A Metalens Design for On- and Off-Center Focusing with Amorphous Silicon Hydrogenated (a-Si:H)-Based 1D Array in Visible Spectrum
Abstract
:1. Introduction
2. Methodology
2.1. Unit Cell Design
2.2. Proposed Array
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, M.K.; Wu, Y.; Feng, L.; Fan, Q.; Lu, M.; Xu, T.; Tsai, D.P. Principles, functions, and applications of optical meta-lens. Adv. Opt. Mater. 2021, 9, 2001414. [Google Scholar] [CrossRef]
- Cui, J.; Huang, C.; Pan, W.; Pu, M.; Guo, Y.; Luo, X. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror. Sci. Rep. 2016, 6, 30771. [Google Scholar] [CrossRef] [Green Version]
- Fernández, E.J.; Prieto, P.M.; Artal, P. Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator. Opt. Express 2009, 17, 11013–11025. [Google Scholar] [CrossRef]
- Lammers, K.; Ehrhardt, M.; Malendevych, T.; Xu, X.; Vetter, C.; Alberucci, A.; Szameit, A.; Nolte, S. Embedded nanograting-based waveplates for polarization control in integrated photonic circuits. Opt. Mater. Express 2019, 9, 2560–2572. [Google Scholar] [CrossRef]
- Lee, W.S.; Nirantar, S.; Headland, D.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Broadband terahertz circular-polarization beam splitter. Adv. Opt. Mater. 2018, 6, 1700852. [Google Scholar] [CrossRef]
- Li, Z.; Butun, S.; Aydin, K. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 2014, 8, 8242–8248. [Google Scholar] [CrossRef] [PubMed]
- Iazikov, D.; Greiner, C.; Mossberg, T. Apodizable integrated filters for coarse WDM and FTTH-type applications. J. Light. Technol. 2004, 22, 1402–1407. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y. Optics Frontiers Online 2020: Micro and Nanophotonics (OFO-4 2020). In Optics Frontiers Online 2020: Micro and Nanophotonics (OFO-4 2020); SPIE: Bellingham, WA, USA, 2020; p. 11608. [Google Scholar]
- Zouros, G.P.; Kolezas, G.D.; Almpanis, E.; Tsakmakidis, K.L. Three-Dimensional Invisibility to Superscattering Induced by Zeeman-Split Modes. arXiv 2020, arXiv:2008.00121. [Google Scholar]
- Ren, H.; Fang, X.; Jang, J.; Bürger, J.; Rho, J.; Maier, S.A. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 2020, 15, 948–955. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Q.; Zhang, X.; Tian, C.; Xu, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Zhang, X.; Han, J.; et al. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photonics 2018, 5, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Ma, X.; Zhang, H. Wave-thermal effect of a temperature-tunable terahertz absorber. Opt. Express 2021, 29, 38557–38566. [Google Scholar] [CrossRef] [PubMed]
- Suo, M.; Xiong, H.; Li, X.K.; Liu, Q.F.; Zhang, H.Q. A flexible transparent absorber bandwidth expansion design based on characteristic modes. Results Phys. 2023, 46, 106265. [Google Scholar] [CrossRef]
- Ding, F.; Pors, A.; Bozhevolnyi, S.I. Gradient metasurfaces: A review of fundamentals and applications. Rep. Prog. Phys. 2017, 81, 026401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, B.q.; Lv, L.t.; Guo, J.; Wang, Z.; Huang, S.; Huang, B. Ultra-wideband anomalous reflection realised by a gradient metasurface. IET Microwaves Antennas Propag. 2020, 14, 1424–1430. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Liao, T.; Cui, X. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface. Opt. Commun. 2018, 411, 93–100. [Google Scholar] [CrossRef]
- Ahmed, H.; Ali, M.M.; Ullah, A.; Rahim, A.A.; Maab, H.; Khan, M. An ultra-thin beam splitter design using a-Si: H based on phase gradient metasurfaces. J. Nanoelectron. Optoelectron. 2019, 14, 1339–1343. [Google Scholar] [CrossRef] [Green Version]
- Engelberg, J.; Levy, U. The advantages of metalenses over diffractive lenses. Nat. Commun. 2020, 11, 1991. [Google Scholar] [CrossRef] [Green Version]
