Comprehensive Survey of Various Energy Storage Technology Used in Hybrid Energy
Abstract
:1. Introduction
2. Technology for Storage
2.1. Pumped Hydroelectric Storage System (PHSS)
2.2. Compressed Air Energy Storage (CAES)
2.3. Flywheel Energy Storage Unit
2.4. Thermal Energy Storage
2.5. Battery Energy Storage Unit (BESU)
2.6. Simple Conduction and Supercapacitor Magnetic Energy Storage
3. World-Wide Storage Scenario
3.1. United States of America
3.2. Japan
3.3. China
3.4. India
4. Overview and Use of LFM Energy Storage
4.1. System of Grid Scale
4.2. LFM Control Schemes
- For future studies, the LFM schemes are important. LFM control systems are inevitably used in Automatic Generation Control (AGC). Depending on the device condition, the control signal of LFM connecting units is activated. For further information on LFM control schemes, [87] may be referred to. The LFM controllers are classified as two different types:
- Classic control system: a linear quadratic controller, proportional integral derivative.
- Control system for artificial intelligence (AI): this includes a fuzzy optimization scheme, genetically modified and hybrid.
4.3. BESU Characteristics
- Battery set: the sequence or simultaneous group of battery cells.
- Module for power supplying: power electronic converters are used to attach BESU to the grid.
- Control and protection: this maintains the state of charge (SOC) track and confirms that battery capacity regulates battery charge with regard to the control system variable used for safety and safety in applications. Discharge of the battery charge is necessary.
- Classical battery: includes sodium–sulfur, lithium–ion, cadmium–nickel, acid–lead.
- Battery flow: vanadium redox characterized.
4.4. Optimum Size of BESU
4.5. Numbers of Grid-Scale Systems
- Large-scale BESU systems’ cost installation.
- In BESU systems, high efficiency is needed.
- The variance in the time scales between generating units and BESU units is required for a correlational transmission of LFM signal between therapeutic units, the system operator and BESU.
4.6. Load Measurement System
5. Future Work
5.1. Synchronized Combined System
- The charge–discharge system will strike a balance between the consumer’s needs and appropriateness.
- To accomplish this, system controllers should be capable of managing and tracking several loads. For the dispatch of LFM signals and interconnections with generating units, intermediate control and aggregation systems are, therefore, required.
- The aggregator analyzes the appropriate LFM resources from local operating systems without understanding the state of the entire network. The calculation, modification and collection of real-time load conditions, for example, the size, duration, plug and charge of the battery SOC [79], are the way to achieve this.
5.2. Non-Synchronized Combined System
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murty, V.V.; Kumar, A. Optimal Energy Management and Techno-economic Analysis in Microgrid with Hybrid Renewable Energy Sources. J. Mod. Power Syst. Clean Energy 2020, 8, 929–940. [Google Scholar] [CrossRef]
- Zellagui, M.; Lasmari, A.; Settoul, S.; El-Bayeh, C.Z.; Chenni, R. Assessment Integration of Hy-brid PV-DSTATCOM-BES-DG System in EDS under Uncertainties Using Chaotic Adaptive Inertia Weight PSO Algorithms. In Proceedings of the 2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 25–27 March 2021; pp. 1–8. [Google Scholar]
- Bihari, S.P.; Sadhu, P.K.; Sarita, K.; Khan, B.; Arya, L.D.; Saket, R.K.; Kothari, D.P. A Comprehensive Review of Microgrid Control Mechanism and Impact Assessmeent for Hybrid Renewable Energy Integration. Access IEEE 2021, 9, 88942–88958. [Google Scholar] [CrossRef]
- Kumar, J.S.; Raja, S.C.; Srinivasan, D.; Venkatesh, P. Hybrid renewable energy-based distribution system for seasonal load variations. Int. J. Energy Res. 2018, 42, 1066–1087. [Google Scholar] [CrossRef]
