Digitalisation and Economic Growth in the European Union
Abstract
:1. Introduction
2. Literature Review
3. Some Statistical Considerations
4. Data and Research Methodology
4.1. Data and Variable
4.2. Empirical Model and Method
5. Results
6. Discussion and Conclusions
7. Research Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rachinger, M.; Rauter, R.; Müller, C.; Vorraber, W.; Schirgi, E. Digitalisation and its influence on business model innovation. J. Manuf. Technol. Manag. 2018, 30, 1143–1160. [Google Scholar] [CrossRef] [Green Version]
- Mesa, D.; Renda, G.; Gorkin, R., III; Kuys, B.; Cook, S.M. Implementing a Design Thinking Approach to De-Risk the Digitalisation of Manufacturing SMEs. Sustainability 2022, 14, 14358. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. The Level of Digitization of Small, Medium and Large Enterprises in the Central and Eastern European Countries and Its Relationship with Economic Parameters. J. Open Innov. Technol. Mark. Complex 2022, 8, 113. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Wang, C.; Zhang, X. The Economics of IT and digitalisation: Eight questions for research. MIS Quarterly 2021, 45, 473–477. [Google Scholar]
- Stroiko, T.; Nazarova, L.; Danik, N. Transformation of economic processes on the bases of digitalisation. Balt. J. Econ. Stud. 2021, 7, 102–106. [Google Scholar] [CrossRef]
- Myovellaa, G.; Karacukaa, M.; Haucapb, J. Digitalization and economic growth: A comparative analysis of Sub-Saharan Africa and OECD economies. Telecommun. Policy 2020, 44, 101856. [Google Scholar] [CrossRef]
- Azu, N.P.; Nwauko, P.A. Evaluating the Effect of Digital Transformation on Improvement of Service Trade in West Africa. Foreign Trade Rev. 2021, 56, 430–453. [Google Scholar] [CrossRef]
- Banga, K.; te Velde, D.W. Digitalisation and the Future of Manufacturing in Africa; Overseas Development Institute: London, UK, 2018. [Google Scholar]
- Toader, T.; Safta, M.; Titirisca, C.; Firtescu, B. Effects of Digitalisation on Higher Education in a Sustainable Development Framework—Online Learning Challenges during the COVID-19 Pandemic. Sustainability 2021, 13, 6444. [Google Scholar] [CrossRef]
- Ballestar, M.T.; Camina, E.; Diaz-Chao, A.; Torrent-Sellens, J. Productivity and employment effects of digital complementarities. J. Innov. Knowl. 2021, 50, 177–190. [Google Scholar] [CrossRef]
- Gaglio, C.; Kraemer-Mbula, E.; Lorenz, E. The effects of digital transformation on innovation and productivity: Firm-level evidence of South African manufacturing micro and small enterprises. Technol. Forecast. Soc. Chang. 2022, 182, 121785. [Google Scholar] [CrossRef]
- Fernandez-Portillio, A.; Almodovar-Gonzales, M.; Sanchez-Escobedo, M.C.; Coca-Perez, C.L. The role of innovation in the relationship between digitalisation and economic and financial performance. A company-level research. Eur. Res. Manag. Bus. Econ. 2022, 28, 100190. [Google Scholar] [CrossRef]
- Bouwman, H.; Nikou, S.; Molina-Castillo, F.J.; de Reuver, M. The impact of digitalization on business models. Digit. Policy Regul. Gov. 2018, 20, 105–124. [Google Scholar] [CrossRef]
- Gal, P.; Nicoletti, G.; Renault, T.; Sorbe, S.; Timiliotis, C. Digitalisation and productivity: In search of the holy grail—Firm-level empirical evidence from European countries. OECD Econ. Dep. Work. Pap. 2019, 1533, 3–63. [Google Scholar] [CrossRef]
- Arnold, C.; Kiel, D.; Voigt, K.-I. How the industrial internet of things changes business models in different manufacturing industries. Int. J. Innov. Manag. 2016, 20, 1–25. [Google Scholar] [CrossRef]
- Szalavetz, A. The digitalisation of manufacturing and blurring industry boundaries. CIRP J. Manuf. Sci. Technol. 2022, 37, 332–343. [Google Scholar] [CrossRef]
- Australian Government, Department of Arts. Digital Productivity: Key Issues in the Literature. BCAR Occasional Papers 2017. Available online: https://www.arts.gov.au (accessed on 3 February 2023).