- Groever, B.; Chen, W.T.; Capasso, F. Meta-lens doublet in the visible region. Nano Lett. 2017, 17, 4902–4907. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, M.; Pu, M.; Zhang, F.; Sang, D.; Guo, Y.; Li, X.; Ma, X.; Luo, X. Designing high-efficiency extended depth-of-focus metalens via topology-shape optimization. Nanophotonics 2022, 11, 2967–2975. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Q.; Xu, T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron. Adv. 2021, 4, 200008. [Google Scholar] [CrossRef]
- Gao, H.; Fan, X.; Wang, Y.; Liu, Y.; Wang, X.; Xu, K.; Deng, L.; Zeng, C.; Li, T.; Xia, J.; et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron. Sci. 2023, 2, 220026-1. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Yue, Z.; Liu, J.; Li, J.; Zheng, C.; Zhang, Y.; Zhang, Y.; Yao, J. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron. Adv. 2022, 5, 210062-1. [Google Scholar] [CrossRef]
- Boriskina, S.V.; Cooper, T.A.; Zeng, L.; Ni, G.; Tong, J.K.; Tsurimaki, Y.; Huang, Y.; Meroueh, L.; Mahan, G.; Chen, G. Losses in plasmonics: From mitigating energy dissipation to embracing loss-enabled functionalities. Adv. Opt. Photonics 2017, 9, 775–827. [Google Scholar] [CrossRef]
- Lalanne, P.; Chavel, P. Metalenses at visible wavelengths: Past, present, perspectives. Laser Photonics Rev. 2017, 11, 1600295. [Google Scholar] [CrossRef]
- Verslegers, L.; Catrysse, P.B.; Yu, Z.; White, J.S.; Barnard, E.S.; Brongersma, M.L.; Fan, S. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 2009, 9, 235–238. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Ball, A.J.; Bagheri, M.; Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 2015, 6, 7069. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Aieta, F.; Kanhaiya, P.; Kats, M.A.; Genevet, P.; Rousso, D.; Capasso, F. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 2015, 15, 5358–5362. [Google Scholar] [CrossRef]
- Kanwal, S.; Wen, J.; Yu, B.; Chen, X.; Kumar, D.; Kang, Y.; Bai, C.; Ubaid, S.; Zhang, D. Polarization insensitive, broadband, near diffraction-limited metalens in ultraviolet region. Nanomaterials 2020, 10, 1439. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Xu, S.; Aziz, A.; Li, M. Dual-layer transmitarray antenna with high transmission efficiency. IEEE Trans. Antennas Propag. 2020, 68, 6003–6012. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.H.; Wu, P.C.; Su, V.C.; Lai, Y.C.; Chu, C.H.; Lee, I.C.; Chen, J.W.; Chen, Y.H.; Lan, Y.C.; Kuan, C.H.; et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 2017, 17, 6345–6352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; He, H.; Li, H.; Duan, L.; Zu, L.; Zhai, Y.; Li, W.; Wang, L.; Fu, H.; Zhao, D. Visible-light responsive TiO2-based materials for efficient solar energy utilization. Adv. Energy Mater. 2021, 11, 2003303. [Google Scholar] [CrossRef]
- Li, Y.; Fan, X.; Huang, Y.; Guo, X.; Zhou, L.; Li, P.; Zhao, J. Dielectric Metalens for Superoscillatory Focusing Based on High-Order Angular Bessel Function. Nanomaterials 2022, 12, 3485. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Yu, B.; Du, J.; Wen, J. Focusing Characteristics and Widefield Imaging Performance of the Silicon Metalens in the Visible Range. Micromachines 2022, 13, 1183. [Google Scholar] [CrossRef]
- Alnakhli, Z.; Lin, R.; Liao, C.H.; El Labban, A.; Li, X. Reflective metalens with an enhanced off-axis focusing performance. Opt. Express 2022, 30, 34117–34128. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Loh, K.P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012, 6, 3677–3694. [Google Scholar] [CrossRef]
- Lin, H.; Xu, Z.Q.; Cao, G.; Zhang, Y.; Zhou, J.; Wang, Z.; Wan, Z.; Liu, Z.; Loh, K.P.; Qiu, C.W.; et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light. Sci. Appl. 2020, 9, 137. [Google Scholar] [CrossRef]
