Realization and Inverse Design of Multifunctional Steerable Transflective Linear-to-Circular Polarization Converter Empowered by Machine Learning
Abstract
:1. Introduction
2. Theoretical Analysis and Design
2.1. Influence of Graphene Layer Number on Device Performance
2.2. Theoretical Analysis and Fundamental Principles of LCP Device
2.3. The Principle of the Self-Complementary Transflective Polarization Converter
2.4. The Materials with Tunable Properties
3. Results and Discussion
- Fermi level: The optimal ranges are < 3 eV for reflection and approximately 0.5 eV for transmission. These values highlight the role of graphene’s tunable Fermi energy in influencing polarization conversion and enabling precise resonant behavior in different directions.
- Wire grid thickness (wire_t): Success ratios peak for thickness values between 1 and 5 μm in the reflection direction and at exactly 5 μm in the transmission direction. This confirms the importance of fine-tuning grid dimensions to achieve effective impedance matching.
- Wire grid width (wire_w): The optimal width range spans 2–10 μm for both directions, excluding 4 μm in the transmission case. The slight variation suggests nuanced interplay between the grid’s geometrical properties and the underlying field distribution.
- Square frame size (square_x, square_y): For reflection, the preferred ranges are 5–30 μm (square_x) and 8–30 μm (square_y). For transmission, optimal sizes are fixed at 5 μm (square_x) and within 5–7 μm (square_y). This indicates that smaller, symmetric frame dimensions perform better in the transmission direction due to their contribution to uniform field enhancement.
- VO2 conductivity: The model identifies distinct optimal values for VO2: 20 S/m (insulating state) and 200,000 S/m (metallic state) for reflection, and primarily 20 S/m for transmission. These findings validate VO2’s critical role in modulating the dual-direction functionality of the device.
- Square substrate size (p): The preferred size ranges are 40–100 μm for reflection and, specifically, 90–100 μm for transmission. The observed trend underscores the role of substrate dimensions in achieving resonance and minimizing energy losses.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shang, X.; Wan, L.; Wang, L.; Gao, F.; Li, H. Emerging Materials for Circularly Polarized Light Detection. J. Mater. Chem. C 2022, 10, 2400–2410. [Google Scholar] [CrossRef]
- Abd Rahman, N.A.; Mohd Yasin, M.N.; Ibrahim, I.M.; Jusoh, M.; Noor, S.K.; Ekscalin Emalda Mary, M.R.; Zamin, N.; Nurhayati, N. A Review of Circularly Polarized Dielectric Resonator Antennas: Recent Developments and Applications. Micromachines 2022, 13, 2178. [Google Scholar] [CrossRef] [PubMed]
- Meskers, S.C.J. Circular Polarization of Luminescence as a Tool to Study Molecular Dynamical Processes. ChemPhotoChem 2022, 6, e202100154. [Google Scholar] [CrossRef]
- Wang, X.; Ma, S.; Zhao, B.; Deng, J. Frontiers in Circularly Polarized Phosphorescent Materials. Adv. Funct. Mater. 2023, 33, 2214364. [Google Scholar] [CrossRef]
- Chen, L.; Xu, N.; Singh, L.; Cui, T.; Singh, R.; Zhu, Y.; Zhang, W. Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials. Adv. Opt. Mater. 2017, 5, 1600960. [Google Scholar] [CrossRef]
- Chen, L.; Wei, Y.; Zang, X.; Zhu, Y.; Zhuang, S. Excitation of Dark Multipolar Plasmonic Resonances at Terahertz Frequencies. Sci. Rep. 2016, 6, 22027. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Q.; Xu, Q.; Chen, X.; Tian, Z.; Gu, J.; Ouyang, C.; Zhang, X.; Han, J.; Zhang, W. Tailoring Mode Interference in Plasmon-Induced Transparency Metamaterials. J. Phys. D. Appl. Phys. 2018, 51, 174005. [Google Scholar] [CrossRef]
- Chang, C.-C.; Zhao, Z.; Li, D.; Taylor, A.J.; Fan, S.; Chen, H.-T. Broadband Linear-to-Circular Polarization Conversion Enabled by Birefringent Off-Resonance Reflective Metasurfaces. Phys. Rev. Lett. 2019, 123, 237401. [Google Scholar] [CrossRef]
