QPSK MMW Wireless Communication System Based On p-i-n InGaAs Photomixer
Abstract
:1. Introduction
2. CW THz Wave Generation by Photomixing: General Approach
3. Experimental Setup
3.1. Optical and Receiver Channel
3.2. MMW Generator and Transmitter: InGaAs p-i-n Photomixer
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nagatsuma, T.; Kato, K. Photonically-Assisted 300-GHz Wireless Link for Real-Time 100-Gbit/s Transmission. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014. [Google Scholar]
- Seeds, A.J.; Williams, K.J. Microwave Photonics. J. Light. Technol. 2006, 24, 4628–4641. [Google Scholar] [CrossRef]
- Shams, H.; Fice, M.J.; Balakier, K.; Renaud, C.C.; Seeds, A.J.; van Dijk, F. Multichannel 200 GHz 40 Gb/s Wireless Communication System Using Photonic Signal Generation. In Proceedings of the Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP) 2014 International Topical Meeting on, Sendai, Japan, 20–23 October 2014. [Google Scholar]
- Li, X.; Yu, J.; Zhang, J.; Dong, Z.; Li, F.; Chi, N. A 400G Optical Wireless Integration Delivery System. Opt. Express 2013, 21, 18812. [Google Scholar] [CrossRef]
- Pliński, E. Terahertz Photomixer. Bull. Polish Acad. Sci. Tech. Sci. 2010, 58, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Preu, S.; Dhler, G.H.; Malzer, S.; Wang, L.J.; Gossard, A.C. Tunable, Continuous-Wave Terahertz Photomixer Sources and Applications. J. Appl. Phys. 2011, 109, 061301. [Google Scholar] [CrossRef]
- Safian, R.; Ghazi, G.; Mohammadian, N. Review of Photomixing Continuous-Wave Terahertz Systems and Current Application Trends in Terahertz Domain. Opt. Eng. 2019, 58, 110901. [Google Scholar] [CrossRef] [Green Version]
- Hen, L.; Jiao, Y.; Yao, W.; Cao, Z.; van Engelen, J.P.; Roelkens, G.; Smit, M.K.; van der Tol, J.J.G.M. High-Bandwidth Uni-Traveling Carrier Waveguide Photodetector on an InP-Membrane-on-Silicon Platform. Opt. Express 2016, 24, 8290. [Google Scholar]
- Jia, S.; Yu, X.; Hu, H.; Yu, J.; Morioka, T.; Jepsen, P.U.; Oxenlowe, L.K. THz Wireless Transmission Systems Based on Photonic Generation of Highly Pure Beat-Notes. IEEE Photonics J. 2016, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; Caballero, A.; Dogadaev, A.; Arlunno, V.; Borkowski, R.; Pedersen, J.S.; Deng, L.; Karinou, F.; Roubeau, F.; Zibar, D.; et al. 100 Gbit/s Hybrid Optical Fiber-Wireless Link in the W-Band (75–110 GHz). Opt. Express 2011, 19, 24944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenig, S.; Boes, F.; Lopez-Diaz, D.; Antes, J.; Henneberger, R.; Schmogrow, R.; Hillerkuss, D.; Palmer, R.; Zwick, T.; Koos, C.; et al. 100 Gbit/s Wireless Link with Mm-Wave Photonics. In Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, Anaheim, CA, USA, 17–21 March 2013. [Google Scholar]
- Antes, J.; Koenig, S.; Lopez-Diaz, D.; Boes, F.; Tessmann, A.; Henneberger, R.; Ambacher, O.; Zwick, T.; Kallfass, I. Transmission of an 8-PSK Modulated 30 Gbit/s Signal Using an MMIC-Based 240 GHz Wireless Link. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013. [Google Scholar]
- Andriolli, N.; Fresi, F.; Bontempi, F.; Malacarne, A.; Meloni, G.; Klamkin, J.; Poti, L.; Contestabile, G. InP Monolithically Integrated Coherent Transmitter. Opt. Express 2015, 23, 10741. [Google Scholar] [CrossRef] [PubMed]
- Asemahegn Asi, W.; Daniel, R.; Amir, A. MMW Wireless Communication System Based on QPSK Format Using Photomixer and Coherent Detection. In Proceedings of the 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 4–6 November 2019. [Google Scholar]
- Photonics, T. GaAs and InGaAs Photomixers. Available online: https://www.toptica.com/products/terahertz-systems/frequency-domain/gaas-and-ingaas-photomixers/ (accessed on 30 September 2019).
