Simultaneous Minimization of Energy Losses and Greenhouse Gas Emissions in AC Distribution Networks Using BESS
Abstract
:1. Introduction
- ✓
- The multi-objective formulation of the problem regarding the optimal operation of BESS in AC radial distribution networks using the branch optimal power flow representation, considering the simultaneous minimization of the CO gas emissions and the costs of the daily energy losses, is presented.
- ✓
- The Pareto front is constructed using the multi-objective optimization approach via pondering factors by exploiting the potentialities of the GAMS software for nonlinear optimization.
- ✓
- The different effects that voltage control in the substation and the active and reactive power injection in the BESSs have in the formation of the Pareto front were evaluated.
2. Multi-Objective Optimization Problem
2.1. Objective Functions
2.2. Set of Constraints
2.3. Interpretation of the Mathematical Model
3. Solution Methodology
- Define the sets associated with the groups of variables of the problem, i.e., set of periods of time , set of nodes , and set of branches .
- Define the scalars, parameters (vectors), and tables (matrices), i.e., active and reactive power demands ( and ), resistances and inductances per distribution line ( and ), and the maximum and minimum bounds of the variables (i.e., , , , , and so on).
- Define the variables and their natures, i.e., continuous, binary, or discrete.
- Redact the equation names associated with each of the expressions in the optimization model, as well as the mathematical formulation of these equations using symbolic structure.
- Select the direction of the optimization, i.e., minimization, and the nature of the problem for being solved, i.e., NLP.
4. Information of the Test Feeders
4.1. IEEE 33-Node Test Feeder
4.2. IEEE 69-Node Test Feeder
5. Numerical Simulations
5.1. IEEE-Bus Test Feeder
5.1.1. Effect of the Substation Voltage Control
5.1.2. Effect of the Reactive Power Compensation with Battery Converters
5.1.3. Effect of the Renewable Energy Variation in the Pareto Front Conformation
5.2. IEEE 69-Bus Test Feeder
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Renewable Generation Forecasting
Appendix A.1. Recursive Artificial Neural Network
Appendix A.2. Computational Implementation of the Ann
References
- Valencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158. [Google Scholar] [CrossRef]
- Soroudi, A. Power System Optimization Modeling in GAMS; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Gonzalez, W.J.G.; Bocanegra, S.Y.; Serra, F.M.; Bueno-López, M.; Magaldi, G.L. Control Methods for Single-phase Voltage Supply with VSCs to Feed Nonlinear Loads in Rural Areas. Trans. Energy Syst. Eng. Appl. 2020, 1, 33–47. [Google Scholar] [CrossRef]
- Raugei, M.; Peluso, A.; Leccisi, E.; Fthenakis, V. Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.). Energies 2020, 13, 3934. [Google Scholar] [CrossRef]
- Gong, Z.; Chau, S.; Trescases, O. Quantifying the GHG Reduction versus Battery Size in Diesel Buses with Electrified HVAC. In Proceedings of the 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 23–26 June 2020. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488. [Google Scholar] [CrossRef]
