Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = linear-to-circular polarization converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4379 KB  
Article
A Broadband Millimeter-Wave Circularly Polarized Folded Reflectarray Antenna Based on Transmissive Linear-to-Circular Polarization Converter
by Yue Cao, Zhuwei Wang, Qing Wang, Mingzhu Du and Miaojuan Zhang
Micromachines 2025, 16(6), 711; https://doi.org/10.3390/mi16060711 - 14 Jun 2025
Viewed by 534
Abstract
In this paper, a wideband circularly polarized folded reflectarray antenna (CPFRA) based on a transmissive linear-to-circular polarization converter is proposed. The CPFRA consists of a primary reflector and a sub-reflector. To achieve broadband performance, a metasurface-based RA element on the primary reflector surface [...] Read more.
In this paper, a wideband circularly polarized folded reflectarray antenna (CPFRA) based on a transmissive linear-to-circular polarization converter is proposed. The CPFRA consists of a primary reflector and a sub-reflector. To achieve broadband performance, a metasurface-based RA element on the primary reflector surface and a transmissive linear-to-circular polarization converter on the sub-reflector surface are applied. Moreover, the transmissive linear-to-circular polarization converter on the sub-reflector surface helps convert linear polarization to circular polarization. To verify the proposed CPFRA, a prototype is designed, fabricated, and tested. The measured results exhibit that the proposed CPFRA presents a 3 dB gain bandwidth of 27.4% and a 3 dB axial ratio bandwidth of 23%. The CPFRA achieves a peak gain of 21.2 dBi with an aperture efficiency of 27.2%. The proposed CPFRA is a promising candidate for millimeter-wave (mm-W) satellite communication applications because of its advantages of high gain, low cost, low profile, and broad bandwidth. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

12 pages, 1406 KB  
Article
Switchable THz Bi-Functional Device for Absorption and Dual-Band Linear-to-Circular Polarization Conversion Based on Vanadium Dioxide–Graphene
by Yiqu Wang, Haohan Xie, Rong Liu and Jun Dong
Sensors 2025, 25(12), 3644; https://doi.org/10.3390/s25123644 - 10 Jun 2025
Viewed by 615
Abstract
This academic paper proposes a terahertz (THz) device featuring dynamic adjustability. This device relies on composite metamaterials made of graphene and vanadium dioxide (VO2). By integrating the electrically adjustable traits of graphene with the phase transition attributes of VO2 [...] Read more.
This academic paper proposes a terahertz (THz) device featuring dynamic adjustability. This device relies on composite metamaterials made of graphene and vanadium dioxide (VO2). By integrating the electrically adjustable traits of graphene with the phase transition attributes of VO2, the suggested metamaterial device can achieve both broadband absorption and dual-band linear-to-circular polarization conversion (LCPC) in the terahertz frequency range. When VO2 is in its metallic state and the Fermi level of graphene is set to zero electron volts (eV), the device shows remarkable broadband absorption. Specifically, it attains an absorption rate exceeding 90% within the frequency span of 2.28–3.73 terahertz (THz). Moreover, the device displays notable polarization insensitivity and high resistance to changes in the incident angle. Conversely, when VO2 shifts to its insulating state and the Fermi level of graphene stays at 0 eV, the device operates as a highly effective polarization converter. It attains the best dual-band linear-to-circular polarization conversion within the frequency ranges of 4.31–5.82 THz and 6.77–7.93 THz. Following the alteration of the Fermi level of graphene, the device demonstrated outstanding adjustability. The designed multi-functional device features a simple structure and holds significant application potential in terahertz technologies, including cloaking technology, reflectors, and spatial modulators. Full article
Show Figures