- Liu, D.; Lv, T.; Dong, G.; Liu, C.; Liu, Q.; Zhu, Z.; Li, Y.; Guan, C.; Shi, J. Broadband and Wide Angle Quarter-Wave Plate Based on Single-Layered Anisotropic Terahertz Metasurface. Opt. Commun. 2021, 483, 126629. [Google Scholar] [CrossRef]
- Tutar, F.; Ozturk, G. An Effective Metasurface-Based Linear and Circular Polarization Converter for C- and X-Band Applications. Opt. Mater. 2022, 128, 112355. [Google Scholar] [CrossRef]
- Zhao, G.; Zhou, Y.; Wang, J.R.; Tong, M.S. A Circularly Polarized Dielectric Resonator Antenna Based on Quasi-Self-Complementary Metasurface. IEEE Trans. Antennas Propag. 2022, 70, 7147–7151. [Google Scholar] [CrossRef]
- Zainud-Deen, S.H.; Malhat, H.A.E.-A.; El-Refaey, E.A.; Badawy, M.M. Genus Plasma-Based Self-Complementary Reconfigurable Intelligent Metasurfaces. Plasmonics 2024, 19, 2991–3001. [Google Scholar] [CrossRef]
- PourHosseini, M.; Jarchi, S.; Rezaei, P.; Ghattan Kashani, Z. Terahertz Microstrip Array Antenna with Metasurface Polarization Conversion Using Silicon Dioxide as Dielectric Layer. Opt. Quantum Electron. 2024, 56, 796. [Google Scholar] [CrossRef]
- Hu, M.; Tan, Q.; Knibbe, R.; Xu, M.; Jiang, B.; Wang, S.; Li, X.; Zhang, M.-X. Recent Applications of Machine Learning in Alloy Design: A Review. Mater. Sci. Eng. R Rep. 2023, 155, 100746. [Google Scholar] [CrossRef]
- Venketeswaran, A.; Lalam, N.; Wuenschell, J.; Ohodnicki, P.R., Jr.; Badar, M.; Chen, K.P.; Lu, P.; Duan, Y.; Chorpening, B.; Buric, M. Recent Advances in Machine Learning for Fiber Optic Sensor Applications. Adv. Intell. Syst. 2022, 4, 2100067. [Google Scholar] [CrossRef]
- Mai, H.; Le, T.C.; Chen, D.; Winkler, D.A.; Caruso, R.A. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chem. Rev. 2022, 122, 13478–13515. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, R.; Zhao, Y.; Tian, J.; Zhang, W.; Ding, L. Dual-Mode Bidirectional Multifunctional Chiral Metamaterial Based on Self-Complementary Resonators. J. Opt. Soc. Am. B 2023, 40, 1435–1442. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, C.; Liu, M.; Zhang, Y. Dual-Function Tuneable Asymmetric Transmission and Polarization Converter in Terahertz Region. Results Phys. 2021, 25, 104242. [Google Scholar] [CrossRef]
- Ding, F.; Zhong, S.; Bozhevolnyi, S.I. Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies. Adv. Opt. Mater. 2018, 6, 1701204. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, H.; Wang, L.; Wang, J.; Cao, W.; Wang, Y. Broadband Linear-to-Circular Polarization Converter Based on Phosphorene Metamaterial. Opt. Mater. Express 2019, 9, 2088–2097. [Google Scholar] [CrossRef]
- Emara, M.K.; Kundu, D.; Macdonell, K.; Rufail, L.M.; Gupta, S. Dynamic Metasurface Reflectors Based on Coupled Resonators for Simultaneous Magnitude and Phase Control. IEEE Access 2023, 11, 129552–129565. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, J.; Chen, K.; Feng, Y. An Active Metamaterial Absorber with Ultrawideband Continuous Tunability. IEEE Access 2022, 10, 25290–25295. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, Y.; Zhang, Y.; Cai, W.; Fan, Y.; Wang, Z.; Cheng, X. High-Efficiency Modulation of Broadband Polarization Conversion with a Reconfigurable Chiral Metasurface. Nanoscale Adv. 2022, 4, 4344–4350. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Qian, P.; Zhang, B.; Feng, M.; Wang, Y.; Zhang, X.; Wang, Q.; Zhang, Y.; Song, A. Active Terahertz Metamaterials Electrically Modulated by InGaZnO Schottky Diodes. Opt. Mater. Express 2021, 11, 2966–2974. [Google Scholar] [CrossRef]
- Deng, G.; Mo, H.; Kou, Z.; Yang, J.; Yin, Z.; Li, Y.; Lu, H. A Polyimide-Free Configuration for Tunable Terahertz Liquid-Crystal-Based Metasurface with Fast Response Time. Opt. Laser Technol. 2023, 161, 109127. [Google Scholar] [CrossRef]