- Weniger, J.; Tjaden, T.; Quaschning, V. Sizing of Residential PV Battery Systems. Energy Procedia 2014, 46, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, U.; Vavilapalli, S.; Padmanaban, S.; Blaabjerg, F.; Holm-Nielsen, J.B.; Almakhles, D. A Hybrid PV-Battery System for ON-Grid and OFF-Grid Applications—Controller-In-Loop Simulation Validation. Energies 2020, 13, 755. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, C.; Wang, B.; Sun, K. Damping control for a target oscillation mode using battery energy storage. J. Mod. Power Syst. Clean Energy 2018, 6, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Kisacikoglu, M.C.; Ozpineci, B.; Tolbert, L.M. Effects of V2G reactive power compensation on the component selection in an EV or PHEV bidirectional charger. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010. [Google Scholar] [CrossRef] [Green Version]
- Mazza, A.; Mirtaheri, H.; Chicco, G.; Russo, A.; Fantino, M. Location and Sizing of Battery Energy Storage Units in Low Voltage Distribution Networks. Energies 2019, 13, 52. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhong, J.; Chen, D.; Lu, Y.; Men, K. A multi-period optimal power flow model including battery energy storage. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013. [Google Scholar] [CrossRef]
- Aghaei, J.; Bozorgavari, S.A.; Pirouzi, S.; Farahmand, H.; Korpås, M. Flexibility Planning of Distributed Battery Energy Storage Systems in Smart Distribution Networks. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 44, 1105–1121. [Google Scholar] [CrossRef]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Heine, P.; Hellman, H.P.; Pihkala, A.; Siilin, K. Battery Energy Storage for Distribution System—Case Helsinki. In Proceedings of the 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM), Kärdla, Estonia, 12–15 June 2019. [Google Scholar] [CrossRef]
- Almehizia, A.A.; Al-Ismail, F.S.; Alohali, N.S.; Al-Shammari, M.M. Assessment of battery storage utilization in distribution feeders. Energy Transit. 2020, 4, 101–112. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grajales, A.; Garces, A.; Castro, C.A. Distribution Systems Operation Considering Energy Storage Devices and Distributed Generation. IEEE Lat. Am. Trans. 2017, 15, 890–900. [Google Scholar] [CrossRef]
- Luna, A.C.; Diaz, N.L.; Andrade, F.; Graells, M.; Guerrero, J.M.; Vasquez, J.C. Economic power dispatch of distributed generators in a grid-connected microgrid. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 1–5 June 2015. [Google Scholar] [CrossRef] [Green Version]
- Farivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification—Part I. IEEE Trans. Power Syst. 2013, 28, 2554–2564. [Google Scholar] [CrossRef]
- Mora, C.A.; Montoya, O.D.; Trujillo, E.R. Mixed-Integer Programming Model for Transmission Network Expansion Planning with Battery Energy Storage Systems (BESS). Energies 2020, 13, 4386. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.; Montoya, O.D.; Gil-González, W. Integration of energy storage systems in AC distribution networks: Optimal location, selecting, and operation approach based on genetic algorithms. J. Energy Storage 2019, 25, 100891. [Google Scholar] [CrossRef]
- Molzahn, D.K. Identifying and Characterizing Non-Convexities in Feasible Spaces of Optimal Power Flow Problems. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 672–676. [Google Scholar] [CrossRef]