Figure 1

11 pages, 6274 KB  
Article
A Low-Cost, Wide-Band, High-Gain Mechanically Reconfigurable Multi-Polarization Antenna Based on a 3-D Printed Polarizer
by Wenjie Ding, Guoda Xie, Yang Hong, Hang Yu, Chao Wang, Siliang Wang and Zhixiang Huang
Electronics 2025, 14(6), 1224; https://doi.org/10.3390/electronics14061224 - 20 Mar 2025
Viewed by 482
Abstract
This paper proposes a mechanically reconfigurable multi-polarization antenna based on a 3D-printed anisotropic dielectric polarizer, offering wide bandwidth, high gain, and extremely low cost. The working mechanism of the dielectric polarizer is analyzed, demonstrating its ability to efficiently convert linear polarization (LP) to [...] Read more.
This paper proposes a mechanically reconfigurable multi-polarization antenna based on a 3D-printed anisotropic dielectric polarizer, offering wide bandwidth, high gain, and extremely low cost. The working mechanism of the dielectric polarizer is analyzed, demonstrating its ability to efficiently convert linear polarization (LP) to circular polarization (CP) over a wide frequency range. Furthermore, the polarizer exhibits subwavelength characteristics. For a given duty cycle, its phase response depends only on the height and is independent of the aperture size. This property enables miniaturized and customized designs of the polarizer’s aperture size. Subsequently, the polarizer is placed above a Ku band waveguide and standard horn antennas. The results show that by rotating the dielectric polarizer and adjusting the positions of the antennas, right-handed CP (RHCP), left-handed CP (LHCP), and dual LP radiation switching can be achieved in the 12.4–18.0 GHz band, verifying the quad-polarization reconfigurability. Additionally, the polarizer significantly enhances the gain of the waveguide antenna by approximately 9.5 dB. Furthermore, due to the low-cost 3D printing material, the manufacturing cost of the polarizer is exceptionally low, making it suitable for applications such as anechoic chamber measurements and wireless communications. Finally, the measurement results further validate the accuracy of the simulations. Full article
Show Figures

Figure 1

16 pages, 4878 KB  
Article
Realization and Inverse Design of Multifunctional Steerable Transflective Linear-to-Circular Polarization Converter Empowered by Machine Learning
by Yilin Xie, Jia Liu, Cheng Chen, Zhihao Li, Shilei Tian, Jixin Wang, Wu Zhao and Johan Stiens
Electronics 2025, 14(6), 1164; https://doi.org/10.3390/electronics14061164 - 16 Mar 2025
Viewed by 495
Abstract
The development of polarization converters is crucial for various applications, such as communication and sensing technologies. However, traditional polarization converters often encounter challenges in optimizing performance due to the complexity of multiparameter structures. In this study, we propose a novel multiparameter linear-to-circular polarization [...] Read more.
The development of polarization converters is crucial for various applications, such as communication and sensing technologies. However, traditional polarization converters often encounter challenges in optimizing performance due to the complexity of multiparameter structures. In this study, we propose a novel multiparameter linear-to-circular polarization (LCP) converter design that addresses the difficulties of comprehensive optimization, where balancing multiple structural parameters is key to maximizing device performance. To solve this issue, we employ a machine learning (ML)-guided approach that effectively navigates the complexities of parameter interactions and optimizes the design. By utilizing the XGBoost model, we analyze a dataset of over 1.3 million parameter combinations and successfully predict high-performing designs. The results highlight that key parameters, such as the graphene Fermi level, square frame size, and VO2 conductivity, play a dominant role in determining the performance of the LCP converter. This approach not only provides new insights into the design of LCP converters but also offers a practical solution to the complex challenge of multiparameter optimization in device engineering. Full article
Show Figures

