A Survey of Advanced Materials and Technologies for Energy Harvesting from Roadways
Abstract
:1. Introduction
2. Review on Advanced Materials for Energy Harvesting from Roadways
2.1. Review on Ceramics
2.2. Review on Polymers
2.3. Review on Lead-Free Material
2.4. Review on Single Crystals
2.5. Review on Composites
- (a)
- The mechanical strength of the electrically induced polarized cement paste should be tested before use in building structures.
- (b)
- The durability performance of the electrically induced polarized cement paste is also an issue that warrants additional exploration.
- (c)
- The balance of energy consumed for electrical treatment and energy harvested by this cement composite should be examined and evaluated.
3. Review on Technologies for Harvesting Energy from Roadways
3.1. Piezoelectric
3.2. Thermoelectric
3.3. Electrostatic and Electromagnetic
3.4. Wind Energy
3.5. Triboelectric
3.6. Asphalt Solar Collector
4. Applications in Road Infrastructure
4.1. Road Light
4.2. Microelectromechanical System
4.3. Traffic Monitoring
5. Discussions
5.1. Challenges in Energy Harvesting from Roadways
5.2. Strengths of Energy Harvesting from Roadways
5.3. Most Promising Materials and Technologies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsang, F.; Rohr, C. The Impact of Migration on Transport and Congestion; Rand Corporation: Santa Monica, CA, USA, 2011. [Google Scholar]
- Karlsson, V. Transportation Improvement and Interregional Migration. Ph.D. Thesis, University of Iceland, Reykjavík, Iceland, 2012. [Google Scholar]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Luijkx, I.T.; Peters, G.P.; et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 2023, 15, 5301–5369. [Google Scholar] [CrossRef]
- NASA Earth Observatory. Emissions from Fossil Fuels Continue to Rise; NASA Earth Observatory: Washington, DC, USA, 2023. [Google Scholar]
- U.S. Department of Energy. At a Glance: Electric Vehicle; U.S. Department of Energy: Washington, DC, USA, 2023. [Google Scholar]
- Marquez-Fernandez, F.J.; Bischoff, J.; Domingues-Olavarria, G.; Alakula, M. Assessment of Future EV Charging Infrastructure Scenarios for Long-Distance Transport in Sweden. IEEE Trans. Transp. Electrif. 2022, 8, 615–626. [Google Scholar] [CrossRef]
- Rhodes, K.; Kok, D.; Sohoni, P.; Perry, E.; Kraska, M.; Wallace, M. Estimation of the Effects of Auxiliary Electrical Loads on Hybrid Electric Vehicle Fuel Economy; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Zuo, L.; Scully, B.; Shestani, J.; Zhou, Y. Design and Characterization of an Electromagnetic Energy Harvester for Vehicle Suspensions. Smart Mater. Struct. 2010, 19, 045003. [Google Scholar] [CrossRef]
- Wang, H.; Jasim, A.; Chen, X. Energy Harvesting Technologies in Roadway and Bridge for Different Applications—A Comprehensive Review. Appl. Energy 2018, 212, 1083–1094. [Google Scholar] [CrossRef]
- Zabihi, N.; Saafi, M. Recent Developments in the Energy Harvesting Systems from Road Infrastructures. Sustainability 2020, 12, 6738. [Google Scholar] [CrossRef]
- Qabur, A.; Alshammari, K. A Systematic Review of Energy Harvesting from Roadways by Using Piezoelectric Materials Technology. Innov. Energy Res. 2018, 7, 191. [Google Scholar] [CrossRef]
- Budharaju, H.; Suresh, S.; Sekar, M.P.; De Vega, B.; Sethuraman, S.; Sundaramurthi, D.; Kalaskar, D.M. Ceramic Materials for 3D Printing of Biomimetic Bone Scaffolds—Current State-of-the-Art & Future Perspectives. Mater. Des. 2023, 231, 112064. [Google Scholar] [CrossRef]
- Sharma, P.K.; Ounaies, Z.; Varadan, V.V.; Varadan, V.K. Dielectric and Piezoelectric Properties of Microwave Sintered PZT. Smart Mater. Struct. 2001, 10, 878–883. [Google Scholar] [CrossRef]
- Cui, K.; Lau, D.; Chang, J. Advancements in Energy Harvesting through Building Materials: A Critical Review. J. Build. Eng. 2024, 98, 111412. [Google Scholar] [CrossRef]
- Kumar, A.; Bhanu Prasad, V.V.; James Raju, K.C.; James, A.R. Optimization of Poling Parameters of Mechanically Processed PLZT 8/60/40 Ceramics Based on Dielectric and Piezoelectric Studies. Eur. Phys. J. B 2015, 88, 287. [Google Scholar] [CrossRef]
- Nosek, J.; Pustka, M. Determination of the Electromechanical Coupling Factor of Gallium Orthophosphate (GaPO/Sub 4/) and Its Influence on Resonance-Frequency Temperature Dependencies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Salazar, R.; Serrano, M.; Abdelkefi, A. Fatigue in Piezoelectric Ceramic Vibrational Energy Harvesting: A Review. Appl. Energy 2020, 270, 115161. [Google Scholar] [CrossRef]
- Li, T.; Lee, P.S. Piezoelectric Energy Harvesting Technology: From Materials, Structures, to Applications. Small Struct. 2022, 3, 2100128. [Google Scholar] [CrossRef]
- Zhou, Z.; Tang, H.; Sodano, H. Energy Harvesting Using Lead Zirconium Titanate-Based Ceramic Nanowires. Available online: https://www.sigmaaldrich.cn/CN/zh/technical-documents/technical-article/materials-science-and-engineering/solid-state-synthesis/energy-harvesting?srsltid=AfmBOopps7VkFRGJEzEu4v-rRvtIsR_erAQZDnzvdqAVQlCE0BHh5mjQ (accessed on 1 June 2024).