- Berglund, F.; Zaferanlouei, S.; Korpås, M.; Uhlen, K. Optimal Operation of Battery Storage for a Subscribed Capacity-Based Power Tariff Prosumer—A Norwegian Case Study. Energies 2019, 12, 4450. [Google Scholar] [CrossRef] [Green Version]
- Denholm, P.; Sioshansi, R. The value of compressed air energy storage with wind in transmission-constrained electric power systems. Energy Policy 2009, 37, 3149–3158. [Google Scholar] [CrossRef]
- Mazaheri, H.; Abbaspour, A.; Fotuhi-Firuzabad, M.; Farzin, H.; Moeini-Aghtaie, M. Investigating the impacts of energy storage systems on transmission expansion planning. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710. [Google Scholar] [CrossRef]
- Montoya, O.D.; Serra, F.M.; Angelo, C.H.D. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 2020, 9, 1352. [Google Scholar] [CrossRef]
- Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Optimal operational planning of scalable DC microgrid with demand response, islanding, and battery degradation cost considerations. Appl. Energy 2019, 237, 695–707. [Google Scholar] [CrossRef]
- Choi, J.; Park, W.K.; Lee, I.W. Economic Dispatch of Multiple Energy Storage Systems Under Different Characteristics. Energy Procedia 2017, 141, 216–221. [Google Scholar] [CrossRef]
- Farivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification—Part II. IEEE Trans. Power Syst. 2013, 28, 2565–2572. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Hernández, J.C. Optimal Selection and Location of BESS Systems in Medium-Voltage Rural Distribution Networks for Minimizing Greenhouse Gas Emissions. Electronics 2020, 9, 2097. [Google Scholar] [CrossRef]
- De Oliveira, L.S.; Saramago, S.F.P. Multiobjective optimization techniques applied to engineering problems. J. Braz. Soc. Mech. Sci. Eng. 2010, 32, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Emmerich, M.T.M.; Deutz, A.H. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Nat. Comput. 2018, 17, 585–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Lezama, J.M. Optimal location of distributed generation in distribution systems using a model of nonlineal whole mixed programming. Tecnura 2011, 15, 101–110. [Google Scholar]
- Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Akinola, O.O. Optimal Location, Sizing, and Appropriate Technology Selection of Distributed Generators for Minimizing Power Loss Using Genetic Algorithm. J. Renew. Energy 2015, 2015, 832917. [Google Scholar] [CrossRef] [Green Version]
- Babu, P.V.; Singh, S. Optimal Placement of DG in Distribution Network for Power Loss Minimization Using NLP & PLS Technique. Energy Procedia 2016, 90, 441–454. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Eng. J. 2020, 11, 409–418. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J.; Hernandez-Escobedo, Q. Optimal Placement and Sizing of Wind Generators in AC Grids Considering Reactive Power Capability and Wind Speed Curves. Sustainability 2020, 12, 2983. [Google Scholar] [CrossRef] [Green Version]
- Porkar, S.; Poure, P.; Abbaspour-Tehrani-fard, A.; Saadate, S. A new framework for large distribution system optimal planning in a competitive electricity market. In Proceedings of the 2010 IEEE International Energy Conference, Manama, Bahrain, 18–22 December 2010. [Google Scholar] [CrossRef]