- Shake, I.; Takara, H.; Kawanishi, S. Simple Measurement of Eye Diagram and BER Using High-Speed Asynchronous Sampling. J. Light. Technol. 2004, 22, 1296–1302. [Google Scholar] [CrossRef]
- Song, H.-J.; Kim, J.-Y.; Ajito, K.; Yaita, M.; Kukutsu, N. Fully Integrated ASK Receiver MMIC for Terahertz Communications at 300 GHz. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 445–452. [Google Scholar] [CrossRef]
- Hirata, A.; Kosugi, T.; Takahashi, H.; Takeuchi, J.; Togo, H.; Yaita, M.; Kukutsu, N.; Aihara, K.; Murata, K.; Sato, Y.; et al. 120-GHz-Band Wireless Link Technologies for Outdoor 10-Gbit/s Data Transmission. IEEE Trans. Microw. Theory Tech. 2012, 60, 881–895. [Google Scholar] [CrossRef]
- Fice, M.J.; Rouvalis, E.; van Dijk, F.; Accard, A.; Lelarge, F.; Renaud, C.C.; Carpintero, G.; Seeds, A.J. 146-GHz Millimeter-Wave Radio-over-Fiber Photonic Wireless Transmission System. Opt. Express 2012, 20, 1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducournau, G.; Szriftgiser, P.; Bacquet, D.; Beck, A.; Akalin, T.; Peytavit, E.; Zaknoune, M.; Lampin, J.F. Optically Power Supplied Gbit/s Wireless Hotspot Using 1.55 µm THz Photomixer and Heterodyne Detection at 200 GHz. Electron. Lett. 2010, 46, 1349. [Google Scholar] [CrossRef]
- Forward Error Correction for Submarine Systems. Available online: https://www.itu.int/rec/T-REC-G.975-200010-I/en (accessed on 10 March 2020).
- G.709: Interfaces for the Optical Transport Network. Available online: https://www.itu.int/rec/T-REC-G.709/ (accessed on 10 March 2020).
- Mizuochi, T.; Kubo, K.; Yoshida, H.; Fujita, H.; Tagami, H.; Akita, M.; Motoshima, K. Next Generation FEC for Optical Transmission Systems. In Proceedings of the OFC 2003 Optical Fiber Communications Conference, Atlanta, GA, USA, 28 March 2003. [Google Scholar]
- Djordjevic, I.B. Advanced Coding for Optical Communications. In Optical Fiber Telecommunications; Kaminow, I., Li, T., Willner, A.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 221–295. [Google Scholar]
- Sinsky, J.H.; Adamiecki, A.; Gnauck, A.; Burrus, C.; Leuthold, J.; Wohlgemuth, O.; Umbach, A. A 42.7-Gb/s Integrated Balanced Optical Front End with Record Sensitivity. In Proceedings of the OFC 2003 Optical Fiber Communications Conference, Atlanta, GA, USA, 23 March 2003. [Google Scholar]
Input Data Voltage (Vpp) | Q-Factor | BER | Bit Rate (Mbps) | Bit Period (ns) | Timing Jitter (ns) | |
---|---|---|---|---|---|---|
1 | 1.115 | −2.05 | 100 | 10 | 6.27 (62.72%) | |
1.5 | 1.411 | 0 | 100 | 10 | 5.25 (52.57%) | |
3.5 | 3.667 | 8.286 | 100 | 10 | 4.15 (41.5%) |
Reference | Carrier Frequency (GHz) | Data Rate (Gb/s) | BER/EVM | Demodulation Method | Transmission Distance (m) |
---|---|---|---|---|---|
[4] | 100 | 100 | Off-line DSP | 0.7 | |
[10] | 87.5 | 100 | Off-line DSP | 1.2 | |
[17] | 196 | 0.1 | EVM < 10% | Same Tx/Rx | 0.5 |
[18] | 120 | 10 | Real time | 200 | |
[19] | 146 | 1 | -* | Off-line DSP | 0.025 |
[20] | 200 | 1 | Real time | 2.6 | |
This work | 90 | 0.1 | Real time | 0.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wudu, A.; Rozban, D.; Abramovich, A. QPSK MMW Wireless Communication System Based On p-i-n InGaAs Photomixer. Electronics 2020, 9, 1182. https://doi.org/10.3390/electronics9081182
Wudu A, Rozban D, Abramovich A. QPSK MMW Wireless Communication System Based On p-i-n InGaAs Photomixer. Electronics. 2020; 9(8):1182. https://doi.org/10.3390/electronics9081182
Chicago/Turabian StyleWudu, Asemahegn, Daniel Rozban, and Amir Abramovich. 2020. "QPSK MMW Wireless Communication System Based On p-i-n InGaAs Photomixer" Electronics 9, no. 8: 1182. https://doi.org/10.3390/electronics9081182
APA StyleWudu, A., Rozban, D., & Abramovich, A. (2020). QPSK MMW Wireless Communication System Based On p-i-n InGaAs Photomixer. Electronics, 9(8), 1182. https://doi.org/10.3390/electronics9081182