Design Studies of Re-Entrant Square Cavities for V-Band Klystrons
Abstract
:1. Introduction
2. Design and Operation of RRSC and RF Section
2.1. Design of RRSC
2.2. Design of R.F. Section
2.2.1. Distance between Adjacent Cavities (d)
2.2.2. Drift Tube Radius (r)
2.2.3. Radius of Electron Beam ()
2.3. Operation
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shin, Y.-M.; Wang, J.-X.; Barnett, L.R.; Luhmann, N.C. Particle-in-cell simulation analysis of a multicavity W-band Sheet Beam Klystron. IEEE Trans. Electron Devices 2011, 58, 251–258. [Google Scholar] [CrossRef]
- Wang, S.; Dong, D.; Pei, S.; Zhou, Z.; Fukuda, S.; Zheng, K. Development of s-band High Power Klystron. Chin. J. Electron. 2020, 29, 772–778. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Wang, Y. A 30-kW high-power X-band to ku-band Klystron Frequency multiplier. IEEE Trans. Electron Devices 2013, 60, 1457–1462. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, S.; Huang, H.; Liu, Z.; Wang, Z.; Duan, Z.; Li, X.; Wei, Y.; Gong, Y. Analysis and simulation of a multigap sheet beam extended interaction relativistic Klystron amplifier. IEEE Trans. Plasma Sci. 2015, 43, 1862–1870. [Google Scholar] [CrossRef]
- Chang, Z.; Meng, L.; Yin, Y.; Wang, B.; Li, H.; Rauf, A.; Ullah, S.; Bi, L.; Peng, R. Circuit design of a compact 5-kv W-band Extended Interaction Klystron. IEEE Trans. Electron Devices 2018, 65, 1179–1184. [Google Scholar] [CrossRef]
- Gilmour, A.S. Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons; Artech House: Norwood, MA, USA, 2011; pp. 281–310. [Google Scholar]
- Korolyov, A.N.; Gelvich, E.A.; Zhary, Y.V.; Zakurdayev, A.D.; Poognin, V.I. Multiple-beam Klystron amplifiers: Performance Parameters and Development Trends. IEEE Trans. Plasma Sci. 2004, 32, 1109–1118. [Google Scholar] [CrossRef]
- Gelvich, E.A.; Borisov, L.M.; Zhary, Y.V.; Zakurdayev, A.D.; Pobedonostsev, A.S.; Poognin, V.I. The new generation of high-power multiple-beam Klystrons. IEEE Trans. Microw. Theory Tech. 1993, 41, 15–19. [Google Scholar] [CrossRef]
- Symons, R.S. High Performance Extended Interaction Output Circuit. U.S. Patent 4931695, 5 June 1990. [Google Scholar]
- Lin, F.-M.; Li, X.-P. Monotron oscillation in double-gap coupling output cavities of multiple-beam Klystrons. IEEE Trans. Electron Devices 2014, 61, 1186–1192. [Google Scholar] [CrossRef]
- Slater, J.C. Microwave Electronics; Dover: New York, NY, USA, 1969; pp. 232–237. [Google Scholar]
- Liao, S.Y. Microwave Devices and Circuits, 3rd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1985; pp. 242–272. [Google Scholar]
- Naidu, V.B.; Datta, S.K.; Kumar, L. Two cavity W-band sheet beam extended interaction Klystron simulation. In Proceedings of the 2013 IEEE 14th International Vacuum Electronics Conference (IVEC), Paris, France, 21–23 May 2013. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Pasour, J.; Wright, E.L.; Pershing, D.E.; Levush, B. Design of a G-band sheet-beam extended-interaction Klystron. In Proceedings of the 2009 IEEE International Vacuum Electronics Conference, Rome, Italy, 28–30 April 2009. [Google Scholar] [CrossRef]
