Design of Lumbar Rehabilitation Training System Based on Virtual Reality
Abstract
:1. Introduction
2. Overall System Design
- (1)
- The use of VR technology to design rehabilitation games can build an “immersive” rehabilitation training environment for participants by means of images and music, and this “immersive” environment can increase participants’ willingness to actively participate in training.
- (2)
- Simple, rapid, and effective lumbar assessment can facilitate patients’ adjustment to the rehabilitation training plan in time and assist the rehabilitation therapist in making rehabilitation training programs.
3. Hardware Layer Design
3.1. Attitude Sensor
3.2. Data Communication
4. Software Layer Design
- (a)
- The system’s main interface
- (b)
- Human–computer interaction interface for lumbar rehabilitation training
- (c)
- Human–computer interaction interface of the lumbar rehabilitation assessment
- (d)
- Evaluation result display interface
5. Rehabilitation Scene Planning and Construction
5.1. Lumbar Rehabilitation Training Model
5.1.1. Requirements Gathering
5.1.2. Scene Planning
5.1.3. Scene Building
5.2. Lumbar Rehabilitation Assessment Model
- (1)
- There is feedback on the accuracy of the action at the top of the screen. The screen will be briefly red with the accuracy of the action above 90% being PERFECT, above 80% being GREAT, and above 70% not passing the feedback. Continuous feedback of 70% or more accuracy will appear as a continuous hit effect.
- (2)
- After the patient leaves the detection range, the system will pop up a window and perform a 10 s countdown, prompting the patient to return to the current training, and return to the 3 s countdown to continue the training.
- (3)
- If the patient does not return within 10 s after leaving the test, the system will automatically exit. If the patient has completed 20% of the total movements of the training, the system will save the data for settlement by default. If the number of the total movements completed is less than 20%, the system will not save the data.
- (4)
- Settlement stage
- (5)
- Training restart phase
6. System Testing
6.1. Attitude Sensor Function Test
6.2. Lumbar sEMG Test
7. Discussion
7.1. Main Research Results
7.2. Limitations and Future Work
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dieleman, J.L.; Cao, J.; Chapin, A.; Chen, C.; Li, Z.; Liu, A.; Horst, C.; Kaldjian, A.; Matyasz, T.; Scott, K.W.; et al. US health care spending by payer and health condition, 1996–2016. JAMA 2020, 9, 863–884. [Google Scholar] [CrossRef]
- Qing, Y.; Shuhua, Z. Research on the development of virtual reality technology in China: A review and outlook. Sci. Res. 2020, 5, 20–26. [Google Scholar]
- Xijun, W.; Yiqian, W.; Ping, Q. A Survey on the application of virtual reality technology in domestic clinical rehabilitation therapy. Chin. J. Rehabil. Med. 2021, 7, 832–837. [Google Scholar]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. CochraneDatabase Syst. Rev. 2017, 1, 1–161. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Park, Y.; Lee, B.H. Effects of community-based virtual reality treadmill training on balance ability in patients with chronic stroke. J. Phys. Ther. Sci. 2015, 3, 655–658. [Google Scholar] [CrossRef]
- Lee, M.M.; Lee, K.J.; Song, C.H. Game-based virtual reality canoe paddling training to improve postural balance and upper extremity function: A preliminary randomized controlled study of 30 patients with subacute stroke. Med. Sci. Monit. 2018, 24, 2590–2598. [Google Scholar] [CrossRef]
- Goble, D.J.; Cone, B.L.; Fling, B.W. Using the Wii fit as a tool for balance assessment and neurorehabilitation: The first half decade of “Wii-search”. J. Neuroeng. Rehabil. 2014, 1, 12–21. [Google Scholar] [CrossRef]
- Mirelman, A.; Maidan, I.; Deutsch, J.E. Virtual reality and motor imagery: Promising tools for assessment and therapy in parkinson’s disease: Virtual reality and motor imagery for PD. Mov. Disord. 2013, 11, 1597–1608. [Google Scholar] [CrossRef]