- Santos, Y.A.; Nunes, M.P.M.; Lemes, L.A.C.; Bortoni, E.C. Evaluation of Hybrid Energy Storage Systems Using Wavelet and Stretched-Thread Methods. IEEE Access 2020, 8, 171882–171891. [Google Scholar] [CrossRef]
- Syed, M.A.; Khalid, M. Moving Regression Filtering With Battery State of Charge Feedback Control for Solar PV Firming and Ramp Rate Curtailment. IEEE Access 2021, 9, 13198–13211. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, L.; Xu, M.; Wu, H.; Zhou, Z.; Liu, B.; Lin, S.; Wang, Y. A Transform-er-Less Voltage Equalizer for Energy Storage Cells Based on Double-Tiered Multi-Stacked Converters. IEEE Access 2021, 9, 87630–87642. [Google Scholar] [CrossRef]
- Yang, W.; Norrlund, P.; Saarinen, L.; Witt, A.; Smith, B.; Yang, J.; Lundin, U. Burden on hydropower units for short-term balancing of renewable power systems. Nat. Commun. 2018, 9, 2633. [Google Scholar] [CrossRef] [Green Version]
- Hajiaghasi, S.; Salemnia, A.; Hamzeh, M. Hybrid energy storage system for microgrids applications: A review. J. Energy Storage 2019, 21, 543–570. [Google Scholar] [CrossRef]
- Hesaroor, K.; Das, D. Optimal sizing of energy storage system in islanded microgrid using incremental cost approach. J. Energy Storage 2019, 24, 100768. [Google Scholar] [CrossRef]
- Paliwal, N.K.; Singh, A.K.; Singh, N.K.; Kumar, P. Optimal sizing and operation of battery storage for economic operation of hybrid power system using artificial bee colony algorithm. Int. Trans. Electr. Energy Syst. 2019, 29, e2685. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Tang, X.; Sun, X.; Jia, D.; Cao, Z.; Pan, J.; Xu, B. Model predictive control and improved low-pass filtering strategies based on wind power fluctuation mitigation. J. Mod. Power Syst. Clean Energy 2019, 7, 512–524. [Google Scholar] [CrossRef] [Green Version]
- Majumder, S.; Khaparde, S.A.; Agalgaonkar, A.P.; Ciufo, P.; Perera, S.; Kulkarni, S.V. DFT-based sizing of battery storage devices to determine day-ahead minimum variability injection dispatch with renewable energy resources. IEEE Trans. Smart Grid 2019, 10, 626–638. [Google Scholar] [CrossRef]
- Conte, F.; D’Agostino, F.; Pongiglione, P.; Saviozzi, M.; Silvestro, F. Mixed-integer algorithm for optimal dispatch of integrated PV-storage systems. IEEE Trans. Ind. Appl. 2010, 55, 238–247. [Google Scholar] [CrossRef]
- Wen, T.; Zhang, Z.; Lin, X.; Li, Z.; Chen, C.; Wang, Z. Research on Modeling and the Operation Strategy of a Hydrogen-Battery Hybrid Energy Storage System for Flexible Wind Farm Grid-Connection. IEEE Access 2020, 8, 79347–79356. [Google Scholar] [CrossRef]
- Vahid, S.; El-Refaie, A. A Novel Semi-Isolated Three-Port dc-dc Power Converter with Soft Switching Technique for Hybrid Energy Storage Applications. In Proceedings of the 2021 22nd IEEE International Conference on Industrial Technology (ICIT), Valencia, Spain, 10–12 March 2021; Volume 1, pp. 278–284. [Google Scholar]
- Yu, P.; Liu, X.; Zhang, Y.; Hu, X.; Kong, G.; Zhao, P.; Cheng, Y.; Li, S.; Zuo, X.; Sun, S. Battery–supercapacitor hybrid energy storage system for wind power suppression based on the turbulence model of wind speed. J. Eng. 2018, 2018, 1922–1929. [Google Scholar] [CrossRef]
- Asghari, B.; Sharma, R. Cost-aware real-time power management of grid-tied microgrids based on battery life regula-tion. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; pp. 1–6. [Google Scholar]
- Gong, Y.; Jiang, Q.; Baldick, R. Ramp Event Forecast Based Wind Power Ramp Control With Energy Storage System. IEEE Trans. Power Syst. 2015, 31, 1831–1844. [Google Scholar] [CrossRef]
- Zhou, B.; Zou, J.; Chung, C.Y.; Wang, H.; Liu, N.; Voropai, N.; Xu, D. Multi-microgrid Energy Management Systems: Architecture, Communication, and Scheduling Strategies. J. Mod. Power Syst. Clean Energy 2021, 9, 463–476. [Google Scholar] [CrossRef]
