An Improved Weighted K-Nearest Neighbor Algorithm for Indoor Localization
Abstract
:1. Introduction
2. The Proposed Algorithm
2.1. The Improved Weighted K-Nearest Neighbor Algorithm Based on Spatial Distance and Physical Distance of RSS
- (1)
- Distances and original weights calculation
- (2)
- RPs’ selection and weights recalculation
- (3)
- Position calculation
2.2. Evaluation Indicators of Positioning Performance
3. Experiments and Results
3.1. Experimental Setup
3.2. Experimental Result Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, D.; Wang, H.; Xia, Q.; Jiang, C. A Low-Cost Method of Improving the GNSS/SINS Integrated Navigation System Using Multiple Receivers. Electronics 2020, 9, 1079. [Google Scholar] [CrossRef]
- Mahfouz, M.R.; Fathy, A.E.; Kuhn, M.J.; Wang, Y. Recent trends and advances in UWB positioning. In Proceedings of the IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID (IMWS 2009-Croatia), Cavtat, Croatia, 1–4 November 2009. [Google Scholar] [CrossRef]
- Huang, C.; Lee, L.; Ho, C.; Wu, L.; Lai, Z. Real-time RFID indoor positioning system based on Kalman-filter drift removal and heron-bilateration location estimation. IEEE Trans. Instrum. Meas. 2015, 64, 728–739. [Google Scholar] [CrossRef]
- Tran, H.; Ha, C. Fingerprint-Based Indoor Positioning System Using Visible Light Communication—A Novel Method for Multipath Reflections. Electronics 2019, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Piasco, N.; Sidibé, D.; Demonceaux, C.; Gouet-Brunet, V. A survey on Visual-Based Localization: On the benefit of heterogeneous data. Pattern Recognit. 2018, 74, 90–109. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, X.; Zhao, Y.; Liu, Y.; Cuthbert, L. Bluetooth positioning using RSSI and triangulation methods. In Proceedings of the 2013 IEEE 10th Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 837–842 March 2013. [Google Scholar] [CrossRef]
- Chen, R.; Chen, W.; Chen, X.; Zhang, X.; Chen, Y.W. Sensing strides using EMG signal for pedestrian navigation. GPS Solut. 2010, 15, 161–170. [Google Scholar] [CrossRef]
- Chen, W.; Chen, R.; Chen, X.; Zhang, X.; Chen, Y.; Wang, J.; Fu, Z. Comparison of EMG-based and accelerometer-based speed estimation methods in pedestrian dead reckoning. J. Navig. 2011, 64, 265–280. [Google Scholar] [CrossRef]
- Moreira, A.; Silva, I.; Meneses, F.; Nicolau, M.J.; Pendão, C.; Torres-Sospedra, J. Multiple simultaneous WiFi measurements in fingerprinting indoor positioning. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, J.; Yang, F.; Niu, X.; Li, L.; Wang, Z.; Chen, R. A Bayesian Density Model Based Radio Signal Fingerprinting Positioning Method for Enhanced Usability. Sensors 2018, 18, 4063. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.; Kmiecik, C.; Hartnett, R.; Thompson, P.; Mendoza, J.; Nguyen, H. Spread Spectrum Indoor Geolocation. Navigation 1998, 45, 97–102. [Google Scholar] [CrossRef]
- Yamasaki, R.; Ogino, A.; Tamaki, T.; Uta, T.; Matsuzawa, N.; Kato, T. TDOA location system for IEEE 802.11b WLAN. In Proceedings of the IEEE Wireless Communications and Networking Conference, New Orleans, LA, USA, 13–17 March 2005. [Google Scholar] [CrossRef]
- Kim, H. Double-sided two-way ranging algorithm to reduce ranging time. IEEE Commun. Lett. 2009, 13, 486–488. [Google Scholar] [CrossRef]
