Distinction between Arcing Faults and Oil Contamination from OLTC Gases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dissolved Gas Analysis
2.2. DGA Interpretation Methods
- T1: (98, 2, 0), (98, 0, 2), (96, 0, 4), (76, 20, 4), (80, 20, 0)
- T2: (80, 20, 0), (76, 20, 4), (46, 50, 4), (50, 50, 0)
- T3: (50, 50, 0), (46, 50, 4), (35, 50, 15), (0, 85, 15), (0, 100, 0)
- D+T: (96, 0, 4), (87, 0, 13), (64, 23, 13), (47, 40, 13), (31, 40, 29), (0, 71, 29), (0, 85, 15), (35, 50, 15), (46, 50, 4), (76, 20, 4)
- PD: (98, 2, 0), (98, 0, 2), (100, 0, 0)
- D1-H: (43, 23, 34), (64, 23, 13), (87, 0, 13), (0, 0, 100), (0, 23, 77), (13, 23, 64), (17, 20, 63), (39, 20, 41), (39, 23, 38)
- D1-P: (39, 23, 38), (39, 20, 41), (17, 20, 63), (13, 23, 64)
- D2-H: (0, 23, 77), (0, 71, 29), (31, 40, 29), (47, 40, 13), (64, 23, 13), (43, 23, 34), (41, 33, 26), (16, 35, 49), (13, 23, 64)
- D2-P: (43, 23, 34), (41, 33, 26), (16, 35, 49), (13, 23, 64)
- PD: (0, 24.5), (0, 33), (−1, 24.5), (−1, 33)
- D1-H: (0, 40), (38, 12), (32, −6), (11.03, 10.56), (10.19, 17.14), (0, 19.74)
- D1-P: (0, 1.5), (0, 19.74), (10.19, 17.14), (11.03, 10.56), (4, 16), (0.97, 4.84)
- D2-H: (11.03, 10.56), (32, −6), (24, −30), (−1, −2), (0, 1.5), (0.97, 4.84), (10.12, 7.25)
- D2-P: (4, 16), (11.03, 10.56), (10.12, 7.25), (0.97, 4.84)
- T3: (24, −30), (−1,−2), (−6,−4), (1, −32)
- T2: (1, −32), (−6, −4), (−22.5, −32)
- T1: (−22.5, −32), (−6, −4), (−1, −2), (0, 1.5), (−35, 3)
- S: (−35, 3), (0, 1.5), (0, 24.5), (0, 33), (−1, 24.5), (−1, 33), (0, 40)
3. Application of Traditional DGA Interpretation Methods to Contaminated Transformers Data
4. DTM and DPM Modification Proposals
- D1-H: (10, 0, 90), (87, 0, 13), (64, 23, 13), (39, 23, 38), (39, 20, 41), (17, 20, 63), (13, 23, 64), (10, 23, 67).
- D2-H: (10, 23, 67), (13, 23, 64), (16, 35, 49), (41, 33, 26), (43, 23, 34), (64, 23, 13), (47, 40, 13), (31, 40, 29), (0, 71, 29), (0, 40, 60), (10, 30, 60).
- OC: (0, 0, 100), (10, 0, 90), (10, 30, 60), (0, 40, 60).