- Xu, M.; Tang, B.; Lu, Y.; Zhu, C.; Lu, Q.; Zhu, C.; Zheng, L.; Zhang, J.; Han, N.; Fang, W.; et al. Machine Learning Driven Synthesis of Few-Layered WTe2 with Geometrical Control. J. Am. Chem. Soc. 2021, 143, 18103–18113. [Google Scholar] [CrossRef]
- Tang, B.; Lu, Y.; Zhou, J.; Chouhan, T.; Wang, H.; Golani, P.; Xu, M.; Xu, Q.; Guan, C.; Liu, Z. Machine Learning-Guided Synthesis of Advanced Inorganic Materials. Mater. Today 2020, 41, 72–80. [Google Scholar] [CrossRef]
- Abdelraouf, O.A.M.; Wang, Z.; Liu, H.; Dong, Z.; Wang, Q.; Ye, M.; Wang, X.R.; Wang, Q.J.; Liu, H. Recent Advances in Tunable Metasurfaces: Materials, Design, and Applications. ACS Nano 2022, 16, 13339–13369. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; Sfeir, M.Y.; Wu, Y.; Lui, C.H.; Misewich, J.A.; Heinz, T.F. Measurement of the Optical Conductivity of Graphene. Phys. Rev. Lett. 2008, 101, 196405. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Z.; Martin, M.C.; Kim, P.; Stormer, H.L.; Basov, D.N. Dirac Charge Dynamics in Graphene by Infrared Spectroscopy. Nat. Phys. 2008, 4, 532–535. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Tian, C.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y.R. Gate-Variable Optical Transitions in Graphene. Science 2008, 320, 206–209. [Google Scholar] [CrossRef]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef]
- Zhang, M.; Atkinson, K.R.; Baughman, R.H. Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology. Science 2004, 306, 1358–1361. [Google Scholar] [CrossRef]
- Endo, M.; Kim, Y.A.; Hayashi, T.; Nishimura, K.; Matusita, T.; Miyashita, K.; Dresselhaus, M.S. Vapor-Grown Carbon Fibers (VGCFs): Basic Properties and Their Battery Applications. Carbon 2001, 39, 1287–1297. [Google Scholar] [CrossRef]
- Tritrakarn, T.; Takahashi, M.; Okamura, T. Optimization of RF Coil Geometry for NMR/MRI Applications Using a Genetic Algorithm. J. Magn. Reson. 2024, 362, 107685. [Google Scholar] [CrossRef]
- Tang, H.; Menabde, S.G.; Anwar, T.; Kim, J.; Jang, M.S.; Tagliabue, G. Photo-Modulated Optical and Electrical Properties of Graphene. Nanophotonics 2022, 11, 917–940. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Zhang, H.; Xie, Y.; Zhao, W.; Zhang, Z.; Stiens, J. Design and Optimization of a Graphene-Enhanced Tunable Wire-Grid-like Polarizer Operating in the 0.5–0.75 THz Band. Diam. Relat. Mater. 2023, 138, 110177. [Google Scholar] [CrossRef]
- Wolpert, D.H. The Lack of A Priori Distinctions Between Learning Algorithms. Neural Comput. 1996, 8, 1341–1390. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Liu, J.; Chen, C.; Li, Z.; Tian, S.; Wang, J.; Zhao, W.; Stiens, J. Realization and Inverse Design of Multifunctional Steerable Transflective Linear-to-Circular Polarization Converter Empowered by Machine Learning. Electronics 2025, 14, 1164. https://doi.org/10.3390/electronics14061164
Xie Y, Liu J, Chen C, Li Z, Tian S, Wang J, Zhao W, Stiens J. Realization and Inverse Design of Multifunctional Steerable Transflective Linear-to-Circular Polarization Converter Empowered by Machine Learning. Electronics. 2025; 14(6):1164. https://doi.org/10.3390/electronics14061164
Chicago/Turabian StyleXie, Yilin, Jia Liu, Cheng Chen, Zhihao Li, Shilei Tian, Jixin Wang, Wu Zhao, and Johan Stiens. 2025. "Realization and Inverse Design of Multifunctional Steerable Transflective Linear-to-Circular Polarization Converter Empowered by Machine Learning" Electronics 14, no. 6: 1164. https://doi.org/10.3390/electronics14061164
APA StyleXie, Y., Liu, J., Chen, C., Li, Z., Tian, S., Wang, J., Zhao, W., & Stiens, J. (2025). Realization and Inverse Design of Multifunctional Steerable Transflective Linear-to-Circular Polarization Converter Empowered by Machine Learning. Electronics, 14(6), 1164. https://doi.org/10.3390/electronics14061164