Figure 1

20 pages, 9378 KB  
Article
Ultra-Wideband Passive Polarization Conversion Metasurface for Radar Cross-Section Reduction Across C-, X-, Ku-, and K-Bands
by Xiaole Ren, Yunqing Liu, Zhonghang Ji, Qiong Zhang and Wei Cao
Micromachines 2025, 16(3), 292; https://doi.org/10.3390/mi16030292 - 28 Feb 2025
Viewed by 1360
Abstract
In this study, we present a novel ultra-wideband passive polarization conversion metasurface (PCM) that integrates double V-shaped patterns with circular split-ring resonators. Operating without any external power supply or active components, this design effectively manipulates the polarization state of incident electromagnetic waves. Numerical [...] Read more.
In this study, we present a novel ultra-wideband passive polarization conversion metasurface (PCM) that integrates double V-shaped patterns with circular split-ring resonators. Operating without any external power supply or active components, this design effectively manipulates the polarization state of incident electromagnetic waves. Numerical and experimental results demonstrate that the proposed PCM can convert incident linear polarization into orthogonal states across a wide frequency range of 7.1–22.3 GHz, encompassing the C-, X-, Ku-, and K-bands. A fabricated prototype confirms that the polarization conversion ratio (PCR) exceeds 90% throughout the specified band. Furthermore, we explore an additional application of this passive metasurface for electromagnetic stealth, wherein it achieves over 10 dB of monostatic radar cross-section (RCS) reduction from 7.6 to 21.5 GHz. This broad effectiveness is attributed to strong electromagnetic resonances between the top and bottom layers, as well as the Fabry–Pérot cavity effect, as evidenced by detailed analyses of the underlying physical mechanisms and induced surface currents. These findings confirm the effectiveness of the proposed design and highlight its potential for future technological applications, including 6G communications, radar imaging, anti-interference measures, and electromagnetic stealth. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

12 pages, 7622 KB  
Article
A Highly Efficient Plasmonic Polarization Conversion Metasurface Supporting a Large Angle of Incidence
by Bo Cheng, Zengxuan Jiang, Yuxiao Zou and Guofeng Song
Crystals 2024, 14(8), 694; https://doi.org/10.3390/cryst14080694 - 29 Jul 2024
Viewed by 1684
Abstract
The angle of incidence of the compact polarization conversion device is crucial for practical use in integrated miniaturized optical systems. However, this index is often ignored in the design of quarter-wave plate based on metasurface. Herein, it is shown that a thick metallic [...] Read more.
The angle of incidence of the compact polarization conversion device is crucial for practical use in integrated miniaturized optical systems. However, this index is often ignored in the design of quarter-wave plate based on metasurface. Herein, it is shown that a thick metallic cross-shaped hole array supports extraordinary optical transmission peaks controlled by a Fabry–Pérot (FP) resonator mode. The positions of these peaks have been proven to be independent over a large range of incidence angles. We numerically design a miniatured quarter-wave plate (QWP) with an 80 nm bandwidth (840~920 nm) and approximately 80% average efficiency capable of effectively functioning as a linear-to-circular (LTC) polarization converter at an incidence inclination angle of less than 30°. This angle-insensitive compact polarization conversion device may be significant in a new generation of integrated metasurface-based photonics devices. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

19 pages, 15223 KB  
Article
Wideband Circularly Polarization and High-Gain of a Slot Patch Array Antenna Realized by a Hybrid Metasurface
by Qiang Chen, Jun Yang, Changhui He, Di Zhang, Siyu Huang, Min Wang, Fangli Yu and Guanghua Dai
Sensors 2024, 24(11), 3510; https://doi.org/10.3390/s24113510 - 29 May 2024
Cited by 5 | Viewed by 1738
Abstract
In this paper, a patch array antenna with wideband circular polarization and high gain is proposed by utilizing a hybrid metasurface (MS). A corner-cut slotted patch antenna was chosen as the source due to the possible generation of CP mode. The hybrid MS [...] Read more.
In this paper, a patch array antenna with wideband circular polarization and high gain is proposed by utilizing a hybrid metasurface (MS). A corner-cut slotted patch antenna was chosen as the source due to the possible generation of CP mode. The hybrid MS (HMS), consisting of a receiver MS (RMS) arranged in a 2 × 2 array of squared patches and a linear-to-circular polarization conversion (LCPC) MS surrounding it was then utilized as the superstrate driven by the source. The LCPC MS cell is a squared-corner-cut patch with a 45° oblique slot etched, which has the capability for wideband LCPC. The LCPC unit cell possesses wideband PC capabilities, as demonstrated by the surface current analysis and S-parameter simulations conducted using a Floquet–port setup. The LP EM wave radiated by the source antenna was initially received by the RMS, then converted to a CP wave as it passed through the LCPC MS, and ultimately propagated into space. To further enhance the LCPC properties, an improved HMS (IHMS) was then proposed with four cells cut at the corners, based on the original HMS design. To verify this design, both CMA and E-field were utilized to analyze the three MSs, indicating that the IHMS possessed a wideband LCPC capability compared to the other two MSs. The proposed antenna was then arranged in a 2 × 2 array with sequential rotation to further enhance its properties. As demonstrated by the measurements, the array antenna achieved an S11 bandwidth of 60.5%, a 3 dB AR bandwidth of 2.85 GHz, and a peak gain of 15.1 dBic, all while maintaining a low profile of only 0.09λ0. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