- Yu, K.; Guo, Y. Statistical NLOS Identification Based on AOA, TOA, and Signal Strength. IEEE Trans. Veh. Technol. 2009, 58, 274–286. [Google Scholar] [CrossRef]
- Tian, X.; Shen, R.; Liu, D.; Wen, Y.; Wang, X. Performance analysis of RSS fingerprinting based indoor localization. IEEE Trans. Mob. Comput. 2017, 16, 2847–2861. [Google Scholar] [CrossRef]
- Le Dortz, N.; Gain, F.; Zetterberg, P. Wi-Fi Fingerprint Indoor Positioning System Using Probability Distribution Comparison. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 2301–2304. [Google Scholar] [CrossRef]
- Berkvens, R.; Peremans, H.; Weyn, M. Conditional Entropy and Location Error in Indoor Localization Using Probabilistic Wi-Fi Fingerprinting. Sensors 2016, 16, 1636. [Google Scholar] [CrossRef] [PubMed]
- Bahl, P.; Padmanabhan, V.N. Radar: An in-building RF-based user location, and tracking system. In Proceedings of the IEEE INFOCOM 2000, Tel Aviv, Israel, 775–784 August 2000. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, M.; Meng, W.; Ma, L. Optimal KNN positioning algorithm via theoretical accuracy criterion in WLAN indoor environment. In Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA, 6–10 December 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Brunato, M.; Battiti, R. Statistical learning theory for location fingerprinting in wireless lans. Comput. Netw. 2005, 47, 825–845. [Google Scholar] [CrossRef] [Green Version]
- Kaemarungsi, K.; Krishnamurthy, P. Analysis of WLAN’s received signal strength indication for indoor location fingerprinting. Pervasive Mob. Comput. 2012, 8, 292–316. [Google Scholar] [CrossRef]
- Ashraf, I.; Hur, S.; Park, Y. Indoor Positioning on Disparate Commercial Smartphones Using Wi-Fi Access Points Coverage Area. Sensors 2019, 19, 4351. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, U.; Hur, S.; Park, S.; Park, Y. Harvesting Indoor Positioning Accuracy by Exploring Multiple Features from Received Signal Strength Vector. IEEE Access 2019, 7, 52110–52121. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Zhao, Q.; Lin, X. A novel approach for fingerprint positioning based on spatial diversity. In Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering, Chengdu, China, 20–22 August 2010; pp. 441–445. [Google Scholar] [CrossRef]
- Xue, W.; Qiu, W.; Hua, X.; Yu, K. Improved Wi-Fi RSSI measurement for indoor localization. IEEE Sens. J. 2017, 17, 2224–2230. [Google Scholar] [CrossRef]
- Xue, W.; Hua, X.; Li, Q.; Yu, K. A new weighted algorithm based on the uneven spatial resolution of RSSI for indoor localization. IEEE Access 2018, 6, 26588–26595. [Google Scholar] [CrossRef]
- Hu, J.; Liu, D.; Yan, Z.; Liu, H. Experimental analysis on weight k-nearest neighbor indoor fingerprint positioning. IEEE Internet Things J. 2018, 6, 891–897. [Google Scholar] [CrossRef]
- Ma, R.; Guo, Q.; Hu, C.; Xue, J. An improved Wi-Fi indoor positioning algorithm by weighted fusion. Sensors 2015, 15, 21824–21843. [Google Scholar] [CrossRef]
- Guo, G.; Chen, R.; Ye, F.; Chen, L.; Pan, Y.; Liu, M.; Cao, Z. A pose awareness solution for estimating pedestrian walking speed. Remote. Sens. 2018, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Monica, S.; Bergenti, F. An Algorithm for Accurate and Robust Indoor Localization Based on Nonlinear Programming. Electronics 2020, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sospedra, J.; Montoliu, R.; Trilles, G.; Belmonte, O.; Huerta, J. Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems. Expert Syst. Appl. 2015, 42, 9263–9278. [Google Scholar] [CrossRef]
