Data-Driven MPC Scheme for Inertial Platform with Uncertain Systems Against External Vibrations
Abstract
:1. Introduction
2. Problem Formulation
3. Data-Driven MPC Framework
3.1. Foundation of the EM-Based MPC
3.2. Dual Optimization Algorithm
Algorithm 1 EM-based MPC. |
Require: , , identification system, initial dual updated step size , initial control policy distribution ;
|
3.3. Implementation and Generalization Strategy
Algorithm 2 Data-driven MPC framework. |
Require: Dataset including external vibrations, PWM values, and corresponding angular velocities of the inertial platform;
|
4. Experiment
4.1. Experimental System and Identification Result
4.2. Numerical Example
4.3. Generalization Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MPC | Model predictive control |
PWM | Pulse width modulation |
LightGBM | Light gradient boosting machine |
EM | Expectation maximization |
References
- Zeinali, B.; Zanddizari, H.; Chang, M.J. Imunet: Efficient regression architecture for inertial IMU navigation and positioning. IEEE Trans. Instrum. Meas. 2024, 73, 1–13. [Google Scholar] [CrossRef]
- Junhui, X.; Zhicheng, Y.; Donghui, X.; Bin, S. A pre-launch integrated calibration method of platform inertial navigation system. Aerosp. Control 2022, 40, 72–78. [Google Scholar]
- Dey, S.; Kumar, T.K.S.; Ashok, S.; Shome, S.K. Design of adaptive fuzzy pid control framework for 3-axis platform stabilization. In Proceedings of the 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), Aligarh, India, 10–12 February 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, H.; Hu, S.; Cai, Q.; Zhang, Y.; Zhang, K. Backstepping terminal sliding mode control of fog inertial platform stability loop based on extended state observer. In Proceedings of the 2022 7th International Conference on Control, Robotics and Cybernetics (CRC), Zhanjiang, China, 15–17 December 2022; pp. 29–34. [Google Scholar] [CrossRef]
- Zhao, M.; Li, H. Distributed model predictive contouring control of unmanned surface vessels. IEEE Trans. Ind. Electron. 2024, 71, 13012–13019. [Google Scholar] [CrossRef]
- Yang, Q.; Li, H. RMPC-based visual servoing for trajectory tracking of quadrotor UAVs with visibility constraints. IEEE/CAA J. Autom. Sin. 2024, 11, 2027–2029. [Google Scholar] [CrossRef]
- Sun, Z.; Dai, L.; Liu, K.; Xia, Y.; Johansson, K.H. Robust MPC for tracking constrained unicycle robots with additive disturbances. Automatica 2018, 90, 172–184. [Google Scholar] [CrossRef]
- Wen, G.; Lam, J.; Fu, J.; Wang, S. Distributed MPC-based robust collision avoidance formation navigation of constrained multiple USVs. IEEE Trans. Intell. Veh. 2023, 9, 1804–1816. [Google Scholar] [CrossRef]
- Fleming, J.; Kouvaritakis, B.; Cannon, M. Robust tube MPC for linear systems with multiplicative uncertainty. IEEE Trans. Autom. Control 2015, 60, 1087–1092. [Google Scholar] [CrossRef]
- Zhou, J.; Tian, D.; Sheng, Z.; Duan, X.; Qu, G.; Zhao, D.; Cao, D.; Shen, X. Robust min-max model predictive vehicle platooning with causal disturbance feedback. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15878–15897. [Google Scholar] [CrossRef]
- Rakovic, S.V.; Kouvaritakis, B.; Cannon, M.; Panos, C.; Findeisen, R. Parameterized tube model predictive control. IEEE Trans. Autom. 2012, 57, 2746–2761. [Google Scholar] [CrossRef]
- Mayne, D.Q.; Seron, M.M.; Raković, S.V. Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 2005, 41, 219–224. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, Q.; Shi, Y. Trajectory tracking control of autonomous ground vehicles using adaptive learning MPC. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5554–5564. [Google Scholar] [CrossRef]
- Pin, G.; Parisini, T. Networked predictive control of uncertain constrained nonlinear systems: Recursive feasibility and input-to-state stability analysis. IEEE Trans. Autom. Control 2011, 56, 72–87. [Google Scholar] [CrossRef]
- Lorenzen, M.; Cannon, M.; Allgöwer, F. Robust MPC with Recursive Model Update. Automatica 2019, 103, 461–471. [Google Scholar] [CrossRef]
- Wang, R.; Li, H.; Liang, B.; Shi, Y.; Xu, D. Policy learning for nonlinear model predictive control with application to USVs. IEEE Trans. Ind. 2024, 71, 4089–4097. [Google Scholar] [CrossRef]
- Schubnel, B.; Carrillo, R.E.; Alet, P.-J.; Hutter, A. A hybrid learning method for system identification and optimal control. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4096–4110. [Google Scholar] [CrossRef] [PubMed]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157. [Google Scholar]
- Liang, H.; Li, H.; Shi, Y.; Constantinescu, D.; Xu, D. Energy-efficient integrated motion planning and control for unmanned surface vessels. IEEE Trans. Control Syst. Technol. 2023, 32, 250–257. [Google Scholar] [CrossRef]
- Song, Y.; Scaramuzza, D. Policy search for model predictive control with application to agile drone flight. IEEE Trans. Robot. 2022, 38, 2114–2130. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Yang, Q.; Li, H. Data-Driven MPC Scheme for Inertial Platform with Uncertain Systems Against External Vibrations. Electronics 2024, 13, 4945. https://doi.org/10.3390/electronics13244945
Zhao J, Yang Q, Li H. Data-Driven MPC Scheme for Inertial Platform with Uncertain Systems Against External Vibrations. Electronics. 2024; 13(24):4945. https://doi.org/10.3390/electronics13244945
Chicago/Turabian StyleZhao, Junhu, Qifan Yang, and Huiping Li. 2024. "Data-Driven MPC Scheme for Inertial Platform with Uncertain Systems Against External Vibrations" Electronics 13, no. 24: 4945. https://doi.org/10.3390/electronics13244945
APA StyleZhao, J., Yang, Q., & Li, H. (2024). Data-Driven MPC Scheme for Inertial Platform with Uncertain Systems Against External Vibrations. Electronics, 13(24), 4945. https://doi.org/10.3390/electronics13244945