization Study on Compensation Defocusing and Chromatic Aberration in the Imaging System. Electronics, 10(11), 1327. https://doi.org/10.3390/electronics10111327