- Purahmad, M. Nanomaterials, Devices and Interface Circuits: Applications for Optoelectronic and Energy Harvesting. Ph.D. Thesis, University of Illinois at Chicago, Chicago, IL, USA, 2013. [Google Scholar]
- NREL (National Renewable Energy Laboratory). Best Research-Cell Efficiency Chart; NREL: Golden, CO, USA, 2020. [Google Scholar]
- Wang, C.; Zhao, J.; Li, Q.; Li, Y. Optimization Design and Experimental Investigation of Piezoelectric Energy Harvesting Devices for Pavement. Appl. Energy 2018, 229, 18–30. [Google Scholar] [CrossRef]
- Snyder, G.J. Thermoelectric Energy Harvesting. In Energy Harvesting Technologies; Springer: Boston, MA, USA, 2009; pp. 325–336. [Google Scholar] [CrossRef]
- Boisseau, S.; Despesse, G.; Ahmed, B. Electrostatic Conversion for Vibration Energy Harvesting. In Small-Scale Energy Harvesting; InTech: London, UK, 2012. [Google Scholar] [CrossRef]
- Thainiramit, P.; Yingyong, P.; Isarakorn, D. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters. Sensors 2020, 20, 5828. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Zou, X.; Liu, B.; Cheng, H.-M. Computational Design and Property Predictions for Two-Dimensional Nanostructures. Mater. Today 2018, 21, 391–418. [Google Scholar] [CrossRef]
- Al-Qadami, E.H.H.; Mustaffa, Z.; Al-Atroush, M.E. Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy. Energy 2022, 15, 1201. [Google Scholar] [CrossRef]
- Akin-Ponnle, A.E.; Carvalho, N.B. Energy Harvesting Mechanisms in a Smart City—A Review. Smart Cities 2021, 4, 476–498. [Google Scholar] [CrossRef]
- Sathyanarayanan, R.; Muthamizh, S.; Giriramprasath, C.; Gopinath, K.T. Highway Windmill. In Proceedings of the 2011 IEEE 3rd International Conference on Communication Software and Networks, Xi’an, China, 27–29 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 343–347. [Google Scholar] [CrossRef]
- Rodrigues, C.; Nunes, D.; Clemente, D.; Mathias, N.; Correia, J.M.; Rosa-Santos, P.; Taveira-Pinto, F.; Morais, T.; Pereira, A.; Ventura, J. Emerging Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: State of the Art and Future Perspectives. Energy Environ. Sci. 2020, 13, 2657–2683. [Google Scholar] [CrossRef]
- Fukada, E. Bioelectrets and Biopiezoelectricity. IEEE Trans. Electr. Insul. 1992, 27, 813–819. [Google Scholar] [CrossRef]
- Sun, M.; Li, Z.; Song, X. Piezoelectric Effect of Hardened Cement Paste. Cem. Concr. Compos. 2004, 26, 717–720. [Google Scholar] [CrossRef]
- Yang, Z.; Zu, J. Comparison of PZN-PT, PMN-PT Single Crystals and PZT Ceramic for Vibration Energy Harvesting. Energy Convers. Manag. 2016, 122, 321–329. [Google Scholar] [CrossRef]
- Andriopoulou, S. A Review on Energy Harvesting from Roads. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2012. [Google Scholar]
- Buchanan, R.C. (Ed.) Ceramic Materials for Electronics; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Ye, J.; Ding, G.; Wu, X.; Zhou, M.; Wang, J.; Chen, Y.; Yu, Y. Development and Performance Research of PSN-PZT Piezoelectric Ceramics Based on Road Vibration Energy Harvesting Technology. Mater. Today Commun. 2023, 34, 105135. [Google Scholar] [CrossRef]
- Park, S.-E.; Shrout, T.R. Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals. J. Appl. Phys. 1997, 82, 1804–1811. [Google Scholar] [CrossRef]
- Park, Y.; Majzoubi, M.; Zhang, Y.; Scholehwar, T.; Hennig, E.; Uchino, K. Analytical Modeling of k33 Mode Partial Electrode Configuration for Loss Characterization. J. Appl. Phys. 2020, 127, 204102. [Google Scholar] [CrossRef]
- Cramer, C.L.; Ionescu, E.; Graczyk-Zajac, M.; Nelson, A.T.; Katoh, Y.; Haslam, J.J.; Wondraczek, L.; Aguirre, T.G.; LeBlanc, S.; Wang, H.; et al. Additive Manufacturing of Ceramic Materials for Energy Applications: Road Map and Opportunities. J. Eur. Ceram. Soc. 2022, 42, 3049–3088. [Google Scholar] [CrossRef]
- Sanchez Caceres, J.A.; Cardoso Passos, C.A. Effect of Er Ion Substitution on the Micro-Structural and Electrical Properties Using a Polymeric Precursor Method in PZT52/48 Ceramics. J. Phys. Chem. Solids 2022, 160, 110375. [Google Scholar] [CrossRef]
- Heywang, W.; Lubitz, K.; Wersing, W. Piezoelectricity; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Swartz, S.L. Topics in Electronic Ceramics. IEEE Trans. Electr. Insul. 1990, 25, 935–987. [Google Scholar] [CrossRef]
- Niu, R.K.; Li, D.H.; Zhao, Q.B.; Wang, Y.L.; Xu, X. Vibration Characteristics of Piezoelectric Ceramic Elements with Large Anisotropy and Their Application in Ultrasonic Probes. Strength. Mater. 2023, 55, 834–840. [Google Scholar] [CrossRef]
