An FR4-Based Oscillator Loading an Additional High-Q Cavity for Phase Noise Reduction Using SISL Technology
Abstract
1. Introduction
2. Analysis of Topology and Phase Noise Reduction
2.1. The Startup and Steady-State Conditions for the Introduction of the Additional Resonator
2.2. Q Factor When Introducing the Additional Resonator
- (a)
- α→0 (Transistor as a heavy load for the resonator)
- (b)
- α→∞ (Transistor as a light load for the resonator)
- (c)
- α = 1 (Transistor as a match load for the resonator)
2.3. Analysis of Phase Noise Reduction by Introducing the Additional Resonator
3. Implementation and Analysis of the Circuit
3.1. SISL Technology
3.2. Basic Structure of the Original Oscillator and the Additional Resonator
3.3. Implementation of the Resonator
3.4. Implementation of the Proposed Oscillator
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SISL | Substrate integrated suspended line |
References
- Boudot, R.; Gribaldo, S.; Gruson, Y.; Bazin, N.; Rubiola, E.; Llopis, O.; Giordano, V. Development of Ultra Low Phase Noise X-Band Oscillators. In Proceedings of the 2006 IEEE International Frequency Control Symposium and Exposition, Miami, FL, USA, 4–7 June 2006; pp. 861–868. [Google Scholar]
- Howe, D.A.; Hati, A. Low-Noise x-Band Oscillator and Amplifier Technologies: Comparison and Status. In Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, Vancouver, BC, Canada, 29–31 August 2005; pp. 481–487. [Google Scholar]
- Franceschin, A.; Riccardi, D.; Mazzanti, A. Series-Resonance BiCMOS VCO with Phase Noise of -138dBc/Hz at 1MHz Offset from 10GHz and -190dBc/Hz FoM. In Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 20 February 2022; pp. 1–3. [Google Scholar]
- Leeson, D.B. A Simple Model of Feedback Oscillator Noise Spectrum. Proc. IEEE 1966, 54, 329–330. [Google Scholar] [CrossRef]
- He, F.F.; Wu, K.; Hong, W.; Han, L.; Chen, X. A Low Phase-Noise VCO Using an Electronically Tunable Substrate Integrated Waveguide Resonator. IEEE Trans. Microw. Theory Techn. 2010, 58, 5606209. [Google Scholar] [CrossRef]
- Li, Z.; Tang, X.; Liu, Y.; Cai, Z. Design of Ku-Band Low Phase Noise Oscillator Utilizing High-Q Air-Filled Substrate Integrated Waveguide Resonator. In Proceedings of the 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 7–11 May 2018; pp. 1–3. [Google Scholar]
- Lee, Y.-T.; Lee, J.; Nam, S. High-Q Active Resonators Using Amplifiers and Their Applications to Low Phase-Noise Free-Running and Voltage-Controlled Oscillators. IEEE Trans. Microw. Theory Techn. 2004, 52, 2621–2626. [Google Scholar] [CrossRef]
- Nick, M.; Mortazawi, A. Low Phase-Noise Planar Oscillators Based on Low-Noise Active Resonators. IEEE Trans. Microw. Theory Techn. 2010, 58, 1133–1139. [Google Scholar] [CrossRef]
- Li, M.; Ma, K.; Hu, J.; Wang, Y. Design and Fabrication of Low Phase Noise Oscillator Using Q Enhancement of the SISL Cavity Resonator. IEEE Trans. Microw. Theory Techn. 2019, 67, 4260–4268. [Google Scholar] [CrossRef]
- Han, J.; Ma, K.; Yan, N. A Low Phase Noise Oscillator Employing Weakly Coupled Cavities Using SISL Technology. IEEE Trans. Circuits Syst. I 2023, 70, 1503–1516. [Google Scholar] [CrossRef]
- Badnikar, S.L.; Shanmugam, N.; Murthy, V.R.K. Microwave Whispering Gallery Mode Dielectric Resonator Oscillator. In Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium (Cat. No.99CH36313), Besancon, France, 13–16 April 1999; Volume 2, pp. 597–600. [Google Scholar]
