Impact of Al Alloying/Doping on the Performance Optimization of HfO2-Based RRAM
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Al Concentration-Dependent RS
3.2. Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chua, L.O. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2009, 459, 1154. [Google Scholar] [CrossRef]
- Yang, R.; Huang, H.M.; Guo, X. Memristive synapses and neurons for bio-inspired computing. Adv. Electron. Mater. 2019, 5, 1900287. [Google Scholar] [CrossRef]
- Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent Progress in Resistive Random Access Memories: Materials, Switching Mechanisms, and Performance. Mater. Sci. Eng. R 2014, 83, 1–59. [Google Scholar] [CrossRef]
- Wong, H.S.P.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, P.S.; Lee, B.; Chen, F.T.; Tsai, M.J. Metal-Oxide RRAM. Proc. IEEE 2012, 100, 1951–1970. [Google Scholar] [CrossRef]
- Ielmini, D. Resistive Switching Memories Based on Metal Oxides: Mechanisms, Reliability and Scaling. Semicond. Sci. Technol. 2016, 31, 063002. [Google Scholar] [CrossRef]
- Lee, H.Y.; Chen, P.S.; Wu, T.Y.; Chen, Y.S.; Wang, C.C.; Tzeng, P.J.; Lin, C.H.; Chen, F.; Lien, C.H.; Tsai, M.J. Low Power and High Speed Bipolar Switching with a Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008; pp. 297–300. [Google Scholar]
- Yang, J.J.; Zhang, M.X.; Strachan, J.P.; Feng, F.M.; Pickett, M.D.; Kelley, R.D.; Ribeiro, G.M.; Williams, R.S. High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 2010, 97, 232102. [Google Scholar] [CrossRef]
- Zhuo, V.Y.Q.; Jiang, Y.; Zhao, R.; Shi, L.P.; Yang, Y.; Chong, T.C.; Robertson, J. Improved Switching Uniformity and Low-Voltage Operation in -Based RRAM Using Ge Reactive Layer. IEEE Electron. Device Lett. 2013, 34, 1130. [Google Scholar] [CrossRef]
- Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gao, P.; Gaba, S.; Chang, T.; Pan, X.; Lu, W. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 2012, 3, 732. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Tan, S.H.; Li, Z.; Kim, Y.; Choi, C.; Chen, P.; Yeon, H.; Yu, S.; Kim, J. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 2018, 17, 335–340. [Google Scholar] [CrossRef]
- Fantini, A.; Goux, L.; Clima, S.; Degraeve, R.; Redolfi, A.; Adelmann, C.; Polimeni, G.; Chen, Y.Y.; Komura, M.; Belmonte, A.; et al. Engineering of Hf1-xAlxOy amorphous dielectrics for high-performance RRAM applications. In Proceedings of the 2014 IEEE 6th International Memory Workshop (IMW), Taipei, Taiwan, 18–21 May 2014; pp. 1–4. [Google Scholar]
- Chen, Y.Y.; Roelofs, R.; Redolfi, A.; Degraeve, R.; Crotti, D.; Fantini, A.; Clima, S.; Govoreanu, B.; Komura, M.; Goux, L.; et al. Tailoring switching and endurance/retention reliability characteristics of HfO2/Hf RRAM with Ti, Al, Si dopants. In Proceedings of the 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, USA, 9–12 June 2014; pp. 1–2. [Google Scholar]
- Zhao, Y.H. Stability of phase boundary between L12-Ni3Al phases: A phase field study. Intermetallics 2022, 144, 107528. [Google Scholar] [CrossRef]
- Rehman, S.; Khan, M.F.; Rahmani, M.K.; Kim, H.; Patil, H.; Khan, S.A.; Kang, M.H.; Kim, D. Neuro-Transistor Based on UV-Treated Charge Trapping in MoTe2 for Artificial Synaptic Features. Nanomaterials 2020, 10, 2326. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.T.; Sun, Q.Q.; Li, Y.; Guo, J.J.; Zhou, P.; Ding, S.J.; Zhang, D.W. Towards the accurate electronic structure descriptions of typical high-constant dielectrics. J. Phys. D Appl. Phys. 2011, 18, 185402. [Google Scholar] [CrossRef]
- Traore, B.; Blaise, P.; Vianello, E.; Grampeix, H.; Bonnevialle, A.; Jalaguier, E.; Molas, G.; Jeannot, S.; Perniola, L.; Desalvo, B.; et al. Microscopic understanding of the low resistance state retention in HfO2 and HfAlO based RRAM. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; pp. 21.5.1–21.5.4. [Google Scholar]
Split | Al% | Density (g/cm3) | Band Gap (eV) |
---|---|---|---|
HfO2 | 0% | 9.62 | 5.6 |
HfAlO (9:1) | 6.7% | 8.79 | 5.7 |
HfAlO (4:1) | 15% | 8.2 | 5.8 |
HfAlO (2:1) | 30% | 7.8 | 5.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Yuan, X.; Wu, W.; Lee, C.; Zhao, Y.; Liu, Z. Impact of Al Alloying/Doping on the Performance Optimization of HfO2-Based RRAM. Electronics 2024, 13, 2384. https://doi.org/10.3390/electronics13122384
He H, Yuan X, Wu W, Lee C, Zhao Y, Liu Z. Impact of Al Alloying/Doping on the Performance Optimization of HfO2-Based RRAM. Electronics. 2024; 13(12):2384. https://doi.org/10.3390/electronics13122384
Chicago/Turabian StyleHe, Huikai, Xiaobo Yuan, Wenhao Wu, Choonghyun Lee, Yi Zhao, and Zongfang Liu. 2024. "Impact of Al Alloying/Doping on the Performance Optimization of HfO2-Based RRAM" Electronics 13, no. 12: 2384. https://doi.org/10.3390/electronics13122384