Beneficial Effects of Self-Motion for the Continuous Phase Analysis of Ac-Coupled Doppler Radars
Abstract
:1. Introduction
2. Analysis of Target Detection with Moving Radar
3. Continuous Phase History Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yavari, E.; Lubecke, V.; Borić-Lubecke, O. Ac/dc coupling effects on CW and pulse transmission modes in Doppler radar physiological monitoring system. In Proceedings of the 2012 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Santa Clara, CA, USA, 15–18 January 2012; pp. 25–28. [Google Scholar] [CrossRef]
- Droitcour, A.D.; Borić-Lubecke, O.; Lubecke, V.M.; Lin, J.; Kovacs, G.T.A. Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring. IEEE Trans. Microw. Theory Tech. 2004, 52, 838–848. [Google Scholar] [CrossRef]
- Vergara, A.M.; Borić-Lubecke, O.; Lubecke, V.M. Dc information preservation for cardiopulmonary monitor utilizing CW doppler radar. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 1246–1249. [Google Scholar] [CrossRef]
- Cardillo, E.; Sapienza, G.; Ferro, L.; Li, C.; Caddemi, A. Radar assistive system for people with neurodegenerative disorders through head motion and eyes blinking detection. In Proceedings of the International Microwave Symposium (IMS), San Diego, CA, USA, 11–16 June 2023. [Google Scholar] [CrossRef]
- Cardillo, E.; Ferro, L.; Li, C. Microwave and millimeter-wave radar circuits for the next generation contact-less in-cabin detection. In Proceedings of the Asia-Pacific Microwave Conference APMC’22, Yokohama, Japan, 29 November–2 December 2022; pp. 231–233. [Google Scholar] [CrossRef]
- Cardillo, E.; Ferro, L.; Sapienza, G.; Li, C. Reliable eye-blinking detection with millimeter-wave radar glasses. IEEE Trans. Microw. Theory Tech. 2024, 72, 771–779. [Google Scholar] [CrossRef]
- Dahlbäck, R.; Bryllert, T.; Granström, G.; Ferndahl, M.; Drakinskiy, V.; Stake, J. Compact 340 GHz homodyne transceiver modules for FMWC imaging radar arrays. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Arab, H.; Dufour, S.; Moldovan, E.; Akyel, C.; Tatu, S.O. A 77-GHz six-port sensor for accurate near-field displacement and Doppler measurements. Sensors 2018, 18, 2565. [Google Scholar] [CrossRef] [PubMed]
- Obradović, D.V.; Glavonjić, Ð.P.; Krčum, D.P.; Mihajlović, V.R.; Milosavljević, I.M. A highly programmable 60-dB gain analog baseband circuit with DC-offset cancellation for short-range FMCW radar applications. Analog Integr. Circ. Sig. Process 2020, 104, 299–309. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, L.; Wang, Y. A PVT-robust analog baseband with DC offset cancellation for FMCW automotive radar. IEEE Access 2019, 7, 43249–43257. [Google Scholar] [CrossRef]
- Lee, I.-S.; Park, J.-H.; Yang, J.-R. Detrending technique for denoising in CW radar. Sensors 2021, 21, 6376. [Google Scholar] [CrossRef] [PubMed]
- Juan, P.-H.; Chen, K.-H.; Wang, F.-K. Frequency-offset self-injection-locked radar with digital frequency demodulation for SNR improvement, elimination of EMI issue, and DC offset calibration. IEEE Trans. Microw. Theory Tech. 2021, 69, 1149–1160. [Google Scholar] [CrossRef]
- Michler, F.; Schoenhaerl, S.; Schellenberger, S.; Shi, K.; Scheiner, B.; Lurz, F.; Weigel, R.; Koelpin, A. An automatic gain and offset control circuit for DC-coupled continuous-wave radar systems. In Proceedings of the 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020; pp. 980–983. [Google Scholar] [CrossRef]
- Park, B.-K.; Boric-Lubecke, O.; Lubecke, V.M. Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems. IEEE Trans. Microw. Theory Tech. 2007, 55, 1073–1079. [Google Scholar] [CrossRef]
- Kontou, P.; Smida, S.B.; Dragone, M.; Nikolaou, S.; Anagnostou, D.E. CW radar based system with automated DC offset reduction for heartbeat detection. In Proceedings of the 2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium), Montreal, QC, Canada, 5–10 July 2020; pp. 73–74. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, D.K. Experimental characterization process of DC-offset performance for multiple CW Doppler radar. In Proceedings of the 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), JeJu, Republic of Korea, 23–26 June 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Yang, Z.-P.; Chiang, Y.-C. Vital signal radar with adaptive compensation circuits to effectively eliminate DC Offsets. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 88–90. [Google Scholar] [CrossRef]
- Lubecke, V.; Borić-Lubecke, O.; Ishrak, M.S.; Wu, T.; Cai, F. Radar Monitoring in Sleep Medicine. In Proceedings of the 16th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), Nis, Serbia, 25–27 October 2023; pp. 109–113. [Google Scholar] [CrossRef]
- Gu, C.; Li, R.; Zhang, H.; Fung, A.Y.; Torres, C.; Jiang, S.B.; Li, C. Accurate respiration measurement using dc-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy. IEEE Trans. Biomed. Eng. 2012, 59, 3117–3123. [Google Scholar] [CrossRef] [PubMed]