- Kroposki, B. Integrating high levels of variable renewable energy into electric power systems. J. Mod. Power Syst. Clean Energy 2017, 5, 831–837. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, P.; Zheng, C.; Zhang, Y.; Peng, J.; Zeng, Z. Analysis on the organization and Development of multi-microgrids. Renew. Sustain. Energy Rev. 2018, 81, 2204–2216. [Google Scholar] [CrossRef]
- Wang, S.; Geng, G.; Ma, J.; Jiang, Q.; Huang, H.; Lou, B. Operational Bottleneck Identification based Energy Storage Investment Requirement Analysis for Renewable Energy Integration. IEEE Trans. Sustain. Energy 2020, 12, 1. [Google Scholar] [CrossRef]
- Abdelrazek, S.A.; Kamalasadan, S. Integrated PV Capacity Firming and Energy Time Shift Battery Energy Storage Management Using Energy-Oriented Optimization. IEEE Trans. Ind. Appl. 2016, 52, 2607–2617. [Google Scholar] [CrossRef]
- Alves, M.; Segurado, R.; Costa, M. Increasing the penetration of renewable energy sources in isolated islands through the interconnection of their power systems. The case of Pico and Faial islands, Azores. Energy 2019, 182, 502–510. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Guerrero, J.M.; Griepentrog, G. A Self-Sustained and Flexible Control Strategy for Islanded DC Nanogrids Without Communication Links. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 877–892. [Google Scholar] [CrossRef]
- Monesha, S.; Kumar, S.G.; Rivera, M. Methodologies of Energy Management and Control in Microgrid. IEEE Lat. Am. Trans. 2018, 16, 2345–2353. [Google Scholar] [CrossRef]
- Li, Z.; Shahidehpour, M.; Aminifar, F.; AlAbdulwahab, A.; Al-Turki, Y. Networked Microgrids for Enhancing the Power System Resilience. Proc. IEEE 2017, 105, 1289–1310. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, K.; Li, H.; Coelho, E.A.A.; Guerrero, J.M. MAS-Based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters: A Comprehensive Overview. IEEE Trans. Power Electron. 2018, 33, 6488–6508. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Liang, X.; Hu, W.; Dou, X.; Yang, F. Optimal Dispatch of Regional Integrated Energy System Based on a Generalized Energy Storage Model. IEEE Access 2021, 9, 1546–1555. [Google Scholar] [CrossRef]
- Wu, Q.H.; Qin, Y.J.; Wu, L.L.; Zheng, J.H.; Li, M.S.; Jing, Z.X.; Zhou, X.X.; Wei, F. Optimal operation of integrated energy systems subject to the coupled demand constraints of electricity and natural gas. CSEE J. Power Energy Syst. 2019, 6, 444–457. [Google Scholar] [CrossRef]
- Gao, X.; Fu, L. SOC optimization based energy management strategy for hybrid energy storage system in vessel inte-grated power system. IEEE Access 2020, 8, 54611–54619. [Google Scholar] [CrossRef]
- Madduri, P.A.; Poon, J.; Rosa, J.; Podolsky, M.; Brewer, E.A.; Sanders, S.R. Scalable DC Microgrids for Rural Electrification in Emerging Regions. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1195–1205. [Google Scholar] [CrossRef]
- Chen, X.; Shi, M.; Zhou, J.; Zuo, W.; Chen, Y.; Wen, J.; He, H. Consensus-Based Distributed Control for Photovoltaic-Battery Units in a DC Microgrid. IEEE Trans. Ind. Electron. 2018, 66, 7778–7787. [Google Scholar] [CrossRef]
- Huang, A.W.; Qahouq, J.A.A. Energy sharing control scheme for state-of-charge balancing of distributed battery energy storage system. IEEE Trans. Ind. Electron. 2015, 62, 2764–2776. [Google Scholar] [CrossRef]
- Guo, F.; Wang, L.; Wen, C.; Zhang, D.; Xu, Q. Distributed Voltage Restoration and Current Sharing Control in Islanded DC Microgrid Systems Without Continuous Communication. IEEE Trans. Ind. Electron. 2020, 67, 3043–3053. [Google Scholar] [CrossRef]