- Tan, G.; Maruyama, K.; Kanamitsu, Y.; Nishioka, S.; Ozaki, T.; Umegaki, T.; Hida, H.; Kanno, I. Crystallographic Contributions to Piezoelectric Properties in PZT Thin Films. Sci. Rep. 2019, 9, 7309. [Google Scholar] [CrossRef]
- Niemiec, P.; Bochenek, D.; Dercz, G. Electrophysical Properties of PZT-Type Ceramics Obtained by Two Sintering Methods. Appl. Sci. 2023, 13, 11195. [Google Scholar] [CrossRef]
- Tiwari, B.; Babu, T.; Choudhary, R.N.P. Piezoelectric Lead Zirconate Titanate as an Energy Material: A Review Study. Mater. Today Proc. 2021, 43, 407–412. [Google Scholar] [CrossRef]
- Sezer, N.; Koç, M. A Comprehensive Review on the State-of-the-Art of Piezoelectric Energy Harvesting. Nano Energy 2021, 80, 105567. [Google Scholar] [CrossRef]
- Lupascu, D.C. Fatigue in Ferroelectric Ceramics and Related Issues; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
- Chen, J.; Garcia, E.S.; Zimmerman, S.C. Intramolecularly Cross-Linked Polymers: From Structure to Function with Applications as Artificial Antibodies and Artificial Enzymes. Acc. Chem. Res. 2020, 53, 1244–1256. [Google Scholar] [CrossRef]
- Kim, S.; Lee, G.S.; Shrout, T.R.; Venkataramani, S. Fabrication of Fine-Grain Piezoelectric Ceramics Using Reactive Calcination. J. Mater. Sci. 1991, 26, 4411–4415. [Google Scholar] [CrossRef]
- Guiffard, B.; Troccaz, M. Low Temperature Synthesis of Stoichiometric and Homogeneous Lead Zirconate Titanate Powder by Oxalate and Hydroxide Coprecipitation. Mater. Res. Bull. 1998, 33, 1759–1768. [Google Scholar] [CrossRef]
- Yi, G.; Sayer, M. An Acetic Acid/Water Based Sol-Gel PZT Process I: Modification of Zr and Ti Alkoxides with Acetic Acid. J. Solgel Sci. Technol. 1996, 6, 65–74. [Google Scholar] [CrossRef]
- Wang, S.; Bai, Y.; Zhang, T. Materials, Systems, and Devices for Wearable Bioelectronics. In Wearable Bioelectronics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–48. [Google Scholar] [CrossRef]
- Smith, M.; Kar-Narayan, S. Piezoelectric Polymers: Theory, Challenges and Opportunities. Int. Mater. Rev. 2022, 67, 65–88. [Google Scholar] [CrossRef]
- Kholkin, A.; Amdursky, N.; Bdikin, I.; Gazit, E.; Rosenman, G. Strong Piezoelectricity in Bioinspired Peptide Nanotubes. ACS Nano 2010, 4, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Fukada, E.; Yasuda, I. Piezoelectric Effects in Collagen. Jpn. J. Appl. Phys. 1964, 3, 117. [Google Scholar] [CrossRef]
- Fukada, E. Piezoelectricity as a Fundamental Property of Wood. Wood Sci. Technol. 1968, 2, 299–307. [Google Scholar] [CrossRef]
- Usher, T.D.; Cousins, K.R.; Zhang, R.; Ducharme, S. The Promise of Piezoelectric Polymers. Polym. Int. 2018, 67, 790–798. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Zhang, H.; Yu, J.X.; Huang, Z.Y.; Wang, C.; Sun, Y. Ferroelectric P(VDF-TrFE)/POSS Nanocomposite Films: Compatibility, Piezoelectricity, Energy Harvesting Performance, and Mechanical and Atomic Oxygen Erosion. RSC Adv. 2020, 10, 17377–17386. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, Z.-Y.; Olson, D.; Mai, T.; Zhang, Q.M.; Kavarnos, G. Ferroelectric and Electromechanical Properties of Poly(Vinylidene-Fluoride–Trifluoroethylene–Chlorotrifluoroethylene) Terpolymer. Appl. Phys. Lett. 2001, 78, 2360–2362. [Google Scholar] [CrossRef]
- Soulestin, T.; Ladmiral, V.; Dos Santos, F.D.; Améduri, B. Vinylidene Fluoride- and Trifluoroethylene-Containing Fluorinated Electroactive Copolymers. How Does Chemistry Impact Properties? Prog. Polym. Sci. 2017, 72, 16–60. [Google Scholar] [CrossRef]
- Terzic, I.; Meereboer, N.L.; Acuautla, M.; Portale, G.; Loos, K. Electroactive Materials with Tunable Response Based on Block Copolymer Self-Assembly. Nat. Commun. 2019, 10, 601. [Google Scholar] [CrossRef]
- Du, X.-H.; Zheng, J.; Belegundu, U.; Uchino, K. Crystal Orientation Dependence of Piezoelectric Properties of Lead Zirconate Titanate near the Morphotropic Phase Boundary. Appl. Phys. Lett. 1998, 72, 2421–2423. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Haibibu, A.; Xu, W.; Han, Z.; Lu, W.; Bernholc, J.; Wang, Q. Insights into the Morphotropic Phase Boundary in Ferroelectric Polymers from the Molecular Perspective. J. Phys. Chem. C 2019, 123, 8727–8730. [Google Scholar] [CrossRef]
- Jung, I.; Shin, Y.-H.; Kim, S.; Choi, J.; Kang, C.-Y. Flexible Piezoelectric Polymer-Based Energy Harvesting System for Roadway Applications. Appl. Energy 2017, 197, 222–229. [Google Scholar] [CrossRef]