- Siahi, M.; Porkar, S.; Abbaspour-Tehrani-Fard, A.; Poure, P.; Saadate, S. Competitive distribution system planning model integration of dg, interruptible load and voltage regulator devices. Iran. J. Sci. Technol. Trans. Eng. 2010, 34, 619–635. [Google Scholar]
- Kazmi, S.; Shahzad, M.; Shin, D. Multi-Objective Planning Techniques in Distribution Networks: A Composite Review. Energies 2017, 10, 208. [Google Scholar] [CrossRef] [Green Version]
- Soleymani, S.; Mozafari, B.; Kamarposhti, M. Optimal capacitor placement for power loss reduction and voltage stability enhancement in distribution systems. Trakia J. Sci. 2014, 12, 425–430. [Google Scholar] [CrossRef]
- Aman, M.; Jasmon, G.; Bakar, A.; Mokhlis, H.; Karimi, M. Optimum shunt capacitor placement in distribution system—A review and comparative study. Renew. Sustain. Energy Rev. 2014, 30, 429–439. [Google Scholar] [CrossRef]
- Thang, V.V.; Minh, N.D. Optimal Allocation and Sizing of Capacitors for Distribution Systems Reinforcement Based on Minimum Life Cycle Cost and Considering Uncertainties. Open Electr. Electron. Eng. J. 2017, 11, 165–176. [Google Scholar] [CrossRef]
- Naghiloo, A.; Abbaspour, M.; Mohammadi-Ivatloo, B.; Bakhtari, K. GAMS based approach for optimal design and sizing of a pressure retarded osmosis power plant in Bahmanshir river of Iran. Renew. Sustain. Energy Rev. 2015, 52, 1559–1565. [Google Scholar] [CrossRef]
- Ansari, A.; Abbaspour, M. Modelling and economic evaluation of pressure-retarded osmosis power plant case study: Iran. Int. J. Ambient Energy 2017, 40, 69–81. [Google Scholar] [CrossRef]
- Touati, K.; Tadeo, F. Green energy generation by pressure retarded osmosis: State of the art and technical advancement—review. Int. J. Green Energy 2016, 14, 337–360. [Google Scholar] [CrossRef]
- Ulanicki, B.; Bounds, P.L.M.; Rance, J.P. Using a GAMS Modelling Environment to Solve Network Scheduling Problems. Meas. Control 1999, 32, 110–115. [Google Scholar] [CrossRef]
- Tin-Loi, F. A GAMS model for the plastic limit analysis of plane frames. Appl. Math. Model. 1993, 17, 595–602. [Google Scholar] [CrossRef]
- Castillo, E.; Gonejo, A.J.; Pedregal, P.; Garciá, R.; Alguacil, N. Building and Solving Mathematical Programming Models in Engineering and Science; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Andrei, N. Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Chen, S.; Gooi, H.; Wang, M. Solar radiation forecast based on fuzzy logic and neural networks. Renew. Energy 2013, 60, 195–201. [Google Scholar] [CrossRef]
- Kim, J.; Moon, J.; Hwang, E.; Kang, P. Recurrent inception convolution neural network for multi short-term load forecasting. Energy Build. 2019, 194, 328–341. [Google Scholar] [CrossRef]
- Yang, X.; Xu, M.; Xu, S.; Han, X. Day-ahead forecasting of photovoltaic output power with similar cloud space fusion based on incomplete historical data mining. Appl. Energy 2017, 206, 683–696. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Ou, G.; Murphey, Y.L. Multi-class pattern classification using neural networks. Pattern Recognit. 2007, 40, 4–18. [Google Scholar] [CrossRef]
- Yang, S.; Ting, T.; Man, K.; Guan, S.U. Investigation of Neural Networks for Function Approximation. Procedia Comput. Sci. 2013, 17, 586–594. [Google Scholar] [CrossRef] [Green Version]