- Kumar, D.; Zare, F.; Ghosh, A. DC Microgrid Technology: System Architectures, AC Grid Interfaces, Grounding Schemes, Power Quality, Communication Networks, Applications, and Standardizations Aspects. IEEE Access 2017, 5, 12230–12256. [Google Scholar] [CrossRef]
- Vuyyuru, U.; Maiti, S.; Chakraborty, C.; Batzelis, E.I. Universal Active Power Control Converter for DC-microgrids with Common Energy Storage. IEEE Open J. Ind. Appl. 2021, 2, 21–35. [Google Scholar] [CrossRef]
- Morstyn, T.; Hredzak, B.; Agelidis, V.G. Communication delay robustness for multi-agent state of charge balancing between distributed AC microgrid storage systems. In Proceedings of the 2015 IEEE Conference on Control Applications (CCA), Sydney, Australia, 21–23 September 2015; pp. 181–186. [Google Scholar]
- Salama, H.S.; Said, S.M.; Aly, M.; Vokony, I.; Hartmann, B. Studying Impacts of Electric Vehicle Functionalities in Wind Energy-Powered Utility Grids With Energy Storage Device. IEEE Access 2021, 9, 45754–45769. [Google Scholar] [CrossRef]
- Podder, A.K.; Chakraborty, O.; Islam, S.; Kumar, N.M.; Alhelou, H.H. Control Strategies of Different Hybrid Energy Storage Systems for Electric Vehicles Applications. IEEE Access 2021, 9, 51865–51895. [Google Scholar] [CrossRef]
- Li, Z.; Chan, K.W.; Hu, J.; Guerrero, J.M. Adaptive Droop Control Using Adaptive Virtual Impedance for Microgrids With Variable PV Outputs and Load Demands. IEEE Trans. Ind. Electron. 2021, 68, 9630–9640. [Google Scholar] [CrossRef]
- Bruninx, K.; Dvorkin, Y.; Delarue, E.; Pandzic, H.; D’Haeseleer, W.; Kirschen, D.S. Coupling Pumped Hydro Energy Storage With Unit Commitment. IEEE Trans. Sustain. Energy 2015, 7, 786–796. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Guan, R.; Sun, X.; Wang, Y.; Li, X. SoC balancing strategy for multiple energy storage units with different capacities in islanded microgrids based on droop control. IEEE JEST Power Electron. 2018, 6, 1932–1941. [Google Scholar] [CrossRef]
- Shan, Y.; Hu, J.; Guerrero, J.M. A Model Predictive Power Control Method for PV and Energy Storage Systems With Voltage Support Capability. IEEE Trans. Smart Grid 2019, 11, 1018–1029. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Y.; Wang, X.; Loh, P.C.; Blaabjerg, F.; Wang, W.; Xu, D.G. An Enhanced Dual Droop Control Scheme for Resilient Active Power Sharing among Paralleled Two-Stage Converters. IEEE Trans. Power Electron. 2016, 32, 1. [Google Scholar] [CrossRef] [Green Version]
- Hoang, K.D.; Lee, H.-H. Accurate Power Sharing With Balanced Battery State of Charge in Distributed DC Microgrid. IEEE Trans. Ind. Electron. 2018, 66, 1883–1893. [Google Scholar] [CrossRef]
- Ye, Y.; Cheng, K.W.E. Modeling and analysis of series–parallel switched-capacitor voltage equalizer for bat-tery/supercapacitor strings. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 977–983. [Google Scholar] [CrossRef]
- Lu, X.; Sun, K.; Guerrero, J.; Vasquez, J.C.; Huang, L. State-of-Charge Balance Using Adaptive Droop Control for Distributed Energy Storage Systems in DC Microgrid Applications. IEEE Trans. Ind. Electron. 2014, 61, 2804–2815. [Google Scholar] [CrossRef] [Green Version]
- Locorotondo, E.; Corti, F.; Pugi, L.; Berzi, L.; Reatti, A.; Lutzemberger, G. Design of a Wireless Charging System for Online Battery Spectroscopy. Energies 2021, 14, 218. [Google Scholar] [CrossRef]
- Yogarathinam, A.; Chaudhuri, N.R. Stability-Constrained Adaptive Droop for Power Sharing in AC-MTDC Grids. IEEE Trans. Power Syst. 2019, 34, 1955–1965. [Google Scholar] [CrossRef]
- Byrne, R.H.; Nguyen, T.; Copp, D.; Chalamala, B.; Gyuk, I. Energy Management and Optimization Methods for Grid Energy Storage Systems. IEEE Access 2018, 6, 13231–13260. [Google Scholar] [CrossRef]