- Zhou, J.-J.; Cheng, L.-Q.; Wang, K.; Zhang, X.-W.; Li, J.-F.; Liu, H.; Fang, J.-Z. Low-Temperature Sintering of (K,Na)NbO3-Based Lead-Free Piezoceramics with Addition of LiF. J. Eur. Ceram. Soc. 2014, 34, 1161–1167. [Google Scholar] [CrossRef]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-Free Piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Machado, S.P.; Febbo, M.; Rubio-Marcos, F.; Ramajo, L.A.; Castro, M.S. Evaluation of the Performance of a Lead-Free Piezoelectric Material for Energy Harvesting. Smart Mater. Struct. 2015, 24, 115011. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, A.; Kumar, R.; Vaish, R.; Chauhan, V.S. Finite Element Analysis of Vibration Energy Harvesting Using Lead-Free Piezoelectric Materials: A Comparative Study. J. Asian Ceram. Soc. 2014, 2, 139–143. [Google Scholar] [CrossRef]
- Stuber, V.L.; Deutz, D.B.; Bennett, J.; Cannel, D.; de Leeuw, D.M.; van der Zwaag, S.; Groen, P. Flexible Lead-Free Piezoelectric Composite Materials for Energy Harvesting Applications. Energy Technol. 2019, 7, 177–185. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-Based Nanomaterials in Gas Sensors. Solid. State Ion. 2021, 360, 115544. [Google Scholar] [CrossRef]
- Winkler, R.; Ciria, M.; Ahmad, M.; Plank, H.; Marcuello, C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. Nanomaterials 2023, 13, 2585. [Google Scholar] [CrossRef]
- Kim, S.; Ico, G.; Bai, Y.; Yang, S.; Lee, J.-H.; Yin, Y.; Myung, N.V.; Nam, J. Utilization of a Magnetic Field-Driven Microscopic Motion for Piezoelectric Energy Harvesting. Nanoscale 2019, 11, 20527–20533. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, P.T. Thermal Energy Harvesting and Solar Energy Conversion Utilizing Carbon-Based Nanomaterials. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2013. [Google Scholar]
- McCarty, T.A.; Sharma, J.P.; Palikhel, D. Harvesting Vibrational Energy Due to Intermodal Systems Via Nano Coated Piezo Electric Devices; Mississippi State University: Mississippi, MS, USA, 2015. [Google Scholar]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 2008, 320, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.G.; Lee, H.; Wang, D.Z.; Ren, Z.F.; Fleurial, J.-P.; Gogna, P. New Directions for Low-Dimensional Thermoelectric Materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Vineis, C.J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M.G. Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features. Adv. Mater. 2010, 22, 3970–3980. [Google Scholar] [CrossRef] [PubMed]
- Correa-Baena, J.-P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and Challenges of Perovskite Solar Cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef]
- Dou, B.; Whitaker, J.B.; Bruening, K.; Moore, D.T.; Wheeler, L.M.; Ryter, J.; Breslin, N.J.; Berry, J.J.; Garner, S.M.; Barnes, F.S.; et al. Roll-to-Roll Printing of Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 2558–2565. [Google Scholar] [CrossRef]
- Sargent, E.H. Colloidal Quantum Dot Solar Cells. Nat. Photonics 2012, 6, 133–135. [Google Scholar] [CrossRef]
- Smets, A.; Jäger, K.; Isabella, O.; van Swaaij, R.; Zeman, M. Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems; Bloomsbury Publishing: London, UK, 2016. [Google Scholar]
- Kumar, P. Piezo-Smart Roads. Int. J. Enhanc. Res. Sci. Technol. Eng. 2013, 2, 65–70. [Google Scholar]
- Bhattacharjee, S.; Batra, A.K.; Cain, J. Energy Harvesting from Pavements Using Pyroelectric Single Crystal and Nano-Composite Based Smart Materials. In Transportation and Development Institute Congress 2011; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 741–750. [Google Scholar] [CrossRef]
- Batra, A.K. Simulation of Energy Harvesting from Roads via Pyroelectricity. J. Photonics Energy 2011, 1, 014001. [Google Scholar] [CrossRef]
- Uchino, K. Piezoelectric Composite Materials. In Advanced Piezoelectric Materials; Elsevier: Amsterdam, The Netherlands, 2010; pp. 318–346. [Google Scholar] [CrossRef]
- Wen, S.; Chung, D.D.L. Cement-Based Materials for Stress Sensing by Dielectric Measurement. Cem. Concr. Res. 2002, 32, 1429–1433. [Google Scholar] [CrossRef]
- Wen, S.; Chung, D.D.L. Piezoelectric Cement-Based Materials with Large Coupling and Voltage Coefficients. Cem. Concr. Res. 2002, 32, 335–339. [Google Scholar] [CrossRef]
- Han, R.; Shi, Z. Dynamic Analysis of Sandwich Cement-Based Piezoelectric Composites. Compos. Sci. Technol. 2012, 72, 894–901. [Google Scholar] [CrossRef]
- Potong, R.; Rianyoi, R.; Ngamjarurojana, A.; Chaipanich, A. Dielectric and Piezoelectric Properties of 1–3 Non-Lead Barium Zirconate Titanate-Portland Cement Composites. Ceram. Int. 2013, 39, S53–S57. [Google Scholar] [CrossRef]