- Tambouratzis, G.; Tambouratzis, T.; Tambouratzis, D. Clustering with artificial neural networks and traditional techniques. Int. J. Intell. Syst. 2003, 18, 405–428. [Google Scholar] [CrossRef]
- Tealab, A. Time series forecasting using artificial neural networks methodologies: A systematic review. Future Comput. Inform. J. 2018, 3, 334–340. [Google Scholar] [CrossRef]
Optimization Problem | References |
---|---|
Optimal location and sizing distributed generation in AC grids | [34,35,36,37,38] |
Distribution system planning | [39,40,41] |
Optimal location of capacitor banks in distribution networks | [42,43,44] |
Optimal location and operation of battery energy storage systems in distribution networks | [2,17,26,31] |
Efficient design of osmotic generation plants | [45,46,47] |
Economic dispatch of thermal plants in power systems | [2,48] |
Solution of the general engineering problems using GAMS | [49,50,51] |
Node i | Node j | () | () | (kW) | (kvar) | Node i | Node j | () | () | (kW) | (kvar) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 0.0922 | 0.0477 | 100 | 60 | 17 | 18 | 0.7320 | 0.5740 | 90 | 40 |
2 | 3 | 0.4930 | 0.2511 | 90 | 40 | 2 | 19 | 0.1640 | 0.1565 | 90 | 40 |
3 | 4 | 0.3660 | 0.1864 | 120 | 80 | 19 | 20 | 1.5042 | 1.3554 | 90 | 40 |
4 | 5 | 0.3811 | 0.1941 | 60 | 30 | 20 | 21 | 0.4095 | 0.4784 | 90 | 40 |
5 | 6 | 0.8190 | 0.7070 | 60 | 20 | 21 | 22 | 0.7089 | 0.9373 | 90 | 40 |
6 | 7 | 0.1872 | 0.6188 | 200 | 100 | 3 | 23 | 0.4512 | 0.3083 | 90 | 50 |
7 | 8 | 1.7114 | 1.2351 | 200 | 100 | 23 | 24 | 0.8980 | 0.7091 | 420 | 200 |
8 | 9 | 1.0300 | 0.7400 | 60 | 20 | 24 | 25 | 0.8960 | 0.7011 | 420 | 200 |
9 | 10 | 1.0400 | 0.7400 | 60 | 20 | 6 | 26 | 0.2030 | 0.1034 | 60 | 25 |
10 | 11 | 0.1966 | 0.0650 | 45 | 30 | 26 | 27 | 0.2842 | 0.1447 | 60 | 25 |
11 | 12 | 0.3744 | 0.1238 | 60 | 35 | 27 | 28 | 1.0590 | 0.9337 | 60 | 20 |
12 | 13 | 1.4680 | 1.1550 | 60 | 35 | 28 | 29 | 0.8042 | 0.7006 | 120 | 70 |
13 | 14 | 0.5416 | 0.7129 | 120 | 80 | 29 | 30 | 0.5075 | 0.2585 | 200 | 600 |
14 | 15 | 0.5910 | 0.5260 | 60 | 10 | 30 | 31 | 0.9744 | 0.9630 | 150 | 70 |
15 | 16 | 0.7463 | 0.5450 | 60 | 20 | 31 | 32 | 0.3105 | 0.3619 | 210 | 100 |
16 | 17 | 1.2890 | 1.7210 | 60 | 20 | 32 | 33 | 0.3410 | 0.5302 | 60 | 40 |
Time (s) | PV (p.u) | PV (p.u) | WT (p.u) | WT (p.u) | Demand (p.u) |
---|---|---|---|---|---|
0.0 | 0 | 0 | 0.633118295 | 0.489955551 | 0.34 |
0.5 | 0 | 0 | 0.629764678 | 0.467954207 | 0.28 |
1.0 | 0 | 0 | 0.607259323 | 0.449443905 | 0.22 |
1.5 | 0 | 0 | 0.609254545 | 0.435019277 | 0.22 |
2.0 | 0 | 0 | 0.605557422 | 0.437220792 | 0.22 |
2.5 | 0 | 0 | 0.630055346 | 0.437621534 | 0.20 |
3.0 | 0 | 0 | 0.684246423 | 0.450949300 | 0.18 |
3.5 | 0 | 0 | 0.758357805 | 0.453259348 | 0.18 |
4.0 | 0 | 0 | 0.783719339 | 0.469610539 | 0.18 |
4.5 | 0 | 0 | 0.815243582 | 0.480546213 | 0.20 |
5.0 | 0 | 0 | 0.790557706 | 0.501783479 | 0.22 |
5.5 | 0 | 0 | 0.738679217 | 0.527600299 | 0.26 |
6.0 | 0 | 0 | 0.744958950 | 0.586555316 | 0.28 |
6.5 | 0 | 0 | 0.718989730 | 0.652552760 | 0.34 |
7.0 | 0.039123365 | 0.026135642 | 0.769603567 | 0.697699990 | 0.40 |
7.5 | 0.045414292 | 0.051715061 | 0.822376817 | 0.774442755 | 0.50 |
8.0 | 0.065587179 | 0.110148398 | 0.826492212 | 0.820205405 | 0.62 |
8.5 | 0.132615282 | 0.263094042 | 0.848620129 | 0.871057775 | 0.68 |