- D1-H: (0, 40), (38, 12), (32, −6), (26.11, −1.37), (28.7, 6.9), (14.6, 18.3), (11.03, 10.56), (10.19, 17.14), (0, 19.74)
- D2-H: (10.3, 7.9), (25.2, −4.3), (26.11, −1.37), (32, −6), (24, −30), (−1, −2), (0, 1.5), (0.97, 4.84), (10.12, 7.25)
- OC: (14.6, 18.3), (11.03, 10.56), (10.3, 7.9), (25.2, −4.3), (26.11, −1.37), (28.7, 6.9)
5. Results—Application of Proposed DTM and DPM to DGA Data Extracted from Previous Studies
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DGA | Dissolved gas analysis |
DRM | Doernenburg’s ratio method |
DPM | Duval’s pentagon method |
DTM | Duval’s triangle method |
EK | Expert knowledge |
GIS | Gas-insulated switchgear |
IRM | IEC ratio method |
OLTC | On-load tap changer |
RRM | Rogers’ ratio method |
D+T | Mixture of thermal and electrical faults |
D1 | Low-energy discharge |
D1-H | Low-energy discharge in oil |
D1-P | Low-energy discharge in paper |
D2 | High-energy discharge |
D2-H | High-energy discharge in oil |
D2-P | High-energy discharge in paper |
OC | Oil contamination from OLTC gases |
PD | Partial discharge |
S | Stray gassing |
T1 | Thermal faults (<300 °C) |
T2 | Thermal faults (300–700 °C) |
T3 | Thermal faults (>700 °C) |
C2H2 | Acetylene |
C2H4 | Ethylene |
C2H6 | Ethane |
C3H6 | Propylene |
C3H8 | Propane |
CH4 | Methane |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
H2 | Hydrogen |
Appendix A. DGA Dataset from References
Sample No. | H2 | CH4 | C2H2 | C2H4 | C2H6 | CO | CO2 | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 92 | 26 | 54 | 65 | 20 | 443 | 3704 | [26] |
2 | 160 | 59 | 63 | 79 | 41 | 578 | 3661 | [26] |
3 | 8 | 0 | 101 | 43 | 0 | 192 | 4067 | [24] |
4 | 4 | 1 | 52 | 7 | 2 | 93 | 519 | [24] |
Sample No. | H2 | CH4 | C2H2 | C2H4 | C2H6 | CO | CO2 | Ref. |
---|---|---|---|---|---|---|---|---|
5 | 130 | 98 | 56 | 7 | 65 | - | - | [13] |
6 | 1790 | 580 | 619 | 336 | 321 | 956 | 4250 | [23] |
7 | 120 | 25 | 40 | 8 | 1 | 500 | 1600 | [23] |
8 | 81 | 16 | 9.9 | 1 | 1 | 216 | 1205 | [28] |
9 | 109 | 49 | 345 | 61 | 89 | - | - | [14] |
10 | 65.5 | 23.3 | 26 | 2.1 | 1 | - | - | [14] |
11 | 14.1 | 4 | 9.5 | 1.5 | 1.3 | - | - | [14] |
12 | 29.5 | 4.5 | 29.1 | 3.5 | 0.5 | - | - | [14] |
13 | 266 | 30.2 | 60.2 | 26.2 | 4.9 | - | - | [14] |
14 | 24 | 13 | 319 | 43 | 5 | - | - | [14] |
15 | 274 | 27 | 97 | 33 | 5 | - | - | [14] |
16 | 240 | 20 | 96 | 28 | 5 | - | - | [14] |
17 | 307 | 22 | 109 | 33 | 2 | - | - | [14] |
18 | 78 | 20 | 28 | 13 | 11 | - | 784 | [24] |
19 | 305 | 100 | 541 | 161 | 33 | 440 | 3700 | [24] |
20 | 543 | 120 | 1880 | 411 | 41 | 76 | 2800 | [24] |
21 | 1230 | 163 | 692 | 233 | 27 | 130 | 115 | [24] |
22 | 95 | 10 | 39 | 11 | 0 | 122 | 467 | [24] |
23 | 6870 | 1028 | 5500 | 900 | 79 | 29 | 388 | [24] |
24 | 1900 | 285 | 7730 | 957 | 31 | 681 | 732 | [24] |
25 | 1084 | 188 | 769 | 166 | 8 | 38 | 199 | [24] |