- Shema-Shiratzky, S.; Brozgol, M.; Cornejo-Thumm, P.; Geva-Dayan, K.; Rotstein, M.; Leitner, Y.; Hausdorff, J.M.; Mirelman, A. Virtual reality training to enhance behavior and cognitive function among children with attention-deficit/hyperactivity disorder: Brief report. Dev. Neurorehabil. 2019, 6, 431–436. [Google Scholar] [CrossRef]
- Borrego, A.; Latorre, J.; Llorens, R.; Alcañiz, M.; Noé, E. Feasibility of a walking virtual reality system for rehabilitation: Objective and subjective parameters. J. NeuroEngineering Rehabil. 2016, 1, 68–77. [Google Scholar] [CrossRef]
- Gomes, T.T.; Schujmann, D.S.; Fu, C. Rehabilitation through virtual reality: Physical activity of patients admitted to the intensive care unit. Rev. Bras. Ter. Intensiv. 2019, 4, 456–463. [Google Scholar] [CrossRef] [PubMed]
- García, S.; Cano, R.; Domínguez, J.; Campuzano, R.; Barreñada, E.; López, M.J.; Araujo, A.; García, C.; Florez, M.; Botas, J. Effects of virtual reality on cardiac rehabilitation programs for ischemic heart disease: A randomized pilot clinical trial. Int. J. Environ. Res. 2020, 17, 8472. [Google Scholar]
- Yoo, J.H.; Kim, S.E.; Lee, M.G.; Jin, J.J.; Hong, J.; Choi, Y.T.; Kim, M.H.; Jee, Y.S. The effect of horse simulator riding on visual analogue scale, body composition and trunk strength in the patients with chronic low back pain. Int. J. Clin. Pract. 2014, 8, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz Yelvar, G.D.; Çırak, Y.; Dalkılınç, M.; Parlak Demir, Y.; Guner, Z.; Boydak, A. Is physiotherapy integrated virtual walking effective on pain, function, and kinesiophobia in patients with non-specific low-back pain? randomised controlled trial. Eur. Spine J. 2017, 2, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, S.H.; Ko, D.S. The effects of the Nintendo Wii exercise program on chronic work-related low back pain in industrial workers. J. Phys. Ther. Sci. 2013, 8, 985–988. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Min, W.K.; Kim, J.H.; Lee, B.H. The effects of VR-based Wii fit yoga on physical function in middle-aged female LBP patients. J. Phys. Ther. Sci. 2014, 4, 549–552. [Google Scholar] [CrossRef]
- Ciabattoni, L.; Ferracuti, F.; Lazzaro, G.; Romeo, L.; Verdini, F. Serious gaming approach for physical activity monitoring: A visual feedback based on quantitative evaluation. In Proceedings of the 2016 IEEE 6th International Conference on Consumer Electronics—Berlin (ICCE-Berlin), Berlin, Germany, 5–7 September 2016; IEEE: Berlin, Germany, 2016; pp. 209–213. [Google Scholar]
- Bonnechére, B.; Jansen, B.; Omelina, L.; Da Silva, L.; Mouraux, D.; Rooze, M.; Van Sint, J.S. Patient Follow-up Using Serious Games. A Feasibility Study on Low Back Pain Patients. In Games for Health; Schouten, B., Fedtke, S., Bekker, T., Schijven, M., Gekker, A., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2013; pp. 185–195. ISBN 978-3-658-02896-1. [Google Scholar]
- Vicon. Vicon|Award Winning Motion Capture Systems. Available online: http://www.vicon.com (accessed on 23 March 2023).
- Khan, M.I.; Prado, A.; Agrawal, S.K. Effects of virtual reality training with trunk support trainer (TruST) on postural kinematics. IEEE Robot. Autom. Lett. 2017, 4, 2240–2247. [Google Scholar] [CrossRef]
- Su, W.C.; Yeh, S.C.; Lee, S.H.; Huang, H.C. A Virtual Reality Lower-Back Pain Rehabilitation Approach: System Design and User Acceptance Analysis. In Universal Access in Human-Computer Interaction. Access to Learning, Health and Well-Being; Antona, M., Stephanidis, C., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9177, pp. 374–382. ISBN 978-3-319-20683-7. [Google Scholar]
- Paladugu, P.; Hernandez, A.; Gross, K.; Su, Y.; Neseli, A.; Gombatto, S.; Moon, K.; Ozturk, Y. A sensor cluster to monitor body kinematics. In Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, 14–17 June 2016; IEEE: San Francisco, CA, USA, 2016; pp. 212–217. [Google Scholar]