- Borowiecki, M.; Pareliussen, J.; Glocker, D.; Jung Kim, E.; Polder, M.; Rud, I. The impact of digitalisation on productivity: Firm-level evidence from the Netherlands. Econ. Dep. Work. Pap. 2021, 1680, 3–33. [Google Scholar] [CrossRef]
- Cherep, A.V.; Chernikova, N.M. Innovative approaches to determination of economic digitization in the modern stage of enterprise development. Intellect. Econ. 2019, 13, 1–6. [Google Scholar]
- Romer, P. Endogenous technological change. J. Polit. Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef] [Green Version]
- Arsic, M. Impact of digitalisation on economic growth, productivity and employment. Econ. Themes 2020, 5, 431–457. [Google Scholar] [CrossRef]
- Niebel, T. ICT and economic growth—Comparing developing, emerging and developed countries. World Dev. 2018, 104, 197–211. [Google Scholar] [CrossRef] [Green Version]
- Mayen Solomon, E.; van Klyton, A. The impact of digital technology usage on economic growth in Africa. Util. Policy 2020, 67, 101104. [Google Scholar] [CrossRef]
- Solos, W.K.; Leonard, J. On the Impact of Artificial Intelligence on Economy. Sci. Insights 2022, 41, 551–560. [Google Scholar] [CrossRef]
- Khan, S.; Khan, S.; Aftab, M. Digitization and its impact on economy. Int. J. Digit. Libr. Serv. 2015, 5, 132–149. [Google Scholar]
- Van der Velden, M. Digitalisation and the UN Sustainable Development Goals: What role for design. Interact. Des. Archit. (S) J. 2018, 37, 160–174. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, W.; Cheng, B.; Li, A.; Wang, Y.; Yang, N.; Tian, Y. The Impact of Digital Economy on the Economic Growth and the Development Strategies in the post-COVID-19 Era: Evidence From Countries Along the “Belt and Road”. Front. Public Health 2022, 10, 856142. [Google Scholar] [CrossRef]
- Aleksandrova, A.; Truntsevsky, Y.; Polutova, M. Digitalization and its impact on economic growth. Braz. J. Political Econ. 2022, 42, 424–441. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Analyzing the Level of Digitalization among the Enterprises of the European Union Member States and Their Impact on Economic Growth, 2022. J. Open Innov. Technol. Mark. Complex 2022, 8, 70. [Google Scholar] [CrossRef]
- Gries, T.; Naudé, W. Artificial Intelligence, Jobs, Inequality and Productivity: Does Aggregate DEMAND Matter? UNU-MERIT Working Papers, 2675; Maastricht Economic and Social Research Institute on Innovation and Technology: Maastricht, The Netherlands, 2018. [Google Scholar]
- Gersonskaya, I. Leading Role of the Public Sector in the Digitalisation of Economy. 5th International Conference on Social, Economic, and Academic Leadership (ICSEALV 2019). In Advances in Social Science, Education and Humanities Research; Atlantis Press: Dordrecht, The Netherlands, 2014. [Google Scholar]
- European Commission. Eurostat Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 3 February 2023).
- The European Central Bank. Digitalisation and Its Impact on the Economy: Insights from a Survey of Large Companies. Available online: https://www.ecb.europa.eu/pub/economic-bulletin/focus/2018/html/ecb.ebbox201807_04.en.html (accessed on 6 February 2023).