- Zheng, X.; Jia, B.; Lin, H.; Qiu, L.; Li, D.; Gu, M. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun. 2015, 6, 8433. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.T.; Khan, A.A.; Kidambi, P.R.; Deng, S.; Yetisen, A.K.; Dlubak, B.; Hiralal, P.; Montelongo, Y.; Bowen, J.; Xavier, S.; et al. Graphene-based ultrathin flat lenses. ACS Photonics 2015, 2, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, Z.; Wang, F.; Xu, R.; Tao, J.; Zhang, S.; Qin, Q.; Luther-Davies, B.; Jagadish, C.; Yu, Z.; et al. Atomically thin optical lenses and gratings. Light. Sci. Appl. 2016, 5, e16046. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Yue, S.; Wang, R.; Hou, Y.; Li, M.; Zhang, K.; Zhang, Z. Design of polarization-independent reflective metalens in the ultraviolet–visible wavelength region. Nanomaterials 2021, 11, 1243. [Google Scholar] [CrossRef]
- Wu, L.; Tao, J.; Zheng, G. Controlling phase of arbitrary polarizations using both the geometric phase and the propagation phase. Phys. Rev. B 2018, 97, 245426. [Google Scholar] [CrossRef]
- Yang, H.; Li, G.; Su, X.; Cao, G.; Zhao, Z.; Chen, X.; Lu, W. Reflective metalens with sub-diffraction-limited and multifunctional focusing. Sci. Rep. 2017, 7, 12632. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Zhu, L.; Shen, F.; Zhou, H.; Gao, R. Dielectric metasurface based high-efficiency polarization splitters. RSC Adv. 2017, 7, 9872–9879. [Google Scholar] [CrossRef] [Green Version]
- Zuo, H.; Choi, D.Y.; Gai, X.; Ma, P.; Xu, L.; Neshev, D.N.; Zhang, B.; Luther-Davies, B. High-efficiency all-dielectric metalenses for mid-infrared imaging. Adv. Opt. Mater. 2017, 5, 1700585. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, N.; Kim, I.; Mehmood, M.Q.; Jeong, H.; Akbar, A.; Lee, D.; Saleem, M.; Zubair, M.; Anwar, M.S.; Tahir, F.A.; et al. Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides. Nanoscale 2018, 10, 18323–18330. [Google Scholar] [CrossRef]
- Park, C.S.; Shrestha, V.R.; Yue, W.; Gao, S.; Lee, S.S.; Kim, E.S.; Choi, D.Y. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks. Sci. Rep. 2017, 7, 2556. [Google Scholar] [CrossRef] [Green Version]
- Khorasaninejad, M.; Shi, Z.; Zhu, A.Y.; Chen, W.T.; Sanjeev, V.; Zaidi, A.; Capasso, F. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 2017, 17, 1819–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Yoon, G.; Park, S.; Namgung, S.D.; Badloe, T.; Nam, K.T.; Rho, J. Revealing structural disorder in hydrogenated amorphous silicon for a low-loss photonic platform at visible frequencies. Adv. Mater. 2021, 33, 2005893. [Google Scholar] [CrossRef] [PubMed]
- Yoon, G.; Lee, D.; Nam, K.T.; Rho, J. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano 2018, 12, 6421–6428. [Google Scholar] [CrossRef]
- Fischer, B.; Beyer, W.; Lambertz, A.; Nuys, M.; Duan, W.; Ding, K.; Rau, U. The microstructure of underdense hydrogenated amorphous silicon and its application to silicon heterojunction solar cells. Sol. RRL 2023, 7, 2300103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, J.; Ahmad, A.; Choi, D.-y. A Metalens Design for On- and Off-Center Focusing with Amorphous Silicon Hydrogenated (a-Si:H)-Based 1D Array in Visible Spectrum. Electronics 2023, 12, 2953. https://doi.org/10.3390/electronics12132953
Ali J, Ahmad A, Choi D-y. A Metalens Design for On- and Off-Center Focusing with Amorphous Silicon Hydrogenated (a-Si:H)-Based 1D Array in Visible Spectrum. Electronics. 2023; 12(13):2953. https://doi.org/10.3390/electronics12132953
Chicago/Turabian StyleAli, Jawad, Ashfaq Ahmad, and Dong-you Choi. 2023. "A Metalens Design for On- and Off-Center Focusing with Amorphous Silicon Hydrogenated (a-Si:H)-Based 1D Array in Visible Spectrum" Electronics 12, no. 13: 2953. https://doi.org/10.3390/electronics12132953
APA StyleAli, J., Ahmad, A., & Choi, D.-y. (2023). A Metalens Design for On- and Off-Center Focusing with Amorphous Silicon Hydrogenated (a-Si:H)-Based 1D Array in Visible Spectrum. Electronics, 12(13), 2953. https://doi.org/10.3390/electronics12132953