- Sharp, I.; Yu, K. Wireless Positioning: Principles and Practice; Springer: Berlin/Heidelberg, Germany, 2018; pp. 225–239. ISBN 978-981-10-8791-2. [Google Scholar]
- Yu, K.; Guo, Y. Improved positioning algorithms for nonline-of-sight environments. IEEE Trans. Veh. Technol. 2008, 57, 2342–2353. [Google Scholar] [CrossRef]
- Nguyen, C.L.; Georgiou, O.; Yonezawa, Y.; Doi, Y. The wireless localization matching problem. IEEE Internet Things J. 2017, 4, 1312–1326. [Google Scholar] [CrossRef]
- Andersen, J.; Rappaport, T.; Yoshida, S. Propagation measurements and models for wireless communications channels. IEEE Commun. Mag. 1995, 33, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Joshi, P.; Colombi, D.; Thors, B.; Larsson, L.; Törnevik, C. Output power levels of 4G user equipment and implications on realistic RF EMF exposure assessments. IEEE Access 2017, 5, 4545–4550. [Google Scholar] [CrossRef]
- Saleh, A.; Valenzuela, R. A Statistical. Model for Indoor Multipath Propagation. IEEE J. Sel. Areas Commun. 1987, 5, 128–137. [Google Scholar] [CrossRef]
- Seidel, S.; Rappaport, T. 914 MHz Path Loss Prediction Models for Indoor Wireless Communications in Multifloored Buildings. IEEE Trans. Antennas Propag. 1992, 40, 207–217. [Google Scholar] [CrossRef] [Green Version]
K | Numbers of RPs Selected by PD | Numbers of RPs Selected by SD | Numbers of Common RPs | |
---|---|---|---|---|
3 | 20, 18, 13 | 20, 18, 13 | 20, 18, 13 | 3 |
4 | 20, 18, 13, 21 | 20, 18, 13, 15 | 20, 18, 13 | 3 |
5 | 20, 18, 13, 21, 2 | 20, 18, 13, 15, 21 | 20, 18, 13, 21 | 4 |
… | …. | … | … | … |
9 | 20, 18, 13, 21, 2, 37, 15, 31, 5 | 20, 18, 13, 15, 21, 12, 10, 23, 31 | 20, 18, 13, 15, 21, 31 | 6 |
10 | 20, 18, 13, 21, 2, 37, 15, 31, 5, 4 | 20, 18, 13, 15, 21, 12, 10, 23, 31, 4 | 20, 18, 13, 15, 21, 31, 4 | 7 |
Algorithm | ME (m) | RMSE (m) | STD (m) | 90th (m) |
---|---|---|---|---|
KNN | 3.09 | 3.60 | 1.83 | 5.23 |
E-WKNN | 2.85 | 3.25 | 1.55 | 4.88 |
M-WKNN | 3.00 | 3.47 | 1.74 | 5.55 |
P-WKNN | 2.75 | 3.16 | 1.55 | 4.77 |
Proposed | 2.18 | 2.59 | 1.40 | 3.98 |
Algorithm | ME (m) | RMSE (m) | STD (m) | 90th (m) |
---|---|---|---|---|
SAWKNN | 2.36 | 2.93 | 1.73 | 4.75 |
Two-P-WKNN | 2.80 | 3.21 | 1.57 | 4.95 |
Proposed | 2.18 | 2.59 | 1.40 | 3.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Chen, R.; Yu, K.; Ye, F.; Xue, W. An Improved Weighted K-Nearest Neighbor Algorithm for Indoor Localization. Electronics 2020, 9, 2117. https://doi.org/10.3390/electronics9122117
Peng X, Chen R, Yu K, Ye F, Xue W. An Improved Weighted K-Nearest Neighbor Algorithm for Indoor Localization. Electronics. 2020; 9(12):2117. https://doi.org/10.3390/electronics9122117
Chicago/Turabian StylePeng, Xuesheng, Ruizhi Chen, Kegen Yu, Feng Ye, and Weixing Xue. 2020. "An Improved Weighted K-Nearest Neighbor Algorithm for Indoor Localization" Electronics 9, no. 12: 2117. https://doi.org/10.3390/electronics9122117
APA StylePeng, X., Chen, R., Yu, K., Ye, F., & Xue, W. (2020). An Improved Weighted K-Nearest Neighbor Algorithm for Indoor Localization. Electronics, 9(12), 2117. https://doi.org/10.3390/electronics9122117