- OECD. Digitalisation and Productivity: A Story of Complementarities. Available online: https://www.oecd.org/economy/growth/digitalisation-productivity-and-inclusiveness/ (accessed on 28 January 2023).
- Gandhi, P.; Khanna, S.; Ramaswamy, S. Which Industries Are the Most Digital (and Why)? Harvard Business Review April 2016. Available online: https://hbr.org/2016/04/a-chart-that-shows-which-industries-are-the-most-digital-and-why (accessed on 6 February 2023).
- Baltagi, B.H. Econometric Analysis of Panel Data, 3rd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2008. [Google Scholar]
- The European Commission. Digital Economy and Society Index (DESI) 2022. Available online: https://digital-agenda-data.eu/datasets/desi/indicators (accessed on 27 March 2023).
- Soumaré, I. Does FDI improve economic development in North African countries? Appl. Econ. 2015, 47, 5510–5533. [Google Scholar] [CrossRef]
- El-Wassal, K.A. Foreign direct investment and economic growth in Arab countries (1970–2008): An inquiry into determinants of growth benefits. J. Econ. Dev. 2012, 37, 79–100. [Google Scholar] [CrossRef]
- Datta, A.; Agarwal, S. Telecommunications and economic growth: A panel data approach. Appl. Econ. 2004, 36, 1649–1654. [Google Scholar] [CrossRef]
- Panizza, U.; Presbitero, A.F. Public debt and economic growth: Is there a causal effect? J. Macroecon. 2014, 41, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Rahman, N.H.A.; Ismail, S.; Ridzuan, A.R. How does public debt affect economic growth? A systematic review. Cogent Bus. Manag. 2019, 6, 1701339. [Google Scholar] [CrossRef]
- Guoyan, S.; Khaskheli, A.; Raza, S.A.; Ahmed, M. Nonlinear impact of municipal solid waste recycling and energy efficiency on environmental performance and economic growth: Evidence from non-parametric causality-in-quantiles. Environ. Sci. Pollut. Res. 2022, 29, 16066–16081. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, A.; Sharif, A.; Najmi, A.; Tseng, M.-L.; Lim, M.K. Dynamic and causality interrelationships from municipal solid waste recycling to economic growth, carbon emissions and energy efficiency using a novel bootstrapping autoregressive distributed lag. Resour. Conserv. Recycl. 2021, 166, 105372. [Google Scholar] [CrossRef]
- Asteriou, D.; Hall, S. Applied Econometrics, 2nd ed.; Palgrave Macmillan: London, UK, 2011. [Google Scholar]
- ICT for Greater Development Impact. The World Bank, 2014–2015. In World Bank Group Strategy for 2012–2015 (English); World Bank Group: Washington, DC, USA. Available online: http://documents.worldbank.org/curated/en/285841468337139224/ICT-for-greater-development-impact-World-Bank-Group-Strategy-for-2012-2015 (accessed on 15 February 2023).