15 pages, 10765 KB  
Article
Dual-Polarization Conversion and Coding Metasurface for Wideband Radar Cross-Section Reduction
by Saima Hafeez, Jianguo Yu, Fahim Aziz Umrani, Yibo Huang, Wang Yun and Muhammad Ishfaq
Photonics 2024, 11(5), 454; https://doi.org/10.3390/photonics11050454 - 11 May 2024
Cited by 5 | Viewed by 2177
Abstract
Modern stealth application systems require integrated meta-devices to operate effectively and have gained significant attention recently. This research paper proposes a 1-bit coding metasurface (CM) design. The fundamental component of the proposed CM is integrated to convert linearly polarized incoming electromagnetic waves into [...] Read more.
Modern stealth application systems require integrated meta-devices to operate effectively and have gained significant attention recently. This research paper proposes a 1-bit coding metasurface (CM) design. The fundamental component of the proposed CM is integrated to convert linearly polarized incoming electromagnetic waves into their orthogonal counterpart within frequency bands of 12.37–13.03 GHz and 18.96–32.37 GHz, achieving a polarization conversion ratio exceeding 99%. Furthermore, it enables linear-to-circular polarization conversion from 11.80 to 12.29, 13.17 to 18.44, and 33.33 to 40.35 GHz. A second element is produced by rotating a fundamental component by 90°, introducing a phase difference of π (pi) between them. Both elements are arranged in an array using a random aperiodic coding sequence to create a 1-bit CM for reducing the radar cross-section (RCS). The planar structure achieved over 10 dB RCS reduction for polarized waves in the frequency bands of 13.1–13.8 GHz and 20.4–30.9 GHz. A prototype was fabricated and tested, with the experimental results showing a good agreement with the simulated outcomes. The proposed design holds potential applications in radar systems, reflector antennas, stealth technologies, and satellite communication. Full article
Show Figures

Figure 1

14 pages, 8482 KB  
Article
A Multiband and Multifunctional Metasurface for Linear and Circular Polarization Conversion in Reflection Modes
by Saima Hafeez, Jianguo Yu, Fahim Aziz Umrani, Wang Yun and Muhammad Ishfaq
Crystals 2024, 14(3), 266; https://doi.org/10.3390/cryst14030266 - 8 Mar 2024
Cited by 3 | Viewed by 2208
Abstract
Multifunctional integrated meta-devices are the demand of modern communication systems and are given a lot of attention nowadays. Most of the research has focused on either cross-polarization conversion (CPC) or linear-to-circular (LP–CP) conversion. However, simultaneously realizing multiple bands with good conversion efficiency remains [...] Read more.
Multifunctional integrated meta-devices are the demand of modern communication systems and are given a lot of attention nowadays. Most of the research has focused on either cross-polarization conversion (CPC) or linear-to-circular (LP–CP) conversion. However, simultaneously realizing multiple bands with good conversion efficiency remains crucial. This paper proposes a multiband and multifunctional dual reflective polarization converter surface capable of converting a linearly polarized (LP) wave into a circularly polarized (CP) wave, in frequency bands of 12.29–12.63 GHz, 16.08–24.16 GHz, 27.82–32.21 GHz, 33.75–38.74 GHz, and 39.70–39.79 GHz, with 3 dB axial ratio bandwidths of 2.7%, 40.15%, 14.6%, 13.76%, and 0.2%, respectively. Moreover, the converter is capable of achieving CPC with a polarization conversion ratio (PCR) that exceeds 95%, within the frequency ranges of 13.10–14.72 GHz, 25.43–26.00, 32.46–32.56 GHz, and 39.14–39.59 GHz. In addition, to identify the fundamental cause of the CPC and LP–CP conversion, a comprehensive theoretical investigation is provided. Furthermore, the surface current distribution patterns at different frequencies are investigated to analyze the conversion phenomena. A sample prototype consisting of 20 × 20 unit cells was fabricated and measured, verifying our design and the simulated results. The proposed structure has potential applications in satellite communications, radar, stealth technologies, and reflector antennas. Full article
(This article belongs to the Special Issue Anisotropic Acoustic Metamaterials)
Show Figures