- Wang, S.; Geng, G.; Wenlong, L.; Jiang, Q. Impact of Time-Coupled Generator Formulation on Energy Storage Sizing Problem. In Proceedings of the 2018 North American Power Symposium (NAPS), Fargo, ND, USA, 9–11 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, T.; Nian, H.; Zhu, Z.Q.; Ding, L.; Zhou, B. Flexible Compensation Strategy for Voltage Source Converter Under Unbalanced and Harmonic Condition Based on a Hybrid Virtual Impedance Method. IEEE Trans. Power Electron. 2018, 33, 7656–7673. [Google Scholar] [CrossRef]
- Li, S.J.; Li, X.R.; Huang, J.Y.; Yang, X.D.; Ouyang, L.L.; Bi, S.L. Technicaland econimic selection analysis of energy storage power supply for frequency regulation. Acta Energ. Sol. Sinca. 2018, 39, 3550–3557. [Google Scholar]
- Vishnoi, R.K.; Joshi, L.P. Challenges in Reliable Power System Planning and Management with Large Scale Infusion of Renewable Sources in India. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 19–23 March 2019; pp. 63–67. [Google Scholar]
- Mastrocinque, E.; Ramírez, F.J.; Honrubia-Escribano, A.; Pham, D.T. An AHP-based multi-criteria model for sus-tainable supply chain development in the renewable energy sector. Expert Syst. Appl. 2020, 150, 1–16. [Google Scholar] [CrossRef]
- Paul, S.; Nath, A.P.; Rather, Z.H. A Multi-Objective Planning Framework for Coordinated Generation From Offshore Wind Farm and Battery Energy Storage System. IEEE Trans. Sustain. Energy 2019, 11, 2087–2097. [Google Scholar] [CrossRef]
- Li, X.D.; Wang, F.; Cao, Y.J.; Wang, L.Y.; Wang, L.Y. Analytic Hierarchy Process Based Quantitative Performance Evaluation of Second-use Battery Energy Storage System. J. Shandong Univ. (Eng. Sci.) 2019, 49, 123–129. [Google Scholar]
- Barin, A.; Canha, L.N.; Abaide, A.; Magnago, K.F. Selection of storage energy technologies in a power quality scenario the AHP and the fuzzy logic. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 3615–3620. [Google Scholar]
- Ongaro, F.; Saggini, S.; Mattavelli, P. Li-ion battery-supercapacitor hybrid storage system for a long lifetime photovol-taic-based wireless sensor network. IEEE Trans. Power Syst. 2012, 27, 3944–3952. [Google Scholar] [CrossRef]
- Maharjan, L.; Inoue, S.; Akagi, H.; Asakura, J. State-of-Charge (SOC)-Balancing Control of a Battery Energy Storage System Based on a Cascade PWM Converter. IEEE Trans. Power Electron. 2009, 24, 1628–1636. [Google Scholar] [CrossRef]
- Gkavanoudis, S.I.; Oureilidis, K.O.; Demoulias, C.S. An adaptive droop control method for balancing the SoC of distributed batteries in AC Microgrids. In Proceedings of the 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, Norway, 27–30 June 2016; pp. 1–6. [Google Scholar]
- Thale, S.; Wandhare, R.; Agarwal, V. A Novel Reconfigurable Microgrid Architecture With Renewable Energy Sources and Storage. IEEE Trans. Ind. Appl. 2015, 51, 1805–1816. [Google Scholar] [CrossRef]
- Li, J.L.; Ma, H.M.; Tian, C.G.; Dong, H. Selection of electrochemical energy storage based on interval analytic hierarchy process method. High Volt. Eng. 2016, 42, 2707–2714. [Google Scholar]
- Lu, X.; Sun, K.; Guerrero, J.; Vasquez, J.C.; Huang, L. Double-Quadrant State-of-Charge-Based Droop Control Method for Distributed Energy Storage Systems in Autonomous DC Microgrids. IEEE Trans. Smart Grid 2015, 6, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Zhang, J.H.; Hu, D.C.; Li, J.L.; Ma, H.M. Comparison and analysis of multi-attribute and multi-objective energy storage system working conditions suitability. Electr. Power Constr. 2018, 39, 2–8. [Google Scholar]
- Yang, J.; Yuan, B.; Zhang, F.; Luan, F.; Lu, G.; Xu, Z. Research on the Application Prospect of Energy Storage Technology in Energy Internet. In Proceedings of the 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), Beijing, China, 7–10 September 2019; pp. 1608–1612. [Google Scholar]
- Kim, Y.-S.; Hwang, C.-S.; Kim, E.-S.; Cho, C. State of charge-based active power sharing method in a standalone mi-crogrid with high penetration level of renewable energy sources. Energies 2016, 9, 480. [Google Scholar] [CrossRef]