9.0 | 0.236870796 | 0.431175761 | 0.876523598 | 0.876973635 | 0.72 |
9.5 | 0.410356256 | 0.594273035 | 0.904128455 | 0.877065236 | 0.78 |
10.0 | 0.455017818 | 0.730402039 | 0.931213527 | 0.897955131 | 0.84 |
10.5 | 0.542364455 | 0.830347309 | 0.955557477 | 0.903245007 | 0.86 |
11.0 | 0.726440265 | 0.875407050 | 0.965504834 | 0.916903429 | 0.90 |
11.5 | 0.885104984 | 0.898815348 | 0.971037333 | 0.924757605 | 0.92 |
12.0 | 0.924486326 | 0.975683083 | 0.972218577 | 0.942224932 | 0.94 |
12.5 | 1 | 1 | 0.980049847 | 0.949956724 | 0.94 |
13.0 | 0.982041153 | 0.978264398 | 0.981135531 | 0.963773634 | 0.90 |
13.5 | 0.913674689 | 0.790055240 | 0.988644844 | 0.974977461 | 0.84 |
14.0 | 0.829407079 | 0.882557147 | 0.991393173 | 0.986750539 | 0.86 |
14.5 | 0.691912077 | 0.603658738 | 0.998815517 | 0.995058133 | 0.90 |
15.0 | 0.733063295 | 0.606324907 | 1 | 1 | 0.90 |
15.5 | 0.598435064 | 0.357393267 | 0.996070963 | 0.998107341 | 0.90 |
16.0 | 0.501133849 | 0.328035635 | 0.987258076 | 0.997690423 | 0.90 |
16.5 | 0.299821403 | 0.142423488 | 0.976519817 | 0.993076899 | 0.90 |
17.0 | 0.177117518 | 0.142023463 | 0.929542167 | 0.982629597 | 0.90 |
17.5 | 0.062736095 | 0.072956701 | 0.876413965 | 0.972084487 | 0.90 |
18.0 | 0 | 0.019081590 | 0.791155379 | 0.930225756 | 0.86 |
18.5 | 0 | 0.008339287 | 0.691292162 | 0.891253999 | 0.84 |
19.0 | 0.000333920 | 0 | 0.708839248 | 0.781950905 | 0.92 |
19.5 | 0 | 0 | 0.724074349 | 0.660094138 | 1.00 |
20.0 | 0 | 0 | 0.712881960 | 0.682715246 | 0.98 |
20.5 | 0 | 0 | 0.733954043 | 0.686617947 | 0.94 |
21.0 | 0 | 0 | 0.719897641 | 0.681865563 | 0.90 |
21.5 | 0 | 0 | 0.705502389 | 0.717315757 | 0.84 |
22.0 | 0 | 0 | 0.703007456 | 0.718080346 | 0.76 |
22.5 | 0 | 0 | 0.686551618 | 0.726890145 | 0.68 |
23.0 | 0 | 0 | 0.687238555 | 0.734452193 | 0.58 |
23.5 | 0 | 0 | 0.682569771 | 0.739699146 | 0.50 |
Node i | Node j | () | () | (kW) | (kvar) | Node i | Node j | () | () | (kW) | (kvar) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 0.0005 | 0.0012 | 0 | 0 | 3 | 36 | 0.0044 | 0.0108 | 26 | 18.55 |
2 | 3 | 0.0005 | 0.0012 | 0 | 0 | 36 | 37 | 0.0640 | 0.1565 | 26 | 18.55 |
3 | 4 | 0.0015 | 0.0036 | 0 | 0 | 37 | 38 | 0.1053 | 0.1230 | 0 | 0 |
4 | 5 | 0.0251 | 0.0294 | 0 | 0 | 38 | 39 | 0.0304 | 0.0355 | 24 | 17 |
5 | 6 | 0.3660 | 0.1864 | 2.6 | 2.2 | 39 | 40 | 0.0018 | 0.0021 | 24 | 17 |
6 | 7 | 0.3811 | 0.1941 | 40.4 | 30 | 40 | 41 | 0.7283 | 0.8509 | 102 | 1 |
7 | 8 | 0.0922 | 0.0470 | 75 | 54 | 41 | 42 | 0.3100 | 0.3623 | 0 | 0 |
8 | 9 | 0.0493 | 0.0251 | 30 | 22 | 42 | 43 | 0.0410 | 0.0478 | 6 | 4.3 |
9 | 10 | 0.8190 | 0.2707 | 28 | 19 | 43 | 44 | 0.0092 | 0.0116 | 0 | 0 |
10 | 11 | 0.1872 | 0.0619 | 145 | 104 | 44 | 45 | 0.1089 | 0.1373 | 39.22 | 26.3 |
11 | 12 | 0.7114 | 0.2351 | 145 | 104 | 45 | 46 | 0.0009 | 0.0012 | 39.22 | 26.3 |
12 | 13 | 1.0300 | 0.3400 | 8 | 5 | 4 | 47 | 0.0034 | 0.0084 | 0 | 0 |
13 | 14 | 1.0440 | 0.3450 | 8 | 5 | 47 | 48 | 0.0851 | 0.2083 | 79 | 56.4 |
14 | 15 | 1.0580 | 0.3496 | 0 | 0 | 48 | 49 | 0.2898 | 0.7091 | 384.7 | 274.5 |
15 | 16 | 0.1966 | 0.0650 | 45 | 30 | 49 | 50 | 0.0822 | 0.2011 | 384.7 | 274.5 |
16 | 17 | 0.3744 | 0.1238 | 60 | 35 | 8 | 51 | 0.0928 | 0.0473 | 40.5 | 28.3 |
17 | 18 | 0.0047 | 0.0016 | 60 | 35 | 51 | 52 | 0.3319 | 0.1140 | 3.6 | 2.7 |
18 | 19 | 0.3276 | 0.1083 | 0 | 0 | 9 | 53 | 0.1740 | 0.0886 | 4.35 | 3.5 |