Figure 1

13 pages, 20804 KB  
Article
A Low Profile Wideband Linear to Circular Polarization Converter Metasurface with Wide Axial Ratio and High Ellipticity
by Babar Hayat, Jinling Zhang, Abdul Majeed, Muhammad Ishfaq, Adil Khan and Shabeer Ahmad
Electronics 2024, 13(2), 352; https://doi.org/10.3390/electronics13020352 - 14 Jan 2024
Cited by 4 | Viewed by 2526
Abstract
This paper introduces an ultra-wideband (UWB) reflective metasurface that exhibits the characteristics of a linear to circular (LTC) polarization conversion. The LTC polarization conversion is an orthotropic pattern comprising two equal axes, v and u, which are mutually orthogonal. Additionally, it possesses [...] Read more.
This paper introduces an ultra-wideband (UWB) reflective metasurface that exhibits the characteristics of a linear to circular (LTC) polarization conversion. The LTC polarization conversion is an orthotropic pattern comprising two equal axes, v and u, which are mutually orthogonal. Additionally, it possesses a 45° rotation with respect to the y-axis which extends vertically. The observed unit cell of the metasurface resembles a basic dipole shape. The converter has the capability to transform LP (linear polarized) waves into CP (circular polarized) waves within the frequency range 15.41–25.23 GHz. The band that contains its 3dB axial ratio lies within 15.41–25.23 GHz, which corresponds to an axial ratio (AR) bandwidth of 49.1%, and the resulting circular polarized wave is specifically a right-hand circular polarization (RHCP). Additionally, an LTC polarization conversion ratio (PCR) of over 98% is achieved within the frequency range between 15 and 24 GHz. A thorough theoretical investigation was performed to discover the underlying mechanism of the LTC polarization conversion. The phase difference Δφμν among the reflection coefficients of both the v- as well as the u-polarized incidences is approximately ±90° that is accurately predictive of the AR of the reflected wave. This study highlights that the reflective metasurfaces can be used as an efficient LTC polarization conversion when the Δφμν approaches ±90°. The performance of the proposed metasurface enables versatile applications, especially in antenna design and polarization devices, through LTC polarization conversion. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

13 pages, 4611 KB  
Article
A Metasurface-Based LTC Polarization Converter with S-Shaped Split Ring Resonator Structure for Flexible Applications
by Erfeng Li, Xue Jun Li, Boon-Chong Seet, Adnan Ghaffar and Aayush Aneja
Sensors 2023, 23(14), 6268; https://doi.org/10.3390/s23146268 - 10 Jul 2023
Cited by 5 | Viewed by 1872
Abstract
This paper presents a metasurface-based linear-to-circular polarization converter with a flexible structure for conformal and wearable applications. The converter consists of nested S- and C-shaped split ring resonators in the unit cell and can convert linearly polarized incident waves into left-handed circularly polarized [...] Read more.
This paper presents a metasurface-based linear-to-circular polarization converter with a flexible structure for conformal and wearable applications. The converter consists of nested S- and C-shaped split ring resonators in the unit cell and can convert linearly polarized incident waves into left-handed circularly polarized ones at 12.4 GHz. Simulation results show that the proposed design has a high polarization conversion rate and efficiency at the operating frequency. Conformal tests are also conducted to evaluate the performance under curvature circumstances. A minor shift in the operating frequency is observed when the converter is applied on a sinusoidal wavy surface. Full article
(This article belongs to the Special Issue Advanced Antenna Design Methods for 5G and 6G Applications)
Show Figures