- Ferro, L.; Scandurra, G.; Li, C.; Cardillo, E. Robust Doppler displacement measurement resolving the uncertainty during target stationary moment. In Proceedings of the IEEE Radio & Wireless Week (RWW2024), San Antonio, TX, USA, 21–24 January 2024; pp. 57–60. [Google Scholar]
- Islam, S.M.M.; Oba, L.; Lubecke, V.M. Empirical Mode Decomposition (EMD) for platform motion compensation in remote life sensing radar. In Proceedings of the 2022 IEEE Radio and Wireless Symposium (RWS), Las Vegas, NV, USA, 16–19 January 2022; pp. 41–44. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Lubecke, L.C.; Grado, C.; Lubecke, V.M. An adaptive filter technique for platform motion compensation in unmanned aerial vehicle based remote life sensing radar. In Proceedings of the 2020 50th European Microwave Conference (EuMC), Utrecht, Netherlands, 12–14 January 2021; pp. 937–940. [Google Scholar] [CrossRef]
- Cardillo, E.; Li, C.; Caddemi, A. Vital sign detection and radar self-motion cancellation through clutter identification. IEEE Trans. Microw. Theory Tech. 2021, 69, 1932–1942. [Google Scholar] [CrossRef]
- Chordas-Ewell, N.; Xu, K.; Kadlimatti, R.; Fam, A.T.; Choi, J.H. Vibrating antenna Doppler radar. In Proceedings of the 17th European Radar Conference (EuRAD), Utrecht, Netherlands, 10–15 January 2021; pp. 242–245. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.D.; Amin, M.G. Target localization in moving radar platform exploiting range and Doppler information through semidefinite relaxation. In Proceedings of the Wireless Sensing, Localization, and Processing V SPIE 7706, Orlando, FL, USA, 28 April 2010. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Yao, S.; Li, P.; Yin, K.; Wu, Q. Harmonic suppression phase gradient demodulation for vital sign monitoring. IEEE Trans. Instrum. Meas. 2024, 73, 4000716. [Google Scholar] [CrossRef]
- Sameera, J.N.; Ishrak, M.S.; Lubecke, V.M.; Boric-Lubecke, O. Enhancing beat-to-beat analysis of heart signals with respiration harmonics reduction through demodulation and template matching. IEEE Trans. Microw. Theory Tech. 2024, 72, 750–758. [Google Scholar] [CrossRef]
- Indie Semiconductor; Silicon Radar GmBH. DatasheetˍTRAˍ120ˍ002 120-GHz Highly Integrated IQ Transceiver with Antennas on Chip in Silicon Germanium Technology, Revision 0.8; Silicon Radar GmBH: Frankfurt, Germany, 2018.
- Zhou, M.; Liu, Y.; Wu, S.; Wang, C.; Chen, Z.; Li, H. A novel scheme of high-precision heart rate detection with a mm-wave FMCW radar. IEEE Access 2023, 11, 85118–85136. [Google Scholar] [CrossRef]
- Yang, M.; Chen, J.; Shan, C. Phase locked-loop design of high-order automotive frequency modulated continuous wave radar based on fast integration structure. IEEE Access 2024, 12, 11926–11935. [Google Scholar] [CrossRef]
- Hadidian, B.; Khoeini, F.; Hossein Naghavi, S.M.; Cathelin, A.; Sarabandi, K.; Afshari, E. A 194-238 GHz fully on-chip self-referenced frequency stabilized radiator for high range resolution imaging. In Proceedings of the 2023 IEEE Custom Integrated Circuits Conference (CICC), San Antonio, TX, USA, 23–26 April 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Arai, T.; Usugi, T.; Murakami, T.; Kishimoto, S.; Utagawa, Y.; Kohtani, M.; Arai, C.; Arai, T.; Yamaura, S. A 77-GHz 8RX3TX transceiver for 250-m long-range automotive radar in 40-nm CMOS technology. IEEE J. Solid-State Circuits 2021, 56, 1332–1344. [Google Scholar] [CrossRef]
- Wu, J.; Deng, W.; Chen, Z.; Zheng, W.; Liu, Y.; Wang, S.; Qi, N.; Chi, B. A 77-GHz mixed-mode FMCW generator based on a vernier TDC with dual rising-edge fractional-phase detector. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 60–73. [Google Scholar] [CrossRef]
- Shen, Z.; Li, H.; Jiang, H.; Zhang, Z.; Liu, J.; Liao, H. A 12-GHz all-digital calibration-free FMCW signal generator based on a retiming fractional frequency divider. In Proceedings of the 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), Macau, 4–6 November 2019; pp. 287–290. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferro, L.; Li, C.; Scandurra, G.; Ciofi, C.; Cardillo, E. Beneficial Effects of Self-Motion for the Continuous Phase Analysis of Ac-Coupled Doppler Radars. Electronics 2024, 13, 772. https://doi.org/10.3390/electronics13040772
Ferro L, Li C, Scandurra G, Ciofi C, Cardillo E. Beneficial Effects of Self-Motion for the Continuous Phase Analysis of Ac-Coupled Doppler Radars. Electronics. 2024; 13(4):772. https://doi.org/10.3390/electronics13040772
Chicago/Turabian StyleFerro, Luigi, Changzhi Li, Graziella Scandurra, Carmine Ciofi, and Emanuele Cardillo. 2024. "Beneficial Effects of Self-Motion for the Continuous Phase Analysis of Ac-Coupled Doppler Radars" Electronics 13, no. 4: 772. https://doi.org/10.3390/electronics13040772
APA StyleFerro, L., Li, C., Scandurra, G., Ciofi, C., & Cardillo, E. (2024). Beneficial Effects of Self-Motion for the Continuous Phase Analysis of Ac-Coupled Doppler Radars. Electronics, 13(4), 772. https://doi.org/10.3390/electronics13040772