- Madeleine, P.; Farina, D.; Merletti, R.; Arendt-Nielsen, L. Upper trapezius muscle mechanomyographic and electromyographic activity in humans during low force fatiguing and non-fatiguing contractions. Eur. J. Appl. Physiol. 2002, 87, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Inbar, G.F.; Allin, J.; Paiss, O.; Kranz, H. Monitoring surface EMG spectral changes by the zero crossing rate. Med. Biol. Eng. Comput. 1986, 24, 10–18. [Google Scholar] [CrossRef]
- Viitasalo, J.H.T.; Komi, P.V. Signal characteristics of EMG during fatigue. Eur. J. Appl. Physiol. 1977, 37, 111–121. [Google Scholar] [CrossRef]
- Crocetta, T.B.; de Araújo, L.V.; Guarnieri, R.; Massetti, T.; Ferreira, F.H.I.B.; de Abreu, L.C.; de Mello Monteiro, C.B. Virtual reality software package for implementing motor learning and rehabilitation experiments. Virtual Real. 2018, 3, 199–209. [Google Scholar] [CrossRef]
- Palazzo, C.; Klinger, E.; Dorner, V.; Kadri, A.; Thierry, O.; Boumenir, Y.; Martin, W.; Poiraudeau, S.; Ville, I. Barriers to home-based exercise program adherence with chronic low back pain: Patient expectations regarding new technologies. Ann. Phys. and Rehabil. Med. 2016, 2, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Garrett, B.; Taverner, T.; Masinde, W.; Gromala, D.; Shaw, C.; Negraeff, M. A rapid evidence assessment of immersive virtual reality as an adjunct therapy in acute pain management in clinical practice. Clin. J. Pain 2014, 12, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
Data Name | Data Description | Notation |
---|---|---|
RollL | Roll Angle X-Low 8 bits | X = ((RollH << 8)|RollL)/32,768 × 180(°) |
RollH | Roll Angle X-High 8 bits | |
PitchL | Pitch Angle Y-Low 8 bits | Y = ((PitchH << 8)|PitchL)/32,768 × 180(°) |
PitchH | Pitch Angle Y-High 8 bits | |
YawL | Yaw Angle Z-Low 8 bits | Z = ((YawH << 8)|YawL)/32,768 × 180(°) |
YawH | Yaw Angle Z-High 8 bits | |
VL | Version number-Low 8 bits | Version number = (VH << 8)|VL |
VH | Version number-High 8 bits | |
SUM | Checksum | SUM = 0 × 55 + 0 × 53 + RollH + RollL + PitchH + PitchL + YawH + YawL + VH + VL |
Movement Posture | Rotary Axis | Training Range (°) | Assessment Range (°) |
---|---|---|---|
Left and right lateral flexion | Sagittal axis (y) | −25~25 | −30~30 |
Forward flexion and backward extension | Coronal axis (x) | −15~45 | −30~90 |
Volunteer | Age | Sex | Left Lateral Flexion | Right Lateral Flexion | Forward Flexion | Backward Extension |
---|---|---|---|---|---|---|
1 | 22.5 | Male | −30.16 ± 1.58 | 29.52 ± 1.81 | 91.55 ± 1.39 | −30.66 ± 1.83 |
2 | 27.3 | Female | −31.38 ± 1.23 | 31.40 ± 0.93 | 92.34 ± 2.23 | −31.03 ± 1.98 |
3 | 27.8 | Male | −31.30 ± 1.61 | 30.85 ± 1.53 | 89.85 ± 2.80 | −31.08 ± 1.97 |
4 | 21.9 | Male | −30.53 ± 1.98 | 30.89 ± 1.48 | 91.32 ± 2.46 | −31.12 ± 1.66 |
Volunteer | Age | Sex | Without Prompts RMS Value | With Prompts RMS Value |
---|---|---|---|---|
1 | 23.6 | Male | 0.063267 | 0.087950 |
2 | 23.9 | Male | 0.105767 | 0.105967 |
3 | 27.2 | Male | 0.112767 | 0.114150 |
4 | 25.5 | Male | 0.080533 | 0.090700 |
Volunteer | Age | Sex | Without Prompts MPF Value | With Prompts MPF Value |
---|---|---|---|---|
1 | 23.6 | Male | 123.3954 | 105.4824 |
2 | 23.9 | Male | 101.5361 | 99.2009 |
3 | 27.2 | Male | 105.8396 | 101.896 |
4 | 25.5 | Male | 112.9738 | 102.6586 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Shi, P.; Yu, H. Design of Lumbar Rehabilitation Training System Based on Virtual Reality. Electronics 2024, 13, 1850. https://doi.org/10.3390/electronics13101850
Liu J, Shi P, Yu H. Design of Lumbar Rehabilitation Training System Based on Virtual Reality. Electronics. 2024; 13(10):1850. https://doi.org/10.3390/electronics13101850
Chicago/Turabian StyleLiu, Jiani, Ping Shi, and Hongliu Yu. 2024. "Design of Lumbar Rehabilitation Training System Based on Virtual Reality" Electronics 13, no. 10: 1850. https://doi.org/10.3390/electronics13101850
APA StyleLiu, J., Shi, P., & Yu, H. (2024). Design of Lumbar Rehabilitation Training System Based on Virtual Reality. Electronics, 13(10), 1850. https://doi.org/10.3390/electronics13101850