Countries | ||
---|---|---|
Austria | Germany | Poland |
Belgium | Greece | Portugal |
Bulgaria | Hungary | Romania |
Croatia | Ireland | Slovak Republic |
Cyprus | Italy | Slovenia |
Czech Republic | Latvia | Spain |
Denmark | Lithuania | Sweden |
Estonia | Luxembourg | United Kingdom |
Finland | Malta | |
France | Netherlands |
Mean | Median | Maximum | Minimum | Std. Dev. | Observations | |
---|---|---|---|---|---|---|
GDP/CAP | 25,372.52 | 23,800 | 79,600 | 5300 | 11,539.3 | 575 |
MOBILE | 110.76 | 114.62 | 172.15 | 16.77 | 25.77 | 575 |
INTERNET | 65 | 70 | 98.86 | 4.53 | 22.63 | 575 |
FIXED_SUB | 22.20 | 24.41 | 47.49 | 0.011 | 12.66 | 575 |
DESI | 40.51 | 40.51 | 65.25 | 19.39 | 9.56 | 135 |
FDI | 8.43 | 2.0004 | 300.40 | −87.22 | 33.93 | 575 |
TRADE | 116.91 | 102.97 | 380.10 | 22.28 | 63.59 | 575 |
GOV_EXP | 19.89 | 19.56 | 27.93 | 12.01 | 2.87 | 575 |
GDI | 22.16 | 21.71 | 54.30 | 10.68 | 4.28 | 575 |
POP_GR | 0.293 | 0.265 | 3.93 | −3.74 | 0.917 | 575 |
PD | 58.94 | 53.6 | 186.4 | 3.8 | 34.25 | 575 |
RECYCLE | 30.09 | 30.7 | 69.8 | 0 | 17.93 | 575 |
Variables | Explanation | u. m. | Source | Expected Sign |
---|---|---|---|---|
Economic growth— dependent variable (GDP/CAP) | GDP per capita | PPS | Eurostat database (2023) | |
Interest variables (digitalisation) | Mobile subscriptions Internet users Fixed broadband subscriptions DESI | % | International Telecommunications Union database (2023) European Commission (2022) | + + |
Controls: | ||||
Foreign direct investment (FDI) | Foreign direct investment and net outflows. | % of GDP | World Bank online database (2023) | + |
Trade openness (TRADE) | The sum of exports and imports of goods and services measured. | % of GDP | World Bank online database (2023) | + |
Government consumption expenditure (GOV_EXP) | Includes all government current expenditures for purchases of goods and services. | % of GDP | World Bank online database (2023) | +/− |
Gross fixed capital formation (GDI) | Formerly gross domestic investment, which includes land improvements, machinery, and construction of roads. | % of GDP | World Bank online database (2023) | + |
Population growth rate (POP_GR) | Annual population growth rate for year t is the exponential rate of growth of midyear population from year t−1 to t. | % | World Bank online database (2023) | - |
Public debt (PD) | Government consolidated gross debt. | % of GDP | Eurostat database (2023) | - |
Recycle rate (RECYCLE) | Tonnage recycled from municipal waste divided by the total municipal waste arising. | % | Eurostat database (2023) | + |
Correlation | MOBILE | INTERNET | FIXED_SUB | FDI | TRADE | GOV_EXP | GDI | POP_GR | PD | RECYCLE |
---|---|---|---|---|---|---|---|---|---|---|
MOBILE | 1.00 | |||||||||
INTERNET | 0.26 | 1.00 | ||||||||
FIXED_SUB | 0.22 | 0.26 | 1.00 | |||||||
FDI | 0.003 | 0.05 | 0.11 | 1.00 | ||||||