Figure 1

15 pages, 8014 KB  
Article
A Novel High-Power Rotary Waveguide Phase Shifter Based on Circular Polarizers
by Qinghe Zhuang, Feng Yan, Zhengfeng Xiong, Meng Yang and Min Liu
Electronics 2023, 12(13), 2963; https://doi.org/10.3390/electronics12132963 - 5 Jul 2023
Cited by 5 | Viewed by 2691
Abstract
This paper presents a novel high-power rotary waveguide phase shifter based on circular polarizers specifically engineered for high-power microwave (HPM) applications. The phase shifter is capable of performing a precise 360° linear phase shift through rotation and consists of three parts: a linearly [...] Read more.
This paper presents a novel high-power rotary waveguide phase shifter based on circular polarizers specifically engineered for high-power microwave (HPM) applications. The phase shifter is capable of performing a precise 360° linear phase shift through rotation and consists of three parts: a linearly polarized to left-handed circularly polarized (LP-LHCP) mode converter, a left-handed to right-handed circularly polarized (LH-RHCP) mode converter, and a linearly polarized to right-handed circularly polarized (LP-RHCP) mode converter. This paper analyzes the phase-shifting principle, optimizes the three parts of the X-band rotary waveguide phase shifter, and conducts simulation studies on the entire phase shifter, which is made of aluminum. The results show that the reflection is less than −20 dB and the insertion loss is below 0.3 dB within 9.5 GHz to 10.2 GHz. The phase shift is equal to twice the rotation angle within this frequency range. Specifically, the phase shifter can achieve a linear phase shift of 360° when rotated from 0° to 180°, with a maximum deviation of less than 1.2°. Moreover, the power-handling capacity of the phase shifter in vacuum exceeds 242 MW. In the meantime, a prototype of a phase shifter was manufactured, and the experimental results are in good agreement with the simulation results. Full article
(This article belongs to the Special Issue Advanced RF, Microwave Engineering, and High-Power Microwave Sources)
Show Figures

Figure 1

12 pages, 9277 KB  
Article
Transmission-Reflection-Integrated Multifunctional Passive Metasurface for Entire-Space Electromagnetic Wave Manipulation
by Shunlan Zhang, Weiping Cao, Tiesheng Wu, Jiao Wang, Heng Li, Yanliang Duan, Haoyu Rong and Yulong Zhang
Materials 2023, 16(12), 4242; https://doi.org/10.3390/ma16124242 - 8 Jun 2023
Cited by 4 | Viewed by 1910
Abstract
In recent years, many intriguing electromagnetic (EM) phenomena have come into being utilizing metasurfaces (MSs). However, most of them operate in either transmission or reflection mode, leaving the other half of the EM space completely unmodulated. Here, a kind of transmission-reflection-integrated multifunctional passive [...] Read more.
In recent years, many intriguing electromagnetic (EM) phenomena have come into being utilizing metasurfaces (MSs). However, most of them operate in either transmission or reflection mode, leaving the other half of the EM space completely unmodulated. Here, a kind of transmission-reflection-integrated multifunctional passive MS is proposed for entire-space electromagnetic wave manipulation, which can transmit the x-polarized EM wave and reflect the y-polarized EM wave from the upper and lower space, respectively. By introducing an H-shaped chiral grating-like micro-structure and open square patches into the unit, the MS acts not only as an efficient converter of linear-to-left-hand circular (LP-to-LHCP), linear-to-orthogonal (LP-to-XP), and linear-to-right-hand circular (LP-to-RHCP) polarization within the frequency bands of 3.05–3.25, 3.45–3.8, and 6.45–6.85 GHz, respectively, under the x-polarized EM wave, but also as an artificial magnetic conductor (AMC) within the frequency band of 12.6–13.5 GHz under the y-polarized EM wave. Additionally, the LP-to-XP polarization conversion ratio (PCR) is up to −0.52 dB at 3.8 GHz. To discuss the multiple functions of the elements to manipulate EM waves, the MS operating in transmission and reflection modes is designed and simulated. Furthermore, the proposed multifunctional passive MS is fabricated and experimentally measured. Both measured and simulated results confirm the prominent properties of the proposed MS, which validates the design’s viability. This design offers an efficient way to achieve multifunctional meta-devices, which may have latent applications in modern integrated systems. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