26 | 1464.1 | 202.4 | 486.4 | 179.1 | 63.6 | 24.4 | 840.9 | [31] |
27 | 319.2 | 60.5 | 139.9 | 47.1 | 52.1 | 569.3 | 1644.9 | [31] |
28 | 34 | 3.7 | 35 | 4.1 | 0.7 | 562 | 2530 | [25] |
29 | 17 | 1.3 | 14 | 1.6 | 0.3 | 102 | 910 | [25] |
30 | 1058 | 133 | 452 | 97 | 5 | 9 | 138 | [30] |
31 | 2054 | 219 | 1735 | 299 | 12 | 11 | 66 | [30] |
32 | 761 | 130 | 288 | 44 | 204 | 54 | 210 | [30] |
Sample No. | H2 | CH4 | C2H2 | C2H4 | C2H6 | CO | CO2 | Ref. |
---|---|---|---|---|---|---|---|---|
33 | 858 | 1324 | 7672 | 2793 | 208 | - | - | [14] |
34 | 32.4 | 5.5 | 13.2 | 12.6 | 1.4 | - | - | [14] |
35 | 800 | 1393 | 3000 | 2817 | 304 | - | - | [14] |
36 | 4906 | 8784 | 9671 | 9924 | 1404 | - | - | [14] |
37 | 497 | 230 | 122 | 151 | 51 | - | - | [14] |
38 | 615 | 200 | 68 | 102 | 42 | - | - | [14] |
39 | 594 | 230 | 102 | 130 | 44 | - | - | [14] |
40 | 21 | 34 | 62 | 47 | 5 | - | - | [14] |
41 | 1607 | 615 | 1294 | 916 | 80 | - | - | [14] |
42 | 235 | 39.45 | 257 | 210 | 9.63 | - | - | [14] |
43 | 512 | 87 | 185.21 | 163.59 | 11.5 | - | - | [14] |
44 | 620 | 325 | 244 | 181 | 38 | 1480 | 2530 | [24] |
45 | 1330 | 10 | 182 | 66 | 20 | 231 | 1820 | [24] |
46 | 440 | 89 | 757 | 304 | 19 | 299 | 1190 | [24] |
47 | 210 | 43 | 187 | 102 | 12 | 167 | 1070 | [24] |
48 | 2850 | 1115 | 3675 | 1987 | 138 | 2330 | 4330 | [24] |
49 | 7020 | 1850 | 4410 | 2960 | 0 | 2140 | 1000 | [24] |
50 | 545 | 130 | 239 | 153 | 16 | 660 | 2850 | [24] |
51 | 7150 | 1440 | 1760 | 1210 | 97 | 608 | 2260 | [24] |
52 | 755 | 229 | 460 | 404 | 32 | 845 | 5580 | [24] |
53 | 13,500 | 6110 | 4040 | 4510 | 212 | 8690 | 1460 | [24] |
54 | 1570 | 1110 | 1830 | 1780 | 175 | 135 | 602 | [24] |
55 | 3090 | 5020 | 2540 | 3800 | 323 | 270 | 400 | [24] |
56 | 1820 | 405 | 634 | 365 | 35 | 1010 | 8610 | [24] |
57 | 13 | 3 | 6 | 3 | 1 | 4 | 51 | [24] |
58 | 137 | 67 | 104 | 53 | 7 | 196 | 1678 | [24] |
59 | 34 | 21 | 56 | 49 | 4 | 95 | 315 | [24] |
60 | 260 | 215 | 277 | 334 | 35 | 130 | 416 | [24] |
61 | 75 | 15 | 26 | 14 | 7 | 105 | 322 | [24] |
62 | 60 | 5 | 21 | 21 | 2 | 188 | 2510 | [24] |
63 | 420 | 250 | 800 | 530 | 41 | 300 | 751 | [24] |
64 | 310 | 230 | 760 | 610 | 54 | 150 | 631 | [24] |
65 | 800 | 160 | 600 | 260 | 23 | 490 | 690 | [24] |
66 | 1500 | 395 | 323 | 395 | 28 | 365 | 576 | [24] |
67 | 20,000 | 13,000 | 57,000 | 29,000 | 1850 | 2600 | 2430 | [24] |
68 | 3700 | 1690 | 3270 | 2810 | 128 | 22 | 86 | [24] |
69 | 2770 | 660 | 763 | 712 | 54 | 522 | 1490 | [24] |
70 | 1170 | 255 | 325 | 312 | 18 | 5 | 1800 | [24] |
71 | 10,000 | 6730 | 10,400 | 7330 | 345 | 1980 | 3830 | [24] |
72 | 1570 | 735 | 1740 | 1330 | 87 | 711 | 4240 | [24] |
73 | 32 | 3.9 | 66 | 26 | 0.6 | 248 | 1960 | [25] |
74 | 120 | 31 | 94 | 66 | 0 | 48 | 271 | [23] |
75 | 31 | 3 | 67 | 46 | 8 | 71 | 4397 | [29] |
References