- Lertcumfu, N.; Pengpat, K.; Eitssayeam, S.; Tunkasiri, T.; Rujijanagul, G. Electrical Properties of BZT/Mullite Ceramic Composites. Ceram. Int. 2015, 41, S447–S452. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, Q.; Han, Y.; Lau, D. Piezoelectric Materials for Sustainable Building Structures: Fundamentals and Applications. Renew. Sustain. Energy Rev. 2019, 101, 14–25. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Li, Q.J.; Wang, X.; Gao, Z.; Zhang, L. Fabrication and Performance of a Power Generation Device Based on Stacked Piezoelectric Energy-Harvesting Units for Pavements. Energy Convers. Manag. 2018, 163, 196–207. [Google Scholar] [CrossRef]
- Zhang, T.; Barry, R.G.; Gilichinsky, D.; Bykhovets, S.S.; Sorokovikov, V.A.; Ye, J. An Amplified Signal of Climatic Change in Soil Temperatures during the Last Century at Irkutsk, Russia. Clim. Change 2001, 49, 41–76. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.-H.; Kim, J. A Review of Piezoelectric Energy Harvesting Based on Vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Wang, H.; Jasim, A. Piezoelectric Energy Harvesting from Pavement. In Eco-Efficient Pavement Construction Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 367–382. [Google Scholar] [CrossRef]
- Priya, S. Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers. J. Electroceram 2007, 19, 167–184. [Google Scholar] [CrossRef]
- Amaro, P.; Santos, F. Specific Topologies and Circuits: Challenges in Low Power. In Encyclopedia of Electrical and Electronic Power Engineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 130–140. [Google Scholar] [CrossRef]
- Rashmi, M.R.; Trilok Sairam, K.; Suresh, A. Energy Harvesting through Piezoelectric Technology. Mater. Today Proc. 2023. (available online 2 August 2023). [Google Scholar] [CrossRef]
- Li, H.; Tian, C.; Deng, Z.D. Energy Harvesting from Low Frequency Applications Using Piezoelectric Materials. Appl. Phys. Rev. 2014, 1, 041301. [Google Scholar] [CrossRef]
- Elliott, A.D.T.; Miller, L.M.; Halvorsen, E.; Wright, P.K.; Mitcheson, P.D. Which Is Better, Electrostatic or Piezoelectric Energy Harvesting Systems? J. Phys. Conf. Ser. 2015, 660, 012128. [Google Scholar] [CrossRef]
- Møller, H.; Pedersen, C.S. Hearing at Low and Infrasonic Frequencies. Noise Health 2004, 6, 37–57. [Google Scholar]
- Tang, L.; Yang, Y.; Soh, C.K. Toward Broadband Vibration-Based Energy Harvesting. J. Intell. Mater. Syst. Struct. 2010, 21, 1867–1897. [Google Scholar] [CrossRef]
- Pepe, G.; Doria, A.; Roveri, N.; Carcaterra, A. Vibration Energy Harvesting for Cars: Semi-Active Piezo Controllers. Arch. Appl. Mech. 2023, 93, 663–685. [Google Scholar] [CrossRef]
- Crossley, S.; Whiter, R.A.; Kar-Narayan, S. Polymer-Based Nanopiezoelectric Generators for Energy Harvesting Applications. Mater. Sci. Technol. 2014, 30, 1613–1624. [Google Scholar] [CrossRef]
- Kumari, N.; Rakotondrabe, M. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations. Micromachines 2021, 12, 1537. [Google Scholar] [CrossRef] [PubMed]
- Muralt, P. Pyroelectricity. In Encyclopedia of Condensed Matter Physics; Elsevier: Amsterdam, The Netherlands, 2005; pp. 441–448. [Google Scholar] [CrossRef]
- Fernández-Yáñez, P.; Romero, V.; Armas, O.; Cerretti, G. Thermal Management of Thermoelectric Generators for Waste Energy Recovery. Appl. Therm. Eng. 2021, 196, 117291. [Google Scholar] [CrossRef]
- Kiziroglou, M.E.; Yeatman, E.M. Materials and Techniques for Energy Harvesting. In Functional Materials for Sustainable Energy Applications; Elsevier: Amsterdam, The Netherlands, 2012; pp. 541–572. [Google Scholar] [CrossRef]
- Hudak, N.S.; Amatucci, G.G. Small-Scale Energy Harvesting through Thermoelectric, Vibration, and Radiofrequency Power Conversion. J. Appl. Phys. 2008, 103, 101301. [Google Scholar] [CrossRef]
- Jiang, W.; Xiao, J.; Yuan, D.; Lu, H.; Xu, S.; Huang, Y. Design and Experiment of Thermoelectric Asphalt Pavements with Power-Generation and Temperature-Reduction Functions. Energy Build. 2018, 169, 39–47. [Google Scholar] [CrossRef]
- Kishore, R.A.; Priya, S. A Review on Low-Grade Thermal Energy Harvesting: Materials, Methods and Devices. Materials 2018, 11, 1433. [Google Scholar] [CrossRef] [PubMed]
- Zabek, D.A. Pyroelectric Structures and Devices for Thermal Energy Harvesting. Ph.D. Thesis, University of Bath, Bath, UK, 2016. [Google Scholar]
- Boisseau, S.; Despesse, G.; Monfray, S.; Puscasu, O.; Skotnicki, T. Semi-Flexible Bimetal-Based Thermal Energy Harvesters. Smart Mater. Struct. 2013, 22, 025021. [Google Scholar] [CrossRef]