TRADE | 0.08 | 0.04 | 0.07 | 0.15 | 1.00 | |||||
GOV_EXP | 0.11 | 0.02 | 0.06 | 0.001 | 0.44 | 1.00 | ||||
GDI | 0.22 | 0.09 | 0.13 | 0.09 | 0.004 | 0.03 | 1.00 | |||
POP_GR | 0.05 | 0.01 | 0.05 | 0.22 | 0.08 | 0.14 | 0.05 | 1.00 | ||
PD | 0.17 | 0.002 | 0.09 | 0.04 | 0.17 | 0.35 | 0.17 | 0.01 | 1.00 | |
RECYCLE | 0.01 | 0.008 | 0.01 | 0.02 | 0.06 | 0.10 | 0.007 | 0.09 | 0.03 | 1.00 |
Coefficient | Uncentred | Centred | |
---|---|---|---|
C | 7 × 10−5 | 57.2 | |
MOBILE | 2 × 10−8 | 1.47 | 1.22 |
INTERNET | 1 × 10−7 | 2.10 | 1.14 |
FIXED_SUB | 5 × 10−7 | 2.68 | 1.18 |
FDI | 1 × 10−9 | 1.16 | 1.07 |
TRADE | 2 × 10−8 | 1.36 | 1.31 |
GOV_EXP | 2 × 10−6 | 1.46 | 1.44 |
GDI | 1 × 10−7 | 61.39 | 1.24 |
POP_GR | 7 × 10−6 | 1.65 | 1.14 |
PD | 5 × 10−8 | 1.34 | 1.26 |
RECYCLE | 1 × 10−7 | 1.12 | 1.01 |
Dependent Variable: GDP per Capita | |||||
---|---|---|---|---|---|
Independent Variables | (1) | (2) | (3) | (4) | |
constant | 0.02358 *** (7.810648) | −0.013054 ** (−2.008868) | −0.0160587 * (−1.913904) | −0.013357 * (−2.044835) | |
MOBILE | 0.001949 *** (7.39704) | 0.000877 *** (5.129755) | 0.00069922 *** (4.1704339) | 0.0008437 *** (5.159790) | |
INTERNET | 5.2 × 10−5 (0.093684) | 0.000852 ** (2.456660) | 0.0005999 * (1.7906950) | 0.0007901 ** (2.3842214) | |
FIXED_SUB | 0.00174 (1.41736) | 0.000171 (0.221459) | 0.00086178 (1.1247705) | 0.0003318 (0.4464744) | |
FDI | −4.5 × 10−5 (−1.27514) | −0.00010989 *** (−2.896302) | −5.6 × 10−5 (−1.634578) | ||
TRADE | 0.00077925 *** (4.71909) | 0.00069795 *** (4.358287) | 0.0007635 *** (4.838923) | ||
GOV_EXP | −0.018184 *** (−10.779481) | −0.0180309 *** (−11.068489) | −0.018176 *** (−11.286422) | ||
GDI | 0.0021594 *** (7.5257884) | 0.0023858 *** (6.12524551) | 0.0021837 *** (7.5499910) | ||
POP_GR | −0.0078378 *** (−5.8843741) | −0.01075074 *** (−4.007397) | −0.007872 *** (−5.693486) | ||
PD | −0.00308214 *** (−13.6628) | −0.0031328 *** (−13.87278) | −0.0030903 *** (−14.25112) | ||
RECYCLE | −0.00063124 * (−1.75083) | −0.00083732 ** (−2.361334) | −0.00067444 * (−1.950550) | ||
Type of estimation | PLS | PLS | PLS—FE:CS | PLS—RE:CS | |
Adjusted R-squared | 0.10894 | 0.630839 | 0.665260 | 0.6305279 | |
Durbin–Watson test | 1.84357 | 1.66825 | 1.930780 | 1.718705 | |
F-stat | 22.78139 *** | 93.960990 *** | 30.2200 *** | 93.837126 *** | |
Akaike info criterion | −3.39827 | −4.352691 | −4.403373 | ||
Schwarz criterion | −3.36748 | −4.265886 | −4.103502 | ||
Breusch–Pagan test | 109.89853 (0.0000) | ||||
Redundant fixed effects tests | |||||
Cross-section F | 3.03376503 | ||||
(0.0000) | |||||
Cross-section Chi-square | 81.6220226 | ||||
(0.0000) | |||||
Hausman test | 46.463447 (0.0000) |
Dependent Variable: GDP per Capita | ||||
---|---|---|---|---|
Independent Variables | (1) | (2) | (3) | (4) |