- Kneisel, P. State of the Art of Multicell SC Cavities and Perspectives. In Proceedings of the 8th European Particle Accelerator Conference, Vienna, Austria, 26–30 June 2000; European Physical Society, Inter-Divisional Group on Accelerators: Geneve, Switzerland, 2000; pp. 139–143. [Google Scholar]
- Blair, D.G.; Ivanov, E.N.; Tobar, M.E.; Turner, P.J.; van Kann, F.; Heng, I.S. High sensitivity gravitational wave antenna with parametric transducer readout. Phys. Rev. Lett. 1995, 74, 1908. [Google Scholar] [CrossRef] [PubMed]
- Paoloni, C. Periodically allocated reentrant cavity Klystron. IEEE Trans. Electron Devices 2014, 61, 1687–1691. [Google Scholar] [CrossRef]
- Kumar, M.S.; Koley, C.; Pal, D.; Maity, S.; Bandyopadhyay, A.K. Design of the radio frequency section of a V-band Klystron. In Proceedings of the 2021 22nd International Vacuum Electronics Conference (IVEC), Rotterdam, The Netherlands, 27–30 April 2021. [Google Scholar] [CrossRef]
- Paoloni, C.; Mineo, M.; Yin, H.; Zhang, L.; He, W.; Robertson, C.W.; Ronald, K.; Phelps, A.D.R.; Cross, A.W. Microwave Coupler for w-band micro re-entrant square cavities. IET Microwaves Antennas Propag. 2016, 10, 764–769. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Zhang, R.; Wang, Y.; Wang, H.; Zhang, X.; Chao, Q.; Liu, K.; Geng, Z.; Liao, Y.; Yang, X. Design of a high-power V- band Klystron with internal coupling Multigap cavity. IEEE Trans. Electron Devices 2022, 69, 2644–2649. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, R.; Wang, Y.; Zhang, X.; Chen, H. Design of a high-power V-band Klystron based on novel coupling cavity with ridges loading in the middle. In Proceedings of the 2021 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 21–25 November 2021. [Google Scholar] [CrossRef]
- Wessel-Berg, T. A General Theory of Klystrons with Arbitrary, Extended Interaction Fields; Microwave Laboratory: Stanford, CA, USA, 1957. [Google Scholar]
- CST 2018. User’s Manual. CSST. Available online: www.cst.com (accessed on 20 August 2020).
RRSC | Dimension (mm) | Simulation Results | ||||||
---|---|---|---|---|---|---|---|---|
Type | a | b | c | w | g | f (GHz) | R/Q () | Q (Unloaded) |
input/output | 3 | 1.8 | 0.44 | 0.6 | 0.395 | 60 | 86 | 1364 |
intermediate | 3 | 1.7 | 0.44 | 0.6 | 0.38 | 60 | 85 | 1359 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, M.S.; Maity, S.; Shee, S.; Bandyopadhyay, A.K.; Pal, D.; Koley, C. Design Studies of Re-Entrant Square Cavities for V-Band Klystrons. Electronics 2023, 12, 6. https://doi.org/10.3390/electronics12010006
Kumar MS, Maity S, Shee S, Bandyopadhyay AK, Pal D, Koley C. Design Studies of Re-Entrant Square Cavities for V-Band Klystrons. Electronics. 2023; 12(1):6. https://doi.org/10.3390/electronics12010006
Chicago/Turabian StyleKumar, M Santosh, Santigopal Maity, Soumojit Shee, Ayan Kumar Bandyopadhyay, Debashish Pal, and Chaitali Koley. 2023. "Design Studies of Re-Entrant Square Cavities for V-Band Klystrons" Electronics 12, no. 1: 6. https://doi.org/10.3390/electronics12010006
APA StyleKumar, M. S., Maity, S., Shee, S., Bandyopadhyay, A. K., Pal, D., & Koley, C. (2023). Design Studies of Re-Entrant Square Cavities for V-Band Klystrons. Electronics, 12(1), 6. https://doi.org/10.3390/electronics12010006