Two-Dimensional Electronics — Prospects and Challenges
1. Introduction
2. From Graphene to Beyond Graphene
3. The Present Special Issue
4. Outlook
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.; Marchenkov, A.N.; Conrad, E.H.; First, P.N.; et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916. [Google Scholar] [CrossRef]
- Web of Science. Available online: http://apps.webofknowledge.com/ (accessed on 2 June 2016).
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Lemme, M.C.; Echtermeyer, T.J.; Baus, M.; Kurz, H. A graphene field-effect device. IEEE Electron Device Lett. 2007, 28, 282–284. [Google Scholar] [CrossRef]
- Han, S.-J.; Valdes-Garcia, A.; Bol, A.A.; Franklin, A.D.; Farmer, D.; Kratschmer, E.; Jenkins, K.A.; Haensch, W. Graphene technology with inverted-T gate and RF passives on 200 mm platform. Tech. Dig. IEDM 2011, 19–22. [Google Scholar]
- Schwierz, F. Graphene Transistors: Status, Prospects, and Problems. Proc. IEEE 2013, 101, 1567–1584. [Google Scholar] [CrossRef]
- Lemme, M.C.; Li, L.; Palacios, T.; Schwierz, F. Two-dimensional materials for electronic applications. MRS Bull. 2014, 39, 711–718. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.Z.; Hollen, S.M.; Cao, L.; Gupta, J.A.; Gutierrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; Johnston-Halperin, E.; et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926. [Google Scholar] [CrossRef] [PubMed]
- Miro, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554. [Google Scholar] [CrossRef] [PubMed]
- Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261–8283. [Google Scholar] [CrossRef] [PubMed]
- Kuc, A.; Heine, T. On the stability and electronic structure of transition-metal dichalcogenide monolayer alloys Mo1-xXxS2-ySey with X = W, Nb. Electronics 2016, 5, 1. [Google Scholar] [CrossRef]
- Khan, A.I.; Navid, I.A.; Noshin, M.; Uddin, H.M.A.; Hossain, F.F.; Subrina, S. Equilibrium molecular dynamics (MD) simulation study of thermal conductivity of graphene nanoribbon: A comparative study on MD potentials. Electronics 2015, 4, 1109–1124. [Google Scholar] [CrossRef]
- Nanmeni Bondja, C.; Geng, Z.; Granzner, R.; Pezoldt, J.; Schwierz, F. Simulation of 50-nm gate graphene nanoribbon transistors. Electronics 2016, 5, 3. [Google Scholar] [CrossRef]
- Frégonèse, S.; Venica, S.; Driussi, F.; Zimmer, T. Electrical compact modeling of graphene base transistors. Electronics 2015, 4, 969–978. [Google Scholar] [CrossRef]
- Banadaki, Y.M.; Srivastava, A. Effect of edge roughness on static characteristics of graphene nanoribbon field effect transistor. Electronics 2016, 5, 11. [Google Scholar] [CrossRef]
- Fursey, G.; Konorov, P.; Yafyasov, A. Dimensional quantization and the resonance concept of the low-threshold field emission. Electronics 2015, 4, 1101–1108. [Google Scholar] [CrossRef]
- Natsuki, T. Theoretical analysis of vibration frequency of graphene sheets used as nanomechanical mass sensor. Electronics 2015, 4, 723–738. [Google Scholar] [CrossRef]
- Li, J.; Östling, M. Scalable fabrication of 2D semiconducting crystals for future electronics. Electronics 2015, 4, 1033–1061. [Google Scholar] [CrossRef]
- Bablich, A.; Kataria, S.; Lemme, M.C. Graphene and two-dimensional materials for optoelectronic applications. Electronics 2016, 5, 13. [Google Scholar] [CrossRef]
- Yogeesh, M.N.; Parrish, K.N.; Lee, J.; Park, S.; Tao, L.; Akinwande, D. Towards the realization of graphene based flexible radio frequency receiver. Electronics 2015, 4, 933–946. [Google Scholar] [CrossRef]
- Rubio-Bollinger, G.; Guerrero, R.; Perez de Lara, D.; Quereda, J.; Vaquero-Garzon, L.; Agrait, N.; Bratschitsch, R.; Castellanos-Gomez, A. Enhanced visibility of MoS2, MoSe2, WSe2 and black-phosphorus: Making optical identification of 2D semiconductors easier. Electronics 2015, 4, 847–856. [Google Scholar] [CrossRef]
- Varghese, S.S.; Varghese, S.H.; Swaminathan, S.; Singh, K.K.; Mittal, V. Two-dimensional materials for sensing: Graphene and beyond. Electronics 2015, 4, 651–687. [Google Scholar] [CrossRef]
- Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678. [Google Scholar] [CrossRef] [PubMed]
- China’s Rising Forte: Graphene. Available online: http://www.samaterials.com/content/27-chinas-rising-forte-graphene (accessed on 2 June 2016).
- Graphene-based Chinese smartphone technology could ‘boost battery life by 50 percent’. Available online: http://www.scmp.com/lifestyle/technology/article/1730067/graphene-based-chinese-smartphone-technology-could-boost (accessed on 2 June 2016).
- Kroemer, H. Nano-whatever: Do we really know where we are heading? Phys. Status Solidi (a) 2005, 202, 957–964. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwierz, F. Two-Dimensional Electronics — Prospects and Challenges. Electronics 2016, 5, 30. https://doi.org/10.3390/electronics5020030
Schwierz F. Two-Dimensional Electronics — Prospects and Challenges. Electronics. 2016; 5(2):30. https://doi.org/10.3390/electronics5020030
Chicago/Turabian StyleSchwierz, Frank. 2016. "Two-Dimensional Electronics — Prospects and Challenges" Electronics 5, no. 2: 30. https://doi.org/10.3390/electronics5020030
APA StyleSchwierz, F. (2016). Two-Dimensional Electronics — Prospects and Challenges. Electronics, 5(2), 30. https://doi.org/10.3390/electronics5020030