- Ji, T.; Zhang, S.; He, Y.; Zhang, X.; Zhang, X.; Li, W. Enhanced Thermoelectric Property of Cement-Based Materials with the Synthesized MnO2/Carbon Fiber Composite. J. Build. Eng. 2021, 43, 103190. [Google Scholar] [CrossRef]
- Song, J.; Xia, C.; Shan, G.; Wang, Z.; Ono, T.; Cheng, G.; Wang, D.F. Temperature Sensing and Energy Harvesting with A MEMS Parametric Coupling Device under Low Frequency Vibrations. J. Sound. Vib. 2024, 585, 118456. [Google Scholar] [CrossRef]
- Singh, V.P.; Kumar, M.; Srivastava, R.S.; Vaish, R. Thermoelectric Energy Harvesting Using Cement-Based Composites: A Review. Mater. Today Energy 2021, 21, 100714. [Google Scholar] [CrossRef]
- Park, K.T.; Kim, H.G.; Kim, J.-S.; Woo, B.-H. Improving the Thermoelectric Performance of Cement Composites by Substituting Fine Aggregate with Silicon Carbide. Constr. Build. Mater. 2024, 416, 135068. [Google Scholar] [CrossRef]
- Wei, J.; Wang, Y.; Li, X.; Jia, Z.; Qiao, S.; Zhang, Q.; Du, J. Effect of Porosity and Crack on the Thermoelectric Properties of Expanded Graphite/Carbon Fiber Reinforced Cement-based Composites. Int. J. Energy Res. 2020, 44, 6885–6893. [Google Scholar] [CrossRef]
- Cao, X. A Power Road by Harvesting Electromagnetic Energy from Moving Object. Nano Energy 2023, 112, 108486. [Google Scholar] [CrossRef]
- Duval, C.; Gibbons, G.; Horváthy, P. Celestial Mechanics, Conformal Structures, and Gravitational Waves. Phys. Rev. D 1991, 43, 3907–3922. [Google Scholar] [CrossRef] [PubMed]
- Gholikhani, M.; Amid Tahami, S.; Dessouky, S. Harvesting Energy from Pavement—Electromagnetic Approach. MATEC Web Conf. 2019, 271, 06001. [Google Scholar] [CrossRef]
- Duarte, F.J.J. Pavement Energy Harvesting System to Convert Vehicles Kinetic Energy into Electricity. Ph.D. Thesis, Universidade de Coimbra, Coimbra, Portugal, 2017. [Google Scholar]
- Kumar, M.; Kumar, K.; Rana, R. Wind Energy Generation from Traffic Movement. DU J. Undergrad. Res. Innov. 2016, 2, 116. [Google Scholar]
- Müller, G.; Jentsch, M.F.; Stoddart, E. Vertical Axis Resistance Type Wind Turbines for Use in Buildings. Renew. Energy 2009, 34, 1407–1412. [Google Scholar] [CrossRef]
- Bhutta, M.M.A.; Hayat, N.; Farooq, A.U.; Ali, Z.; Jamil, S.R.; Hussain, Z. Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques. Renew. Sustain. Energy Rev. 2012, 16, 1926–1939. [Google Scholar] [CrossRef]
- Guo, L.; Wang, H. Non-Intrusive Movable Energy Harvesting Devices: Materials, Designs, and Their Prospective Uses on Transportation Infrastructures. Renew. Sustain. Energy Rev. 2022, 160, 112340. [Google Scholar] [CrossRef]
- Tan, Y.K.; Panda, S.K. A Novel Piezoelectric Based Wind Energy Harvester for Low-Power Autonomous Wind Speed Sensor. In Proceedings of the IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 2175–2180. [Google Scholar] [CrossRef]
- Xie, M.; Zabek, D.; Bowen, C.; Abdelmageed, M.; Arafa, M. Wind-Driven Pyroelectric Energy Harvesting Device. Smart Mater. Struct. 2016, 25, 125023. [Google Scholar] [CrossRef]
- Sirohi, J.; Mahadik, R. Piezoelectric Wind Energy Harvester for Low-Power Sensors. J. Intell. Mater. Syst. Struct. 2011, 22, 2215–2228. [Google Scholar] [CrossRef]
- Han, F.; Bandarkar, A.W.; Sozer, Y. Energy Harvesting from Moving Vehicles on Highways. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; IEEE: Piscataway, NJ, USA; pp. 974–978. [Google Scholar] [CrossRef]
- Liew, H.F.; Baharuddin, I.; Rosemizi, A.R.; Muzamir, I.; Hassan, S.I.S. Review of Feasibility Wind Turbine Technologies for Highways Energy Harvesting. J. Phys. Conf. Ser. 2020, 1432, 012059. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, A.C. On the Origin of Contact-Electrification. Mater. Today 2019, 30, 34–51. [Google Scholar] [CrossRef]
- De Fazio, R.; De Giorgi, M.; Cafagna, D.; Del-Valle-Soto, C.; Visconti, P. Energy Harvesting Technologies and Devices from Vehicular Transit and Natural Sources on Roads for a Sustainable Transport: State-of-the-Art Analysis and Commercial Solutions. Energy 2023, 16, 3016. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, J.H.; Kim, J.K.; Jeong, U. Material Aspects of Triboelectric Energy Generation and Sensors. NPG Asia Mater. 2020, 12, 6. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, Z. Fundamental Theories and Basic Principles of Triboelectric Effect: A Review. Friction 2019, 7, 2–17. [Google Scholar] [CrossRef]
- Xu, C.; Zi, Y.; Wang, A.C.; Zou, H.; Dai, Y.; He, X.; Wang, P.; Wang, Y.; Feng, P.; Li, D.; et al. On the Electron-Transfer Mechanism in the Contact-Electrification Effect. Adv. Mater. 2018, 30, e1706790. [Google Scholar] [CrossRef] [PubMed]