- Choi, J.; Nick, M.; Mortazawi, A. Low Phase-Noise Planar Oscillators Employing Elliptic-Response Bandpass Filters. IEEE Trans. Microw. Theory Techn. 2009, 57, 1959–1965. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, J.; Chen, P. An X-Band Low Phase Noise Free-Running Oscillator Using Substrate Integrated Waveguide Dual-Mode Bandpass Filter With Circular Cavity. IEEE Microw. Wireless Compon. Lett. 2015, 25, 40–42. [Google Scholar] [CrossRef]
- Thapa, S.K.; Chen, B.; Barakat, A.; Yoshitomi, K.; Pokharel, R.K. X-Band Feedback Type Miniaturized Oscillator Design With Low Phase Noise Based on Eighth Mode SIW Bandpass Filter. IEEE Microw. Wireless Compon. Lett. 2021, 31, 485–488. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, J.; Yu, Z.; Yang, B. A Low Phase Noise Feedback Oscillator Based on SIW Bandpass Response Power Divider. IEEE Microw. Wireless Compon. Lett. 2018, 28, 153–155. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, X.-W.; Yu, C.; Hong, W. Compact and Low-Phase-Noise Oscillator Employing Multilayer Sixteenth-Mode Substrate-Integrated Waveguide Filter for 5G Applications. IEEE Trans. Compon., Packag. Manufact. Technol. 2019, 9, 1863–1871. [Google Scholar] [CrossRef]
- Shao, L.; Liu, Y.; Yang, H.; Xiao, L.; Xiao, F. Ultralow-Phase-Noise Microstrip Oscillator Based on Quasi-Bandpass Frequency Selection Network With Multiple Transmission Zeros. IEEE Trans. Compon. Packag. Manufact. Technol. 2023, 13, 93–98. [Google Scholar] [CrossRef]
- Kwon, Y.; Pavlidis, D.; Brock, T.L.; Streit, D.C. A D-Band Monolithic Fundamental Oscillator Using InP-Based HEMT’s. IEEE Trans. Microw. Theory Techn. 1993, 41, 2336–2344. [Google Scholar] [CrossRef]
- Lima, E.; Tanaka, T.; Toyoda, I. A Novel Low Phase Noise Push-Push Oscillator Employing Dual-Feedback Sub-Oscillators. PIER M 2018, 75, 141–148. [Google Scholar] [CrossRef]
- Ponton, M.; Ramirez, F.; Herrera, A.; Suarez, A. Oscillator Stabilization Through Feedback With Slow Wave Structures. IEEE Trans. Microw. Theory Techn. 2020, 68, 2358–2373. [Google Scholar] [CrossRef]
- Ponton, M.; Ramirez, F.; Herrera, A.; Suarez, A. Phase-Noise Reduction Through an External High-Q Network Using a Black-Box Oscillator Model. In Proceedings of the 2020 50th European Microwave Conference (EuMC), Utrecht, The Netherlands, 12 January 2021; pp. 949–952. [Google Scholar]
- Wang, Y.; Ma, K.; Yu, M. A Low-Cost Substrate Integrated Suspended Line Platform With Multiple Inner Boards and Its Applications in Coupled-Line Circuits. IEEE Trans. Compon., Packag. Manufact. Technol. 2020, 10, 2087–2098. [Google Scholar] [CrossRef]
- Liang, W.; Ma, K.; Chen, X.; Wang, Y. FR4-Based Low Phase Noise SISL VCO Using Tunable Weakly Coupled Resonators. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 72–75. [Google Scholar] [CrossRef]
- Fu, H.; Ma, K.; Ma, K.; Wang, Y. A FR4-based Compact VCO with Wide Tuning Range Using SISL Transformed Triple-tanks. Electron. Lett. 2021, 57, 764–766. [Google Scholar] [CrossRef]
- Nallatamby, J.; Prigent, M.; Camiade, M.; Obregon, J.J. Extension of the Leeson Formula to Phase Noise Calculation in Transistor Oscillators with Complex Tanks. IEEE Trans. Microw. Theory Techn. 2003, 51, 690–696. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-63155-3. [Google Scholar]