- Miao, X.; Quan, H.; Cheng, X.; Xu, M.; Huang, Q.; Liang, C.; Li, J. Fault Diagnosis of Oil-Immersed Transformers Based on the Improved Neighborhood Rough Set and Deep Belief Network. Electronics 2024, 13, 5. [Google Scholar] [CrossRef]
- Zhu, J.; Fu, Z.; Li, K.; Su, A. Chromatography Denoising with Improved Wavelet Thresholding Based on Modified Genetic Particle Swarm Optimization. Electronics 2023, 12, 4249. [Google Scholar] [CrossRef]
- IEC 60599:2022; Mineral Oil-Filled Electrical Equipment in Service—Guidance on the Interpretation of Dissolved and Free Gases Analysis. IEC: Geneva, Switzerland, 2022.
- IEEE Std C57.104-2019 (Revision of IEEE Std C57.104-2008); IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers. IEEE: Piscataway, NJ, USA, 2019; pp. 1–98. [CrossRef]
- Desouky, S.S.; Kalas, A.E.; El-Aal, R.A.A.; Hassan, A.M.M. Modification of Duval triangle for diagnostic transformer fault through a procedure of dissolved gases analysis. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Bachri, K.O.; Sumari, A.D.W.; Soedjarno, B.A.; Ahmad, A.S. The implementation of A3S information fusion algorithm for interpreting Dissolved Gas Analysis (DGA) based on Doernenburg Ratio. In Proceedings of the 2017 International Symposium on Electronics and Smart Devices (ISESD), Yogyakarta, Indonesia, 17–19 October 2017; pp. 335–340. [Google Scholar] [CrossRef]
- Wani, S.A.; Gupta, D.; Farooque, M.U.; Khan, S.A. Multiple incipient fault classification approach for enhancing the accuracy of dissolved gas analysis (DGA). IET Sci. Meas. Technol. 2019, 13, 959–967. [Google Scholar] [CrossRef]
- Hua, Y.; Sun, Y.; Xu, G.; Sun, S.; Wang, E.; Pang, Y. A fault diagnostic method for oil-immersed transformer based on multiple probabilistic output algorithms and improved DS evidence theory. Int. J. Electr. Power Energy Syst. 2022, 137, 107828. [Google Scholar] [CrossRef]
- Lu, W.; Shi, C.; Fu, H.; Xu, Y. A Power Transformer Fault Diagnosis Method Based on Improved Sand Cat Swarm Optimization Algorithm and Bidirectional Gated Recurrent Unit. Electronics 2023, 12, 672. [Google Scholar] [CrossRef]
- Jin, Y.; Wu, H.; Zheng, J.; Zhang, J.; Liu, Z. Power Transformer Fault Diagnosis Based on Improved BP Neural Network. Electronics 2023, 12, 3526. [Google Scholar] [CrossRef]
- Zhang, D.; Li, C.; Shahidehpour, M.; Wu, Q.; Zhou, B.; Zhang, C.; Huang, W. A bi-level machine learning method for fault diagnosis of oil-immersed transformers with feature explainability. Int. J. Electr. Power Energy Syst. 2022, 134, 107356. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Seo, H.; Jung, J.; Yang, H.; Duval, M. New methods of DGA diagnosis using IEC TC 10 and related databases Part 1: Application of gas-ratio combinations. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 685–690. [Google Scholar] [CrossRef]