- Liang, J.; Yu, H.; Yang, G.C.; Zhou, Y. Application of Battery Storage Technology in Peak Regulation Optimization of Wind Power System. Electr. Power Inf. Commun. Technol. 2020, 18, 67–73. [Google Scholar]
- Wang, S.-J.; Ping, C.; Xue, G.-B. Synergic Optimization of Community Energy Internet Considering the Shared Energy Storage. Electr. Power 2018, 51, 77–84. [Google Scholar]
- Yang, J.; Jin, X.; Wu, X.; Acuna, P.; Aguilera, R.P.; Morstyn, T.; Agelidis, V.G. Decentralised control method for dc microgrids with improved current sharing accuracy. IET Gener. Transm. Distrib. 2017, 11, 696–706. [Google Scholar] [CrossRef]
- Lei, Q.; Miao, S.H.; Guo, B.F.; Sun, Q.; Ye, C. Comprehensive evaluation of hierarchical storage based on analytic hierarchy process and improved technique for order preference by similarity to ideal solution. Power Syst. Prot. Control. 2017, 45, 13–19. [Google Scholar]
- Wang, C.X.; Li, Q.H.; Lei, X.J. Methodology for Analyzing the Value of Energy Storage to Power System Frequency Control of High Shares of Renewable Energy. Electr. Power 2016, 49, 148–152. [Google Scholar]
- Yang, J.; Jin, X.; Yang, X.; Wu, X.Z. Overview on power control technologies in hybrid AC-DC microgrid. Power Syst. Technol. 2017, 41, 29–39. [Google Scholar]
- Li, J.L.; Ma, H.M.; Hui, D. Present Development Condition and Trends of Energy Storage Technology in the Integration of Distributed Renewable Energy. Trans. China Electrotech. Soc. 2016, 131, 1–20. [Google Scholar]
- Morstyn, T.; Hredzak, B.; Agelidis, V.G. Distributed Cooperative Control of Microgrid Storage. IEEE Trans. Power Syst. 2015, 30, 2780–2789. [Google Scholar] [CrossRef]
- Kumar, M.B.H.; Saravanan, B. A Solution for Stability Improvement through Compressed Air Energy Storage as Reactive Power Compensating Device under Various Grid Faults. In Proceedings of the 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 22–23 March 2019; Volume 1, pp. 1–5. [Google Scholar]
- Yang, T.; Han, Z.; Yang, F.; Liang, Y.; Gao, J.; Ji, X. Coordinated Optimal Configuration Method of Hybrid Energy Storage Systems in Energy Internet System. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 1515–1519. [Google Scholar]
- Wang, Z.; Liu, Q.; Lu, S.; Chen, X.; Xu, X.; Zhou, X. Distributed Generation Placement Considering Carbon Trading in the Context Of Energy Internet. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 908–913. [Google Scholar]
- Li, Y.; Lu, Y.; Li, H.; Wang, D.; Mu, Z.; Han, X. Adaptability Evaluation of Energy Storage Working Conditions in Different Application Scenarios. In Proceedings of the 2021 4th International Conference on Energy, Electrical and Power Engineering (CEEPE), Chongqing, China, 23–25 April 2021; pp. 103–107. [Google Scholar] [CrossRef]
- Zeng, M.; Yang, Y.; Liu, D.; Zeng, B.; Ouyang, S.; Lin, H.; Han, X. Generation-Grid-Load-Storage’ Coordinative Optimal Operation Mode of Energy Internet and Key Technologies. Power Syst. Technol. 2016, 40, 114–124. [Google Scholar]
- Nikolakakis, T.; Fthenakis, V.M.; Nokolakakis, T. Compressed Air Energy Storage Models for Energy Arbitrage and Ancillary Services: Comparison Using Mixed Integer Programming Optimization with Market Data from the Irish Power System. Energy Technol. 2018, 6, 1290–1301. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Hao, J.C.; Zhao, N.; Wang, X. Demands functions and action manners of energy storage in Energy Internet. Adv. Technol. Electr. Eng. Energy 2018, 37, 68–75. [Google Scholar]
- Zhu, Y.; Zhao, N.; Wang, F.; Wang, X. Energy storage coordination among various energy networks in energy Internet. Adv. Technol. Electr. Eng. Energy 2018, 37, 10–16. [Google Scholar]