- Lusher, C.P.; Hardy, W.N. Effects of Gain Compression, Bias Conditions, and Temperature on the Flicker Phase Noise of an 8.5 GHz GaAs MESFET Amplifier. IEEE Trans. Microw. Theory Techn. 1989, 37, 643–646. [Google Scholar] [CrossRef]
- Wan, C.; Zheng, Z.; Xue, S.; Xie, L.; Wan, G. An Angle Sensor Based on a Sector Ring Patch Antenna for Bolt Loosening Detection. Smart Mater. Struct. 2022, 31, 045009. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, K.; Wang, Y.; Wang, K. An FR4-Based K-Band 1.0-dB Noise Figure LNA Using SISL Technology. IEEE Microw. Wireless Compon. Lett. 2021, 32, 129–132. [Google Scholar] [CrossRef]
θ | 0° | 15° | 25° | 35° | 45° | Original |
---|---|---|---|---|---|---|
Simulated | −141.4 | −140.6 | −139.6 | −138.9 | −138.7 | −138.1 |
Calculated | −141.1 | −140.5 | −139.4 | −138.6 | −138.1 | / |
Ref. | f0 (GHz) | Frequency Selector | Material and Cost | L (1 MHz) (dBc/Hz) | Pdc (mW) | Pout (dBm) | FOM (1 MHz) (dBc/Hz) | Frequency Selector Size (λg × λg) | Self-Packaged |
---|---|---|---|---|---|---|---|---|---|
[5] | 9.5 | SIW resonator | Duroid 6002: High | −117 | 30 | 7.5 | −184 | 0.7 × 0.7 # | No |
[6] | 8 | Active filter | Rogers RO3035: High | −150 | 200 | 10 | −205 | 0.5 × 0.5 # | No |
[7] | 11.86 | SISL DMCR | Roggers 5880 + FR4: High | −133.9 | 16 | 3.44 | −203.3 | 0.7 × 0.7 # | Yes |
[12] | 8.06 | Elliptic filter | Roggers 5880: High | −143.5 | 22 | 3.5 | −204 | 0.5 × 0.5 # | No |
[13] | 11.57 | Dual-mode SIW BPF | Taconic TLY: High | −135.5 | 11.4 | −2.3 | −206.2 | 0.6 × 0.6 # | No |
[14] | 9.97 | Eight mode SIW BPF | Roggers 3003: High | −126.13 | 150 | 3.17 | −184.34 # | 0.75 × 0.75 # | No |
[16] | 3.52 | SMSIW | Roggers 5880: High | −132.1 | 16.2 | −1.5 | −191 | 0.267 × 0.109 | No |
[17] | 1.98 | QBP-FSN-MTZ | Roggers 5880: High | −149.4 * | 32.4 # | 9.61 | −200.2 # | Not given | No |
[16] | 9.81 | λ/2 microstrip line resonator | Teflon: High | −123.5 | 600 # | 13.3 | −175.55 | Not given | No |
[20] | 5.69 | λ/2 SISL resonator | FR4: Low | −122.81 | 10.9 | 2 | −183.9 | 1.4 × 2.2 # | Yes |
[21] | 3.76 | SISL transformer | FR4: Low | −119.45 | 37.1 | −8.25 | −183.5 | 0.1 × 0.1 | Yes |
This work | 10.12 | Original oscillator | FR4: Low | −128.3 | 25.2 | 1.30 | −194.3 | 0.7 × 0.7 | Yes |
10.13 | Additional resonator | FR4: Low | −129.92 | 25.2 | 0.57 | −195.92 | 0.7 × 0.7 | Yes | |
10.09 | Additional resonator and dielectric excision | FR4: Low | −131.79 | 25.2 | 1.01 | −197.79 | 0.7 × 0.7 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Yan, N.; Ma, K. An FR4-Based Oscillator Loading an Additional High-Q Cavity for Phase Noise Reduction Using SISL Technology. Electronics 2025, 14, 3041. https://doi.org/10.3390/electronics14153041
Han J, Yan N, Ma K. An FR4-Based Oscillator Loading an Additional High-Q Cavity for Phase Noise Reduction Using SISL Technology. Electronics. 2025; 14(15):3041. https://doi.org/10.3390/electronics14153041
Chicago/Turabian StyleHan, Jingwen, Ningning Yan, and Kaixue Ma. 2025. "An FR4-Based Oscillator Loading an Additional High-Q Cavity for Phase Noise Reduction Using SISL Technology" Electronics 14, no. 15: 3041. https://doi.org/10.3390/electronics14153041
APA StyleHan, J., Yan, N., & Ma, K. (2025). An FR4-Based Oscillator Loading an Additional High-Q Cavity for Phase Noise Reduction Using SISL Technology. Electronics, 14(15), 3041. https://doi.org/10.3390/electronics14153041