constant | 0.0157095 *** (4.6723543) | −0.009538 (−1.339793) | −0.0137674 (−1.473136) | −0.009866 (−1.354424) |
MOBILE | 0.00111648 *** (3.250573) | 0.00057923 *** (2.985035) | 0.00055321 *** (2.8406230) | 0.0005768 *** (0.0031839) |
INTERNET | −0.0001462 (−0.253132) | 0.000632342 ** (1.998999) | 0.0005802 * (1.818805) | 0.0006268 ** (1.9820628) |
FIXED_SUB | 0.0022662 (1.640001) | 0.00126967 (1.648260) | 0.00133696 * (1.710237) | 0.00127191 (1.6503047) |
FDI | 0.00010800 (1.4285954) | 7.4 × 10−5 (0.894291) | 0.00010698 (1.4040980) | |
TRADE | 0.00052634 ** (2.506208) | 0.0004578 ** (2.1344654) | 0.00052161 ** (2.4816643) | |
GOV_EXP | −0.0219635 *** (−10.01548) | −0.0219974 *** (−9.67074) | −0.0219798 *** (−10.002516) | |
GDI | 0.00144606 *** (4.3453676) | 0.001838 *** (4.064499) | 0.00147145 *** (4.3140909) | |
POP_GR | −0.0006394 (−0.286471) | −0.0067990 ** (−1.970218) | −0.0008998 (−0.390819) | |
PD | −0.002226 *** (−9.966545) | −0.002310 ** (−9.51942) | −0.002232 *** (−9.930920) | |
RECYCLE | −0.0002609 (−0.476032) | −0.0004531 (−0.801621) | −0.0002811 (−0.511645) | |
Type of estimation | PLS | PLS | PLS—FE:CS | PLS—RE:CS |
Adjusted R-squared | 0.0457337 | 0.6406217 | 0.64154592 | 0.641054 |
Durbin–Watson test | 1.988592 | 1.7444475 | 1.866243 | 1.753442 |
F-stat | 5.856462 *** | 53.051449 *** | 22.775385 *** | 53.14931 *** |
Akaike info criterion | −3.694984 | −4.771323 | −4.867418 | |
Schwarz criterion | −3.646193 | −4.8541504 | −4.553410 | |
Breusch–Pagan test | 11.077508 (0.0000) | |||
Redundant fixed effects tests | ||||
Cross-section F | 1.0519303 | |||
(0.40216) | ||||
Cross-section Chi-square | 15.673998 | |||
(0.3337) | ||||
Hausman test | 9.363335 (0.4980) |
Dependent Variable: GDP per Capita | |||||
---|---|---|---|---|---|
Independent Variables | (1) | (2) | (3) | (4) | |
constant | 0.0312952 *** (5.8228287) | −0.0069747 (−0.599406) | −0.0332978 ** (−2.169275) | −0.006974 (−0.61752) | |
MOBILE | 0.0022599 *** (5.730406) | 0.001017 *** (3.759756) | 0.00073544 *** (2.6531896) | 0.0010174 *** (3.873376) | |
INTERNET | −0.0002175 (−0.199575) | 0.00087286 (1.2083754) | 0.00065973 (0.9247633) | 0.0008728 (1.244892) | |
FIXED_SUB | 0.003746 * (1.760305) | −0.0004769 (−0.312655) | −0.00106378 (−0.6848583) | −0.0004769 (−0.322103) | |
FDI | −7.5 × 10−5 * (−1.685788) | −0.000118 ** (−2.440847) | −7.5 × 10−5 * (−1.7367329) | ||
TRADE | 0.0008138 *** (3.38802) | 0.0008294 *** (3.502716) | 0.0008138 *** (3.4903905) | ||
GOV_EXP | −0.015017 *** (−6.224586) | −0.0150144 *** (−6.380491) | −0.0150178 *** (−6.412693) | ||
GDI | 0.00226069 *** (4.268808) | 0.003539 *** (4.9458465) | 0.0022606 *** (4.3978121) | ||
POP_GR | −0.006748 *** (−3.508735) | −0.010953 *** (−2.6704852) | −0.0067484 *** (−3.61476) | ||
PD | −0.0043505 *** (−10.685083) | −0.0042792 *** (−10.62801) | −0.004350 *** (−11.007986) | ||
RECYCLE | −0.00101197 ** (−2.086956) | −0.0009968 ** (−2.06640) | −0.00101197 ** (−2.150024) | ||