- Mansour, D.A. Development of a new graphical technique for dissolved gas analysis in power transformers based on the five combustible gases. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2507–2512. [Google Scholar] [CrossRef]
- Gouda, O.E.; El-Hoshy, S.H.; E.L.-Tamaly, H.H. Condition assessment of power transformers based on dissolved gas analysis. IET Gener. Transm. Distrib. 2019, 13, 2299–2310. [Google Scholar] [CrossRef]
- Bräsel, E.; Sasum, U. Online Transformer Gas Diagnostics on the Basis of IEC 60567/60599. In Proceedings of the International Conference on Power Transformers ”TRANSFORMER 09”, Torun, Poland, 2–4 June 2009; pp. 89–93. [Google Scholar]
- Bustamante, S.; Manana, M.; Arroyo, A.; Laso, A.; Martinez, R. Determination of Transformer Oil Contamination from the OLTC Gases in the Power Transformers of a Distribution System Operator. Appl. Sci. 2020, 10, 8897. [Google Scholar] [CrossRef]
- Duval, M.; Buchacz, J. Gas Formation from Arcing Faults in Transformers—Part II. IEEE Electr. Insul. Mag. 2022, 38, 12–15. [Google Scholar] [CrossRef]
- Duval, M.; Buchacz, J. Identification of Arcing Faults in Paper and Oil in Transformers—Part I: Using the Duval Pentagons. IEEE Electr. Insul. Mag. 2022, 38, 19–23. [Google Scholar] [CrossRef]
- CIGRE. DGA in Non-Mineral Oils and Load Tap Changers and Improved DGA Diagnosis Criteria. In Materials and Emerging Test Techniques (D1); WG D1.32. Technical Brochure no. 443; CIGRE: Paris, France, 2010. [Google Scholar]
- IEEE Std C57.139-2015 (Revision of IEEE Std C57.139-2010); IEEE Guide for Dissolved Gas Analysis in Transformer Load Tap Changers. IEEE: Piscataway, NJ, USA, 2016; pp. 1–45. [CrossRef]
- Mollmann, A.; Pahlavanpour, B. New guidelines for interpretation of dissolved gas analysis in oil-filled transformers. Electra 1999, 186, 31–51. [Google Scholar]
- Ghoneim, S.S.; Taha, I.B. A new approach of DGA interpretation technique for transformer fault diagnosis. Int. J. Electr. Power Energy Syst. 2016, 81, 265–274. [Google Scholar] [CrossRef]
- Gouda, O.E.; El-Hoshy, S.H.; El-Tamaly, H.H. Proposed heptagon graph for DGA interpretation of oil transformers. IET Gener. Transm. Distrib. 2018, 12, 490–498. [Google Scholar] [CrossRef]
- Duval, M.; de Pabla, A. Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases. IEEE Electr. Insul. Mag. 2001, 17, 31–41. [Google Scholar] [CrossRef]
- Jadav, R.B.; Saha, T.K.; Ekanayake, C. Transformer diagnostics using dissolved gas analysis and polarisation and depolarisation current measurements—A case study. In Proceedings of the AUPEC 2011, Brisbane, Australia, 25–28 September 2011; pp. 1–6. [Google Scholar]