- Bobes-Jesus, V.; Pascual-Muñoz, P.; Castro-Fresno, D.; Rodriguez-Hernandez, J. Asphalt Solar Collectors: A Literature Review. Appl. Energy 2013, 102, 962–970. [Google Scholar] [CrossRef]
- Saad, H.E.; Kaddah, K.S.; Sliem, A.A.; Rafat, A.; Hewhy, M.A. The Effect of the Environmental Parameters on the Performance of Asphalt Solar Collector. Ain Shams Eng. J. 2019, 10, 791–800. [Google Scholar] [CrossRef]
- Hasebe, M.; Kamikawa, Y.; Meiarashi, S. Thermoelectric Generators Using Solar Thermal Energy in Heated Road Pavement. In Proceedings of the 2006 25th International Conference on Thermoelectrics, Vienna, Austria, 6–10 August 2006; IEEE: Piscataway, NJ, USA; pp. 697–700. [Google Scholar] [CrossRef]
- Chen, M.; Wu, S.; Wang, H.; Zhang, J. Study of Ice and Snow Melting Process on Conductive Asphalt Solar Collector. Sol. Energy Mater. Sol. Cells 2011, 95, 3241–3250. [Google Scholar] [CrossRef]
- Matrawy, K.K.; Farkas, I. Comparison Study for Three Types of Solar Collectors for Water Heating. Energy Convers. Manag. 1997, 38, 861–869. [Google Scholar] [CrossRef]
- Eugster, W.J. Road and Bridge Heating using Geothermal Energy. Overview and Examples. In Proceedings European Geothermal Congress; Unterhaching: Upper Bavaria, Germany, 2007. [Google Scholar]
- Lund, J.W. Pavement Snow Melting; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2005. [Google Scholar]
- van Bijsterveld, W.T.; Houben, L.J.M.; Scarpas, A.; Molenaar, A.A.A. Using Pavement as Solar Collector: Effect on Pavement Temperature and Structural Response. Transp. Res. Rec. J. Transp. Res. Board. 2001, 1778, 140–148. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, D.; Xu, S.; Hu, H.; Xiao, J.; Sha, A.; Huang, Y. Energy Harvesting from Asphalt Pavement Using Thermoelectric Technology. Appl. Energy 2017, 205, 941–950. [Google Scholar] [CrossRef]
- Gholikhani, M.; Nasouri, R.; Tahami, S.A.; Legette, S.; Dessouky, S.; Montoya, A. Harvesting Kinetic Energy from Roadway Pavement through an Electromagnetic Speed Bump. Appl. Energy 2019, 250, 503–511. [Google Scholar] [CrossRef]
- Akolpoglu, M.B.; Bozuyuk, U.; Erkoc, P.; Kizilel, S. Biosensing–Drug Delivery Systems for In Vivo Applications. In Advanced Biosensors for Health Care Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 249–262. [Google Scholar] [CrossRef]
- Ennawaoui, C.; Lifi, H.; Hajjaji, A.; Azim, A.-E.; Elballouti, A.; Rguiti, M. New System to Harvest Road Energy Using Piezoelectric Polymers. Sens. Lett. 2018, 16, 41–47. [Google Scholar] [CrossRef]
- Papagiannakis, A.T.; Dessouky, S.; Montoya, A.; Roshani, H. Energy Harvesting from Roadways. Procedia Comput. Sci. 2016, 83, 758–765. [Google Scholar] [CrossRef]
Material | Advantages | Disadvantages |
---|---|---|
KNN-LS-CT |
|
|
BNKLBT |
|
|
Material | Observation | Reference |
---|---|---|
Piezoelectricity of hardened cement paste | The piezoelectric effect is still modest since cement paste is not a fully crystalline substance. | [32] |
Carbon fiber | The amount of carbon fiber used influences the performance of piezoelectric. Carbon fiber concentration <1% reduces piezoelectric properties. Conversely, if it is >1%, the charge movement will be more effective under mechanical strain, improving the piezoelectric attributes. | [87] |
Steel fiber | The compressive stress raises the relative dielectric constant of cement paste and steel fibers, whereas integrating steel fibers reduces the piezoelectric coupling coefficient. | [88] |
Cement-based piezoelectric ceramic composite | This substance is a blend of PZT and cement that creates a novel composite. It has outstanding piezoelectric properties; nonetheless, the substance is hazardous to the environment, and long-term aging is a concern. | [89,90] |
Lead-free barium zirconate titanate–Portland cement composites | It possesses a high dielectric constant, low loss tangent, and outstanding piezoelectric and electro strictive characteristics. | [91] |
Source of Vibration | Frequency (Hz) |
---|---|
Human walking | 2–3 |
Car instrument panel | 13 |
HVAC vents in building | 60 |
Kitchen blender | 121 |
Clothes dryer | 121 |
Car engine compartment | 200 |
Refrigerator | 240 |
Advantages | Disadvantages |
---|---|
Low cost | Low capacitances |
High voltages | AC high voltages |
Compatible | The substrate used to deposit thermoelectrics creates a thermal short, lowering efficiency |
Maintenance-free operation | Tends to overheat, which may reduce the durability of the system |
Criteria | Piezoelectric | Electrostatic | Electromagnetic |