Type of estimation | PLS | PLS | PLS—FE:CS | PLS—RE:CS | |
Adjusted R-squared | 0.139952 | 0.646305 | 0.666751 | 0.646305 | |
Durbin–Watson test | 1.916945 | 1.791566 | 1.896879 | 1.791566 | |
F-stat | 14.9402 *** | 46.865135 *** | 23.82685 *** | 46.865135 *** | |
Akaike info criterion | −3.22977 | −4.08197 | −4.097360 | ||
Schwarz criterion | −3.17468 | −3.92791 | −3.775229 | ||
Breusch–Pagan test | 56.621257 (0.0000) | ||||
Redundant fixed effects tests | |||||
Cross-section F | 2.232177 | ||||
(0.0112) | |||||
Cross-section Chi-square | 27.876157 | ||||
(0.0058) | |||||
Hausman test | 26.30116 (0.0034) |
Dependent Variable: GDP per Capita | ||||
---|---|---|---|---|
Independent Variables | (1) | (2) | (3) | (4) |
constant | 9.33908 *** (91.35775) | 8.98256 *** (52.13374) | 10.15309 ** (91.62625) | 10.00682 *** (102.111) |
DESI | 0.02335 *** (9.50736) | 0.01162 *** (4.88737) | 0.011397 *** (11.53704) | 0.011412 *** (11.81881) |
FDI | 0.001087 * (1.77114) | 3 × 10−5 (0.23351) | 5.7 × 10−5 (0.448228) | |
TRADE | 0.00141 *** (4.17800) | 0.00057 (0.96916) | 0.001125 *** (2.73796) | |
GOV_EXP | −0.00395 (−0.56117) | −0.01183 ** (−2.62346) | −0.01356 *** (−3.35091) | |
GDI | 0.01104 *** (3.04091) | 0.00024 (0.14794) | 0.000156 (0.09991) | |
POP_GR | 0.11249 *** (5.22290) | 0.00334 (0.44331) | 0.011354 (1.58392) | |
PD | 0.00116 ** (2.27236) | −0.00272 *** (−3.55047) | −0.00161 *** (−2.68953) | |
RECYCLE | 0.00939 ** (7.87750) | 0.000167 (0.21046) | 0.00102 (1.351422) | |
Type of estimation | PLS | PLS | PLS—FE:CS | PLS—RE:CS |
Adjusted R-squared | 0.40015 | 0.72880 | 0.99136 | 0.57142 |
Durbin–Watson test | 0.06087 | 0.297860 | 1.0896 | 0.77689 |
F-stat | 90.390 *** | 43.6625 *** | 429.690 *** | 22.16603 *** |
Akaike info criterion | 0.24761 | −0.53441 | −3.82134 | |
Schwarz criterion | 0.29065 | −0.33387 | −3.04149 | |
Breusch–Pagan test | 164.296 (0.0000) | |||
Redundant fixed effects tests | ||||
Cross-section F | 140.1171 | |||
(0.0000) | ||||
Cross-section Chi-square | 472.72 | |||
(0.0000) | ||||
Hausman test | 39.74785 (0.0000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mura, P.O.; Donath, L.E. Digitalisation and Economic Growth in the European Union. Electronics 2023, 12, 1718. https://doi.org/10.3390/electronics12071718
Mura PO, Donath LE. Digitalisation and Economic Growth in the European Union. Electronics. 2023; 12(7):1718. https://doi.org/10.3390/electronics12071718
Chicago/Turabian StyleMura, Petru Ovidiu, and Liliana Eva Donath. 2023. "Digitalisation and Economic Growth in the European Union" Electronics 12, no. 7: 1718. https://doi.org/10.3390/electronics12071718
APA StyleMura, P. O., & Donath, L. E. (2023). Digitalisation and Economic Growth in the European Union. Electronics, 12(7), 1718. https://doi.org/10.3390/electronics12071718