- Samsudin, R.; Ramli, A.Q.; Berhanuddin, A.; Zaidey, Y. Field experience of transformer untanking to identify electrical faults and comparison with Dissolved Gas Analysis. In Proceedings of the 2009 3rd International Conference on Energy and Environment (ICEE), Malacca, Malaysia, 7–8 December 2009; pp. 299–305. [Google Scholar] [CrossRef]
- Mehta, D.M.; Kundu, P.; Chowdhury, A.; Lakhiani, V.K. DGA diagnostics save transformers—Case studies. In Proceedings of the 2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Bangalore, India, 10–12 December 2015; pp. 116–120. [Google Scholar] [CrossRef]
- Pattanadech, N.; Sasomponsawatline, K.; Siriworachanyadee, J.; Angsusatra, W. The conformity of DGA interpretation techniques: Experience from transformer 132 units. In Proceedings of the 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL), Roma, Italy, 23–27 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Pattanadech, N.; Wattakapaiboon, W. Application of Duval Pentagon Compared with Other DGA Interpretation Techniques: Case Studies for Actual Transformer Inspections Including Experience from Power Plants in Thailand. In Proceedings of the 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST), Luang Prabang, Laos, 2–5 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Samimi, M.H.; Mohseni, H. Experiences with transformer diagnosis by DGA: Case studies. IET Gener. Transm. Distrib. 2019, 13, 5431–5439. [Google Scholar] [CrossRef]
- Piotrowski, T.; Rozga, P.; Kozak, R. Comparative Analysis of the Results of Diagnostic Measurements with an Internal Inspection of Oil-Filled Power Transformers. Energies 2019, 12, 2155. [Google Scholar] [CrossRef]
Fault Type | Generated Gas | |||||
---|---|---|---|---|---|---|
H2 | CH4 | C2H6 | C2H4 | C2H2 | ||
Thermal faults (<300 °C) | T1 | ∘ | • | • | ||
Thermal faults (300–700 °C) | T2 | ∘ | ∘ | ∘ | • | |
Thermal faults (>700 °C) | T3 | ∘ | • | ∘ | ||
Partial discharge | PD | • | ∘ | |||
Low-energy discharge | D1 | • | ∘ | • | ||
High-energy discharge | D2 | • | ∘ | • |
Fault Type | |||
---|---|---|---|
PD | NS a | <0.1 | <0.2 |
D1 | >1 | 0.1–0.5 | >1 |
D2 | 0.6–2.5 | 0.1–0.5 | >2 |
T1 | NS a | >1 but NS a | <1 |
T2 | <0.1 | >1 | 1–4 |
T3 | <0.2 b | >1 | >4 |
Method | Definition Criteria | Fault Types | No Fault Identified | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D1-H | D1-P | D2 | D2-H | D2-P | D1/D2 | D+T | T1 | T2 | T3 | PD | S | |||
DTM | IEC ratio | − | 24 | 0 | − | 12 | 0 | − | 0 | 0 | 0 | 4 | 0 | − | − |
EK | − | 28 | 1 | − | 31 | 2 | − | 5 | 0 | 0 | 1 | 0 | − | − | |
Total | − | 52 | 1 | − | 43 | 2 | − | 5 | 0 | 0 | 5 | 0 | − | − | |
DPM | IEC ratio | − | 26 | 0 | − | 14 | 0 | − | − | 0 | 0 | 0 | 0 | 0 | − |
EK | − | 41 | 7 | − | 14 | 5 | − | − | 0 | 0 | 1 | 0 | 0 | − | |
Total | − | 67 | 7 | − | 28 | 5 | − | − | 0 | 0 | 1 | 0 | 0 | − | |
IRM | IEC ratio | 21 | − | − | 1 | − | − | 2 | − | 0 | 0 | 4 | 0 | − | 12 |
EK | 6 | − | − | 1 | − | − | 2 | − | 0 | 0 | 1 | 0 | − | 58 | |