13 pages, 4737 KB  
Article
Numerical Simulations of Circular Dichroism and Polarization Conversion in VO2-Based Terahertz Metamaterials
by Gui Jin, Yi Ren and Bin Tang
Crystals 2023, 13(3), 437; https://doi.org/10.3390/cryst13030437 - 3 Mar 2023
Cited by 8 | Viewed by 2529
Abstract
Metamaterials with actively tunable functionalities are highly desirable for applications of advanced optoelectronic devices. In this paper, we theoretically present a metamaterial with diversified functionalities by availing of the phase transition characteristics of vanadium dioxide (VO2) in terahertz frequency regions. The [...] Read more.
Metamaterials with actively tunable functionalities are highly desirable for applications of advanced optoelectronic devices. In this paper, we theoretically present a metamaterial with diversified functionalities by availing of the phase transition characteristics of vanadium dioxide (VO2) in terahertz frequency regions. The research results demonstrate that the function of the designed metamaterial can be switched from giant circular dichroism (CD) to a reflecting broadband half-wave plate (HWP) and a quarter-wave plate (QWP). When VO2 is in the isolating state, the metamaterial exhibits a quite distinct transmission efficiency for circularly polarized lights, thus resulting in a maximum CD value ~0.97 at the resonant frequency. When VO2 is operating in the metallic state, the metamaterial performs like a broadband HWP, in which the nearly perfect linear polarization conversion can be achieved at the frequency range from 3 to 7 THz. Moreover, the structure can play a role of a high-efficiency QWP that can simultaneously convert the incident linear polarized light to left-handed and right-handed circularly polarized light. The calculated ellipticity indicates a good polarization conversion at the frequency of 2.4 THz and 7.4 THz, respectively. The physical mechanism of the discussed features and effects can be explained by exploring the electric field distributions. Furthermore, the structural parameters also exert great influences for achieving giant CD and HWP as well as QWP. The proposed metamaterial may offer a new approach for designing metamaterial devices with multi-functions in THz regions. Full article
Show Figures

Figure 1

14 pages, 9910 KB  
Article
Cheaper, Wide-Band, Ultra-Thin, and Multi-Purpose Single-Layer Metasurface Polarization Converter Design for C-, X-, and Ku-Band Applications
by Yunus Kaya
Symmetry 2023, 15(2), 442; https://doi.org/10.3390/sym15020442 - 7 Feb 2023
Cited by 11 | Viewed by 2607
Abstract
This article presents the design of wide-band, ultra-thin, and multi-purpose polarization converter utilizing metasurface for C-, X-, and Ku-band applications. Having a topology on a FR-4 substrate with metasurface metallic patterns on the front and an all-metallic surface finish on the back, the [...] Read more.
This article presents the design of wide-band, ultra-thin, and multi-purpose polarization converter utilizing metasurface for C-, X-, and Ku-band applications. Having a topology on a FR-4 substrate with metasurface metallic patterns on the front and an all-metallic surface finish on the back, the unit cell of converter design has symmetry in the xy plane with unique features of having both linear polarization (LP) and circular polarization (CP) property. While the polarization conversion ratio (PCR) of converter in normal incidence case is more than 90% in three different frequency bands of 6.46–6.78 GHz, 10.52–11.85 GHz, and 16.49–17.37 GHz, it shows linear-to-linear polarization feature and a linear-to-circular polarization feature with left-handed circular polarization (LHCP) for the frequency range between 7.28 and 9.40 GHz and right-handed circular polarization (RHCP) for the frequency range between 13.38 and 15.19 GHz. It is also seen that the converter has a PCR value of around 90% for oblique incidence case with incidence angles up to 45°. Extensive simulations have been conducted to prove the performance of suggested converter with the aid of a commercially-available simulation platform, called CST Microwave Studio. The advantages of suggested polarization converter are low-cost, wide-band, ultra-thin, and having both LP and CP conversion in C-, X-, and Ku-bands. Full article
(This article belongs to the Special Issue Metamaterials and Symmetry: Recent Advances and Applications)
Show Figures

Figure 1

Back to TopTop