---|---|---|---|
Advantages |
|
|
|
Disadvantages |
|
|
|
Application | Small scale (<1–10 cm3) | Small scale (<1–10 cm3) | Large device (>10 cm3) |
Category | VAWT | Piezoelectric-Based Wind Turbines | Pyroelectric-Based Wind Turbines |
---|---|---|---|
Function | Capture wind energy | Capture wind energy and detect an upcoming storm [128] | Capture two types of energy (wind and temperature differences) [129] |
Maximum power output | 36 kW under 15 m/s wind speed [125] | 53 mW under 5.2 m/s wind speed [130] | 6 to 9 V under 1.1 to 1.5 m/s wind speed [129] |
Size | 5 × 8 cm [125] | 16 × 25 cm [130] | N/A |
Category | SUV | Sedan | Truck | Van |
---|---|---|---|---|
Peak velocity (m/s) | 2 | 1.6 | 8 | 2 |
Boost (m/s) | 5.35 | 4.95 | 11.35 | 5.35 |
Weaken (m/s) | −1.35 | −1.75 | 4.65 | −1.35 |
Peak power (W) | 54.4 | 43.1 | 519.3 | 54.4 |
Advantages | Disadvantages |
---|---|
Simple and easy to construct | Low current and power |
Low-cost | High internal resistance |
Small displacement requirement | High output voltage to manage in the circuit design |
Energy density is proportional to pressing frequency | Electrical output depends on the environmental conditions |
Advantages | Disadvantages | References |
---|---|---|
Reduces pavement temperature | Weather-dependent | [9,143] |
High energy output | High installation cost | |
Can be installed at any time (during construction of new infrastructure or maintenance) | Hot mix asphalt can cause damage to the pipe system | [138,144] |
Has a better land management since the system is embedded underground | The pipe system is vulnerable to high traffic loads | [138,145] |
Materials | Ceramics | Polymers | Lead Free |
---|---|---|---|
Examples | PZT, AIN, GaPO4, and BaTiO3 | PVDF, P(VDF-TrFE), PLLA, and odd-numbers Nylons | ZnO, KNN, BT and BNT, KNL-(NTS)Mo, KNN-LS-CT, BNKLBT, and KNLN/PDMS |
Advantages |
|
|
|
Limitations |
|
|
|
Applications | Energy harvesters, microelectromechanical systems, capacitors, and ferroelectric memory | Energy harvesters | Energy harvesters and ultrasonic transducers |
References | [11,17,18,39,46] | [11,18,54,58] | [16,40,41,42,43,44] |
Materials | Nanomaterials | Single Crystals | Composites |
Examples | ZnO and ZnO-NWs | PMN-PT, PZN-PT, and LiTaO3 | Hardened cement paste, carbon and steel fiber, cement-based PZT composite, and lead-free barium zirconate titanate–Portland cement composites |
Advantages |
|
|
|
Limitations | Low piezoelectric characteristics |
|
|
Applications | Energy harvesters and many sensing application, such as gas sensors | Household motion detectors and energy harvesters | Energy harvesters and capacitors |
References | [43,45,46,47] | [9,58,59,60,61] | [63,64,65,66,67,68] |
References/Sources/Technologies | Examples | Disadvantages | Advantages |
---|---|---|---|
[94,95,100,102]/Wind/Wind energy | VAWT, piezoelectric-based wind turbines, pyroelectric-based wind turbines |
|
|
[23,114]/Thermal/Thermoelectric | Seebeck generator and several piezoelectric materials such as PMN-PT, PZT, and PVD |
|
|
[22,47,100,104]/Vibration/Piezoelectric | PZT and PVDF |
|
|
[24]/Vibration and Oscillation/Electrostatic and Electromagnetic | Capacitance (electrostatic) and speed bump (electromagnetic) | Electrostatic:
| Electrostatic:
|
[25]/Repetitive contact and separation action (polarity of material)/Triboelectric | Positive charges: glass, household salt, silk, steel, paper, and cottonNegative charges: PET, PE, Kapton, gold, silver, copper |
|
|
[7,110,113,114,115,116,117]/Thermal transfer/Asphalt collector | Not applicable |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chua, Y.S.; Kim, Y.; Li, M.; Aventian, G.D.; Satyanaga, A. A Survey of Advanced Materials and Technologies for Energy Harvesting from Roadways. Electronics 2024, 13, 4946. https://doi.org/10.3390/electronics13244946
Chua YS, Kim Y, Li M, Aventian GD, Satyanaga A. A Survey of Advanced Materials and Technologies for Energy Harvesting from Roadways. Electronics. 2024; 13(24):4946. https://doi.org/10.3390/electronics13244946
Chicago/Turabian StyleChua, Yuan Shen, Yongmin Kim, Minghui Li, Gerarldo Davin Aventian, and Alfrendo Satyanaga. 2024. "A Survey of Advanced Materials and Technologies for Energy Harvesting from Roadways" Electronics 13, no. 24: 4946. https://doi.org/10.3390/electronics13244946
APA StyleChua, Y. S., Kim, Y., Li, M., Aventian, G. D., & Satyanaga, A. (2024). A Survey of Advanced Materials and Technologies for Energy Harvesting from Roadways. Electronics, 13(24), 4946. https://doi.org/10.3390/electronics13244946