Total | 27 | − | − | 2 | − | − | 4 | − | 0 | 0 | 5 | 0 | − | 70 |
Sample No. | Fault Identified from References | H2 | CH4 | C2H2 | C2H4 | C2H6 | CO | CO2 | C2H2/H2 Ratio | EK | High Gas Concentrations | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | Contamination from OLTC | 8 | 0 | 101 | 43 | 0 | 192 | 4067 | ✓ | ✓ | [24] | |
4 | Contamination from OLTC | 4 | 1 | 52 | 7 | 2 | 93 | 519 | ✓ | ✓ | [24] | |
14 | D1 | 24 | 13 | 319 | 43 | 5 | - | - | ✓ | ✓ | [14] | |
20 | D1 | 543 | 120 | 1880 | 411 | 41 | 76 | 2800 | ✓ | ✓ | ✓ | [24] |
24 | D1 | 1900 | 285 | 7730 | 957 | 31 | 681 | 732 | ✓ | ✓ | ✓ | [24] |
28 | D1 | 34 | 3.7 | 35 | 4.1 | 0.7 | 562 | 2530 | ✓ | [25] | ||
29 | D1 | 17 | 1.3 | 14 | 1.6 | 0.3 | 102 | 910 | ✓ | [25] | ||
31 | D1 | 2054 | 219 | 1,735 | 299 | 12 | 11 | 66 | ✓ | ✓ | [30] | |
45 | D2 | 1330 | 10 | 182 | 66 | 20 | 231 | 1820 | ✓ | ✓ | [24] | |
46 | D2 | 440 | 89 | 757 | 304 | 19 | 299 | 1190 | ✓ | ✓ | [24] | |
73 | D2 | 32 | 3.9 | 66 | 26 | 0.6 | 248 | 1960 | ✓ | ✓ | [25] |
Sample No. | Fault Identified from References | H2 | CH4 | C2H2 | C2H4 | C2H6 | CO | CO2 | C2H2/H2 Ratio | EK | High Gas Concentrations | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | Contamination from OLTC | 8 | 0 | 101 | 43 | 0 | 192 | 4067 | ✓ | ✓ | [24] | |
4 | Contamination from OLTC | 4 | 1 | 52 | 7 | 2 | 93 | 519 | ✓ | ✓ | [24] | |
9 | D1 | 109 | 49 | 345 | 61 | 89 | - | - | ✓ | ✓ | [14] | |
14 | D1 | 24 | 13 | 319 | 43 | 5 | - | - | ✓ | ✓ | [14] | |
19 | D1 | 305 | 100 | 541 | 161 | 33 | 440 | 3700 | ✓ | [24] | ||
20 | D1 | 543 | 120 | 1880 | 411 | 41 | 76 | 2800 | ✓ | ✓ | ✓ | [24] |
24 | D1 | 1900 | 285 | 7730 | 957 | 31 | 681 | 732 | ✓ | ✓ | ✓ | [24] |
33 | D2 | 858 | 1324 | 7672 | 2793 | 208 | - | - | ✓ | ✓ | ✓ | [14] |
46 | D2 | 440 | 89 | 757 | 304 | 19 | 299 | 1190 | ✓ | ✓ | [24] | |
73 | D2 | 32 | 3.9 | 66 | 26 | 0.6 | 248 | 1960 | ✓ | ✓ | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante, S.; Martinez Lastra, J.L.; Manana, M.; Arroyo, A. Distinction between Arcing Faults and Oil Contamination from OLTC Gases. Electronics 2024, 13, 1338. https://doi.org/10.3390/electronics13071338
Bustamante S, Martinez Lastra JL, Manana M, Arroyo A. Distinction between Arcing Faults and Oil Contamination from OLTC Gases. Electronics. 2024; 13(7):1338. https://doi.org/10.3390/electronics13071338
Chicago/Turabian StyleBustamante, Sergio, Jose L. Martinez Lastra, Mario Manana, and Alberto Arroyo. 2024. "Distinction between Arcing Faults and Oil Contamination from OLTC Gases" Electronics 13, no. 7: 1338. https://doi.org/10.3390/electronics13071338
APA StyleBustamante, S., Martinez Lastra, J. L., Manana, M., & Arroyo, A. (2024). Distinction between Arcing Faults and Oil Contamination from OLTC Gases. Electronics, 13(7), 1338. https://doi.org/10.3390/electronics13071338