19 | 20 | 0.2106 | 0.0690 | 1 | 0.6 | 53 | 54 | 0.2030 | 0.1034 | 26.4 | 19 |
20 | 21 | 0.3416 | 0.1129 | 114 | 81 | 54 | 55 | 0.2842 | 0.1447 | 24 | 17.2 |
21 | 22 | 0.0140 | 0.0046 | 5 | 3.5 | 55 | 56 | 0.2813 | 0.1433 | 0 | 0 |
22 | 23 | 0.1591 | 0.0526 | 0 | 0 | 56 | 57 | 1.5900 | 0.5337 | 0 | 0 |
23 | 24 | 0.3463 | 0.1145 | 28 | 20 | 57 | 58 | 0.7837 | 0.2630 | 0 | 0 |
24 | 25 | 0.7488 | 0.2475 | 0 | 0 | 58 | 59 | 0.3042 | 0.1006 | 100 | 72 |
25 | 26 | 0.3089 | 0.1021 | 14 | 10 | 59 | 60 | 0.3861 | 0.1172 | 0 | 0 |
26 | 27 | 0.1732 | 0.0572 | 14 | 10 | 60 | 61 | 0.5075 | 0.2585 | 1244 | 888 |
3 | 28 | 0.0044 | 0.0108 | 26 | 18.6 | 61 | 62 | 0.0974 | 0.0496 | 32 | 23 |
28 | 29 | 0.0640 | 0.1565 | 26 | 18.6 | 62 | 63 | 0.1450 | 0.0738 | 0 | 0 |
29 | 30 | 0.3978 | 0.1315 | 0 | 0 | 63 | 64 | 0.7105 | 0.3619 | 227 | 162 |
30 | 31 | 0.0702 | 0.0232 | 0 | 0 | 64 | 65 | 1.0410 | 0.5302 | 59 | 42 |
31 | 32 | 0.3510 | 0.1160 | 0 | 0 | 11 | 66 | 0.2012 | 0.0611 | 18 | 13 |
32 | 33 | 0.8390 | 0.2816 | 10 | 10 | 66 | 67 | 0.0047 | 0.0014 | 18 | 13 |
33 | 34 | 1.7080 | 0.5646 | 14 | 14 | 12 | 68 | 0.7394 | 0.2444 | 28 | 20 |
34 | 35 | 1.4740 | 0.4873 | 4 | 4 | 68 | 69 | 0.0047 | 0.0016 | 28 | 20 |
Sol. No. | Case 1 | Case 2 | ||
---|---|---|---|---|
CO (Tons/day) | Losses (US$) | CO (Tons/day) | Losses (US$) | |
1 | 13.8713 | 132.0450 | 13.8293 | 108.1019 |
2 | 11.6074 | 133.7900 | 11.5511 | 109.5534 |
3 | 10.6953 | 135.5350 | 10.632 | 111.0050 |
4 | 10.0223 | 137.2800 | 9.9557 | 112.4566 |
5 | 9.4704 | 139.0250 | 9.4108 | 113.9082 |
6 | 8.9971 | 140.7700 | 8.9491 | 115.3597 |
7 | 8.5828 | 142.5150 | 8.5438 | 116.8113 |
8 | 8.2202 | 144.2600 | 8.1877 | 118.2629 |
9 | 7.8995 | 146.0050 | 7.8712 | 119.7145 |
10 | 7.6145 | 147.7500 | 7.5868 | 121.1660 |
11 | 7.3612 | 149.4950 | 7.3313 | 122.6176 |
12 | 7.1359 | 151.2400 | 7.1025 | 124.0692 |
13 | 6.9356 | 152.9850 | 6.9008 | 125.5208 |
14 | 6.7571 | 154.7299 | 6.7216 | 126.9723 |
15 | 6.5982 | 156.4749 | 6.5651 | 128.4239 |
16 | 6.5501 | 157.1888 | 6.4852 | 129.4134 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Martin, F.; Montoya, O.D.; Grisales-Noreña, L.F.; Hernández, J.C.; Ramírez-Vanegas, C.A. Simultaneous Minimization of Energy Losses and Greenhouse Gas Emissions in AC Distribution Networks Using BESS. Electronics 2021, 10, 1002. https://doi.org/10.3390/electronics10091002
Molina-Martin F, Montoya OD, Grisales-Noreña LF, Hernández JC, Ramírez-Vanegas CA. Simultaneous Minimization of Energy Losses and Greenhouse Gas Emissions in AC Distribution Networks Using BESS. Electronics. 2021; 10(9):1002. https://doi.org/10.3390/electronics10091002
Chicago/Turabian StyleMolina-Martin, Federico, Oscar Danilo Montoya, Luis Fernando Grisales-Noreña, Jesus C. Hernández, and Carlos A. Ramírez-Vanegas. 2021. "Simultaneous Minimization of Energy Losses and Greenhouse Gas Emissions in AC Distribution Networks Using BESS" Electronics 10, no. 9: 1002. https://doi.org/10.3390/electronics10091002
APA StyleMolina-Martin, F., Montoya, O. D., Grisales-Noreña, L. F., Hernández, J. C., & Ramírez-Vanegas, C. A. (2021). Simultaneous Minimization of Energy Losses and Greenhouse Gas Emissions in AC Distribution Networks Using BESS. Electronics, 10(9), 1002. https://doi.org/10.3390/electronics10091002