- Nazar, A.; Anwer, N. Accommodative Energy Market for Battery Energy Storage and Grid Balancing. In Proceedings of the 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 10–11 July 2020; pp. 1–5. [Google Scholar]
- Silva-Saravia, H.; Pulgar-Painemal, H.; Mauricio, J.M. Flywheel energy storage model control and location for improving stability: The chilean case. IEEE Trans. Power Syst. 2017, 32, 3111–3119. [Google Scholar] [CrossRef]
- Banshwar, A.; Sharma, N.K.; Sood, Y.R.; Shrivastava, R. Renewable energy sources as a new participant in ancillary service markets. Energy Strat. Rev. 2017, 18, 106–120. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Koliou, E.; Eid, C.; Chaves-Ávila, J.P.; Hakvoort, R.A. Demand response in liberalized electricity markets: Analysis of aggregated load participation in the German balancing mechanism. Energy 2014, 71, 245–254. [Google Scholar] [CrossRef]
- Sidhu, A.S.; Pollitt, M.G.; Anaya, K.L. A social cost benefit analysis of grid-scale electrical energy storage projects: A case study. Appl. Energy 2018, 212, 881–894. [Google Scholar] [CrossRef]
- Hannan, M.; Hoque, M.; Mohamed, A.; Ayob, A. Review of energy storage systems for electric vehicle applications: Issues and challenges. Renew. Sustain. Energy Rev. 2017, 69, 771–789. [Google Scholar] [CrossRef]
- Mahapatra, U. Energy Storages and Technologies for Electric Vehicle. In Proceedings of the 2021 Innovations in Energy Management and Renewable Resources(52042), Kolkata, India, 5–7 February 2021; pp. 1–3. [Google Scholar]
- Kouchachvili, L.; Yaici, W.; Entchev, E. Hybrid battery/supercapacitor energy storage system for the electric vehicles. J. Power Sources 2018, 374, 237–248. [Google Scholar] [CrossRef]
- Lucas, A.; Chondrogiannis, S. Smart grid energy storage controller for frequency regulation and peak shaving, using a vanadium redox flow battery. Int. J. Electr. Power Energy Syst. 2016, 80, 26–36. [Google Scholar] [CrossRef]
- Song, Z.; Li, J.; Hou, J.; Hofmann, H.; Ouyang, M.; Du, J. The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study. Energy 2018, 154, 433–441. [Google Scholar] [CrossRef]
- Davies, D.M.; Verde, M.G.; Mnyshenko, O.; Chen, Y.R.; Rajeev, R.; Meng, Y.S.; Elliott, G. Combined economic and technological evaluation of battery energy storage for grid applications. Nat. Energy 2019, 4, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Zacharia, L.; Tziovani, L.; Savva, M.; Hadjidemetriou, L.; Kyriakides, E.; Bintoudi, A.; Tsolakis, A.; Tzovaras, D.; Martinez-Ramos, J.L.; Marano, A.; et al. Optimal Energy Management and Scheduling of a Microgrid in Grid-Connected and Islanded Modes. In Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies (SEST), Porto, Portugal, 9–11 September 2019; pp. 1–6. [Google Scholar]
- Ramakrishnan, J.; Hashemi, S.; Traholt, C. Assessment of Energy Storage Systems for Multiple Grid Service Provision. In Proceedings of the 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Setubal, Portugal, 8–10 July 2020; Volume 1, pp. 333–339. [Google Scholar]
- Parhizi, S.; Khodaei, A.; Shahidehpour, M. Market-Based Versus Price-Based Microgrid Optimal Scheduling. IEEE Trans. Smart Grid 2018, 9, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Borne, O.; Korte, K.; Perez, Y.; Petit, M.; Purkus, A. Barriers to entry in frequency-regulation services markets: Review of the status quo and options for improvements. Renew. Sustain. Energy Rev. 2018, 81, 605–614. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, Z.; Li, H. Design of Smart Energy Converter with Distribution and Storage Integrated for LVDC Distribution Grid. In Proceedings of the 2020 5th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 12–14 September 2020; pp. 528–532. [Google Scholar]
Specification | Pumped-Storage Hydropower | Compressed-Air Energy Storage | Flywheel Energy Storage |
---|---|---|---|
Particular Power [W/kg] | 0.2–0.35 [13,15] | 1.7–30 [21,23] | 250–25,000 [28,29,30,31,32] |
Power Density [kW/m3] | 0.12–0.45 [13,14,15,18] | 0.01–8 [24,26] | 35–4000 [29,30] |
Efficiency [%] | 52–74 [17,18,19] | 54–78 [23,25] | 65–85 [28,32] |
Scale [MW] | 20–6000 [13,17] | 0.03–4200 [22,24] | 0.02–12 [28,29,30] |
Self-Discharge Rate [%/day] | 0 | 0 | 20–50 [28,29] |
Lifespan [yrs] | 10–50 [13,15,17,18,19] | 5–25 [23,25,26] | 5–20 [28,29,30] |
Power Capital Cost [US$/kW] | 500–7122 [13,14,16,19] | 450–2122 [23,24,26] | 20–500 [30,32] |
Application | advanced level of Energy Management | advanced level of Energy Management | intermediate level of Power quality |
Specifications | Applicable Heat | Useful Heat | Reaction Heat |
---|---|---|---|
Explicit Energy [J/kg] | 36,000–432,000 | 540,000–900,000 | 900,000 |
Specific Power [W/kg] | - | 10–30 | - |
Power Density [kW/m3] | - | - | - |
Efficiency [%] | 10–94 | 78–95 | 81–92 |
Lifespan [yrs] | 6–25 | 12–34 | - |
Scale [kW] | 1–10,000 | 1–300,000 | 10–1 |
Energy Capital Cost [Rs./kWh] | 2.99–3739.49 | 224.37–6636.10 | 815.21–10,246.21 |
Power Capital Cost [Rs./kW] | 186,974.63–590,839.82 | 14957.97–22,436.96 | - |
Application | intermediate level Bridging Power | intermediate/ High-level Energy Management | Lower/ intermediate-level Energy Management |
Particulars | Lithium–Ion | Zinc–Silver-Oxide | Lead–Acid | Alkaline |
---|---|---|---|---|
Explicit Energy [Wh/kg] | 30–300 | 81–276 | 10–50 | 80–175 |
Energy Density [kWh/m3] | 94–500 | 4.2–957 | 25–90 | 360–400 |
Specific Power [W/kg] | 8–2000 | 0.09–330 | 25–415 | 4.35–35 |
Power Density [kW/m3] | 56.8–800 | 0.36–610 | 10–400 | 12.35–101.7 |
Efficiency [%] | 70–100 | 20–100 | 63–90 | 36–94 |
Lifespan [yrs] | 2–20 | 2–1 | 3–20 | 2.5–10 |
Cycle Life [cycles] | 250–10,000 | 1–1500 | 100–2000 | 1–200 |
Self-Discharge Rate [%/day] | 0.03–0.33 | 0.01–0.25 | 0.033–1.1 | 0.008–0.011 |
Scale [kW] | 0–3000 | 0–250 | 0–50000 | 0–1 |
Energy Capital Cost [Rs./kWh] | 14,957.97–299,159.40 | 236,859.45–1495,797.00 | 3739.49–82,268.84 | 7478.99–74,789.85 |
Power Capital Cost [Rs./kW] | 13,088.22–4000 | 74,789.85–889,999.21 | 13,088.22–67,310.87 | 74,789.85–889,999.21 |
Application | Lower/intermediate level Energy Management | Lower level Energy Management | Lower/intermediate level Energy Management | Lower level Energy Management |
Particulars | Superconducting | Super-Capacitor |
---|---|---|
Explicit Energy [J/kg] | 972–270,000 | 252–308,160 |
Explicit Power [W/kg] | 300–12,000 | 6.32–200,000 |
Power Density [kW/m3] | 500–3000 | 14–3400 |
Efficiency [%] | 78–94 | 63–94 |
Lifecycle [yrs] | 20–30 | 4–23 |
State of Charge [%/day] | 1–22 | 0.43–50 |
Capacity [MW] | 0.02–300 | 0–4 |
Energy per capita Cost [Rs./kWh] | 29,930.62–7,931,614.30 | 7482.65–6,210,603.65 |
Power per capita Cost [Rs./kW] | 13,842.91–748,265.50 | 7482.65–59,861.24 |
Application | intermediate/Higher level Power Quality | Low/intermediate level Power Quality |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riyaz, A.; Sadhu, P.K.; Iqbal, A.; Alamri, B. Comprehensive Survey of Various Energy Storage Technology Used in Hybrid Energy. Electronics 2021, 10, 2037. https://doi.org/10.3390/electronics10162037
Riyaz A, Sadhu PK, Iqbal A, Alamri B. Comprehensive Survey of Various Energy Storage Technology Used in Hybrid Energy. Electronics. 2021; 10(16):2037. https://doi.org/10.3390/electronics10162037
Chicago/Turabian StyleRiyaz, Ahmed, Pradip Kumar Sadhu, Atif Iqbal, and Basem Alamri. 2021. "Comprehensive Survey of Various Energy Storage Technology Used in Hybrid Energy" Electronics 10, no. 16: 2037. https://doi.org/10.3390/electronics10162037
APA StyleRiyaz, A., Sadhu, P. K., Iqbal, A., & Alamri, B. (2021). Comprehensive Survey of Various Energy Storage Technology Used in Hybrid Energy. Electronics, 10(16), 2037. https://doi.org/10.3390/electronics10162037